--- library_name: transformers license: apache-2.0 base_model: c14kevincardenas/ClimBEiTv2 tags: - knowledge_distillation - vision - generated_from_trainer metrics: - accuracy model-index: - name: beit-base-patch16-224_alpha0.7_temp5.0 results: [] --- # beit-base-patch16-224_alpha0.7_temp5.0 This model is a fine-tuned version of [c14kevincardenas/ClimBEiTv2](https://huggingface.co/c14kevincardenas/ClimBEiTv2) on the c14kevincardenas/beta_caller_284_person_crop_seq_withlimb_2 dataset. It achieves the following results on the evaluation set: - Loss: 0.5587 - Accuracy: 0.8014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1179 | 1.0 | 90 | 1.4254 | 0.2875 | | 0.8879 | 2.0 | 180 | 1.0517 | 0.5632 | | 0.5644 | 3.0 | 270 | 0.7063 | 0.7431 | | 0.3909 | 4.0 | 360 | 0.6421 | 0.7727 | | 0.2787 | 5.0 | 450 | 0.6018 | 0.7875 | | 0.2167 | 6.0 | 540 | 0.6578 | 0.7688 | | 0.1982 | 7.0 | 630 | 0.6107 | 0.7826 | | 0.1799 | 8.0 | 720 | 0.5742 | 0.8132 | | 0.1689 | 9.0 | 810 | 0.6021 | 0.7945 | | 0.1555 | 10.0 | 900 | 0.5871 | 0.7895 | | 0.1514 | 11.0 | 990 | 0.5836 | 0.7915 | | 0.1418 | 12.0 | 1080 | 0.5684 | 0.7964 | | 0.1356 | 13.0 | 1170 | 0.5688 | 0.7974 | | 0.1262 | 14.0 | 1260 | 0.5783 | 0.8053 | | 0.128 | 15.0 | 1350 | 0.5665 | 0.7925 | | 0.1211 | 16.0 | 1440 | 0.5587 | 0.8014 | | 0.1223 | 17.0 | 1530 | 0.5644 | 0.8034 | | 0.1133 | 18.0 | 1620 | 0.5634 | 0.8083 | | 0.1158 | 19.0 | 1710 | 0.5711 | 0.8063 | | 0.1119 | 20.0 | 1800 | 0.5648 | 0.8083 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1