--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 9695f043-7d58-4d3b-b9d1-2e999211dbdc results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-Coder-7B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fb3c1139cf76f78a_train_data.json ds_type: json format: custom path: /workspace/input_data/fb3c1139cf76f78a_train_data.json type: field_instruction: premise field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: brixeus/9695f043-7d58-4d3b-b9d1-2e999211dbdc hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 400 micro_batch_size: 8 mlflow_experiment_name: /tmp/fb3c1139cf76f78a_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1.0e-05 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: afa23e14-8c14-45d1-9caf-bd1bb8f81c4e wandb_project: Gradients-On-Three wandb_run: your_name wandb_runid: afa23e14-8c14-45d1-9caf-bd1bb8f81c4e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 9695f043-7d58-4d3b-b9d1-2e999211dbdc This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 400 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.9428 | 0.0002 | 1 | 4.0574 | | 2.1764 | 0.0100 | 50 | 1.8240 | | 2.1889 | 0.0199 | 100 | 1.8153 | | 2.0585 | 0.0299 | 150 | 1.7751 | | 1.8792 | 0.0398 | 200 | 1.7603 | | 2.1116 | 0.0498 | 250 | 1.7502 | | 2.0537 | 0.0598 | 300 | 1.7397 | | 1.8879 | 0.0697 | 350 | 1.7323 | | 1.9717 | 0.0797 | 400 | 1.7319 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1