brixeus commited on
Commit
0b50081
·
verified ·
1 Parent(s): 262ff1b

Training in progress, step 300, checkpoint

Browse files
last-checkpoint/adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c8e10447b033239b307c4a6071c2ac53049439abfdbe0e41b5715d5970d90c11
3
  size 645975704
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8709368e9621002f0ce0a313ea536a31eadf6890bf9260e0b973b7ef8232d20f
3
  size 645975704
last-checkpoint/optimizer.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0daa79011c2a68dfb666b720edd647ef2675f6a940b52c31e56faf8bb2cdbdeb
3
- size 328468404
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45d46843a479ee0012d9cb2796a2b174142d57beb53d0221a9c38cec8e28aefe
3
+ size 328468852
last-checkpoint/rng_state.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:625651bdade1b912e8f85b6b7602fa590d299ad8e23e1909b1d14e5cc00a60fe
3
  size 14244
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:268593e8da02affa399e079b9c1a2047648c8a248cc47cd8d1b56c4bb1e7c520
3
  size 14244
last-checkpoint/scheduler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7d5e1448282b30a66cf7be83aef18a251fdb6205c0184b42e99ae724602144bf
3
  size 1064
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43da0688aca60835f4e18fa7e0f3cc099504828f82fd5dd994118be26b760a0f
3
  size 1064
last-checkpoint/trainer_state.json CHANGED
@@ -1,9 +1,9 @@
1
  {
2
- "best_metric": 1.750185489654541,
3
- "best_model_checkpoint": "miner_id_24/checkpoint-250",
4
- "epoch": 0.049808238282611945,
5
  "eval_steps": 50,
6
- "global_step": 250,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
@@ -1805,6 +1805,364 @@
1805
  "eval_samples_per_second": 13.903,
1806
  "eval_steps_per_second": 3.477,
1807
  "step": 250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808
  }
1809
  ],
1810
  "logging_steps": 1,
@@ -1833,7 +2191,7 @@
1833
  "attributes": {}
1834
  }
1835
  },
1836
- "total_flos": 3.5547217133568e+17,
1837
  "train_batch_size": 8,
1838
  "trial_name": null,
1839
  "trial_params": null
 
1
  {
2
+ "best_metric": 1.7397185564041138,
3
+ "best_model_checkpoint": "miner_id_24/checkpoint-300",
4
+ "epoch": 0.059769885939134335,
5
  "eval_steps": 50,
6
+ "global_step": 300,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
 
1805
  "eval_samples_per_second": 13.903,
1806
  "eval_steps_per_second": 3.477,
1807
  "step": 250
1808
+ },
1809
+ {
1810
+ "epoch": 0.05000747123574239,
1811
+ "grad_norm": 0.6731575727462769,
1812
+ "learning_rate": 3.189374007355917e-05,
1813
+ "loss": 1.2006,
1814
+ "step": 251
1815
+ },
1816
+ {
1817
+ "epoch": 0.05020670418887284,
1818
+ "grad_norm": 0.8384291529655457,
1819
+ "learning_rate": 3.151889938850445e-05,
1820
+ "loss": 1.3281,
1821
+ "step": 252
1822
+ },
1823
+ {
1824
+ "epoch": 0.05040593714200329,
1825
+ "grad_norm": 0.8505686521530151,
1826
+ "learning_rate": 3.114525791558398e-05,
1827
+ "loss": 1.6739,
1828
+ "step": 253
1829
+ },
1830
+ {
1831
+ "epoch": 0.05060517009513373,
1832
+ "grad_norm": 0.8174691200256348,
1833
+ "learning_rate": 3.0772839899857464e-05,
1834
+ "loss": 1.6558,
1835
+ "step": 254
1836
+ },
1837
+ {
1838
+ "epoch": 0.05080440304826418,
1839
+ "grad_norm": 0.7438680529594421,
1840
+ "learning_rate": 3.0401669506996256e-05,
1841
+ "loss": 1.5605,
1842
+ "step": 255
1843
+ },
1844
+ {
1845
+ "epoch": 0.05100363600139463,
1846
+ "grad_norm": 0.9211633205413818,
1847
+ "learning_rate": 3.003177082171523e-05,
1848
+ "loss": 1.7153,
1849
+ "step": 256
1850
+ },
1851
+ {
1852
+ "epoch": 0.051202868954525076,
1853
+ "grad_norm": 0.7322139143943787,
1854
+ "learning_rate": 2.9663167846209998e-05,
1855
+ "loss": 1.4613,
1856
+ "step": 257
1857
+ },
1858
+ {
1859
+ "epoch": 0.051402101907655526,
1860
+ "grad_norm": 0.7553418874740601,
1861
+ "learning_rate": 2.9295884498599414e-05,
1862
+ "loss": 1.6048,
1863
+ "step": 258
1864
+ },
1865
+ {
1866
+ "epoch": 0.051601334860785976,
1867
+ "grad_norm": 0.7404634356498718,
1868
+ "learning_rate": 2.8929944611373554e-05,
1869
+ "loss": 1.6173,
1870
+ "step": 259
1871
+ },
1872
+ {
1873
+ "epoch": 0.05180056781391642,
1874
+ "grad_norm": 0.6997928619384766,
1875
+ "learning_rate": 2.8565371929847284e-05,
1876
+ "loss": 1.4457,
1877
+ "step": 260
1878
+ },
1879
+ {
1880
+ "epoch": 0.05199980076704687,
1881
+ "grad_norm": 0.7190682291984558,
1882
+ "learning_rate": 2.8202190110619493e-05,
1883
+ "loss": 1.4685,
1884
+ "step": 261
1885
+ },
1886
+ {
1887
+ "epoch": 0.05219903372017732,
1888
+ "grad_norm": 0.8214508891105652,
1889
+ "learning_rate": 2.784042272003794e-05,
1890
+ "loss": 1.6993,
1891
+ "step": 262
1892
+ },
1893
+ {
1894
+ "epoch": 0.05239826667330776,
1895
+ "grad_norm": 0.8008723258972168,
1896
+ "learning_rate": 2.7480093232670158e-05,
1897
+ "loss": 1.6652,
1898
+ "step": 263
1899
+ },
1900
+ {
1901
+ "epoch": 0.05259749962643821,
1902
+ "grad_norm": 0.7961799502372742,
1903
+ "learning_rate": 2.712122502978024e-05,
1904
+ "loss": 1.6416,
1905
+ "step": 264
1906
+ },
1907
+ {
1908
+ "epoch": 0.05279673257956866,
1909
+ "grad_norm": 0.6760292053222656,
1910
+ "learning_rate": 2.6763841397811573e-05,
1911
+ "loss": 1.2897,
1912
+ "step": 265
1913
+ },
1914
+ {
1915
+ "epoch": 0.052995965532699106,
1916
+ "grad_norm": 0.8537053465843201,
1917
+ "learning_rate": 2.64079655268759e-05,
1918
+ "loss": 1.5309,
1919
+ "step": 266
1920
+ },
1921
+ {
1922
+ "epoch": 0.053195198485829556,
1923
+ "grad_norm": 0.7754104137420654,
1924
+ "learning_rate": 2.605362050924848e-05,
1925
+ "loss": 1.6193,
1926
+ "step": 267
1927
+ },
1928
+ {
1929
+ "epoch": 0.053394431438960006,
1930
+ "grad_norm": 0.7383844256401062,
1931
+ "learning_rate": 2.57008293378697e-05,
1932
+ "loss": 1.5956,
1933
+ "step": 268
1934
+ },
1935
+ {
1936
+ "epoch": 0.05359366439209045,
1937
+ "grad_norm": 0.8079094886779785,
1938
+ "learning_rate": 2.534961490485313e-05,
1939
+ "loss": 1.6054,
1940
+ "step": 269
1941
+ },
1942
+ {
1943
+ "epoch": 0.0537928973452209,
1944
+ "grad_norm": 0.7139529585838318,
1945
+ "learning_rate": 2.500000000000001e-05,
1946
+ "loss": 1.5294,
1947
+ "step": 270
1948
+ },
1949
+ {
1950
+ "epoch": 0.05399213029835135,
1951
+ "grad_norm": 0.825450599193573,
1952
+ "learning_rate": 2.4652007309320498e-05,
1953
+ "loss": 1.7282,
1954
+ "step": 271
1955
+ },
1956
+ {
1957
+ "epoch": 0.05419136325148179,
1958
+ "grad_norm": 0.792938232421875,
1959
+ "learning_rate": 2.430565941356157e-05,
1960
+ "loss": 1.6671,
1961
+ "step": 272
1962
+ },
1963
+ {
1964
+ "epoch": 0.05439059620461224,
1965
+ "grad_norm": 0.7084431052207947,
1966
+ "learning_rate": 2.3960978786741877e-05,
1967
+ "loss": 1.582,
1968
+ "step": 273
1969
+ },
1970
+ {
1971
+ "epoch": 0.05458982915774269,
1972
+ "grad_norm": 0.7082628607749939,
1973
+ "learning_rate": 2.361798779469336e-05,
1974
+ "loss": 1.5363,
1975
+ "step": 274
1976
+ },
1977
+ {
1978
+ "epoch": 0.05478906211087314,
1979
+ "grad_norm": 0.808502197265625,
1980
+ "learning_rate": 2.3276708693609943e-05,
1981
+ "loss": 1.8669,
1982
+ "step": 275
1983
+ },
1984
+ {
1985
+ "epoch": 0.05498829506400359,
1986
+ "grad_norm": 0.748428463935852,
1987
+ "learning_rate": 2.2937163628603435e-05,
1988
+ "loss": 1.7152,
1989
+ "step": 276
1990
+ },
1991
+ {
1992
+ "epoch": 0.05518752801713404,
1993
+ "grad_norm": 0.6738754510879517,
1994
+ "learning_rate": 2.259937463226651e-05,
1995
+ "loss": 1.5148,
1996
+ "step": 277
1997
+ },
1998
+ {
1999
+ "epoch": 0.05538676097026448,
2000
+ "grad_norm": 0.7960265874862671,
2001
+ "learning_rate": 2.2263363623243054e-05,
2002
+ "loss": 1.7718,
2003
+ "step": 278
2004
+ },
2005
+ {
2006
+ "epoch": 0.05558599392339493,
2007
+ "grad_norm": 0.8715181350708008,
2008
+ "learning_rate": 2.192915240480596e-05,
2009
+ "loss": 1.5031,
2010
+ "step": 279
2011
+ },
2012
+ {
2013
+ "epoch": 0.05578522687652538,
2014
+ "grad_norm": 0.7735579609870911,
2015
+ "learning_rate": 2.1596762663442218e-05,
2016
+ "loss": 1.6745,
2017
+ "step": 280
2018
+ },
2019
+ {
2020
+ "epoch": 0.055984459829655824,
2021
+ "grad_norm": 0.8760421276092529,
2022
+ "learning_rate": 2.1266215967445824e-05,
2023
+ "loss": 1.8857,
2024
+ "step": 281
2025
+ },
2026
+ {
2027
+ "epoch": 0.056183692782786274,
2028
+ "grad_norm": 0.8865538835525513,
2029
+ "learning_rate": 2.0937533765518187e-05,
2030
+ "loss": 1.9028,
2031
+ "step": 282
2032
+ },
2033
+ {
2034
+ "epoch": 0.056382925735916724,
2035
+ "grad_norm": 0.9539476037025452,
2036
+ "learning_rate": 2.061073738537635e-05,
2037
+ "loss": 2.0445,
2038
+ "step": 283
2039
+ },
2040
+ {
2041
+ "epoch": 0.05658215868904717,
2042
+ "grad_norm": 0.9166472554206848,
2043
+ "learning_rate": 2.0285848032369137e-05,
2044
+ "loss": 1.9541,
2045
+ "step": 284
2046
+ },
2047
+ {
2048
+ "epoch": 0.05678139164217762,
2049
+ "grad_norm": 0.9191790223121643,
2050
+ "learning_rate": 1.996288678810105e-05,
2051
+ "loss": 1.6677,
2052
+ "step": 285
2053
+ },
2054
+ {
2055
+ "epoch": 0.05698062459530807,
2056
+ "grad_norm": 0.7826664447784424,
2057
+ "learning_rate": 1.9641874609064443e-05,
2058
+ "loss": 1.6405,
2059
+ "step": 286
2060
+ },
2061
+ {
2062
+ "epoch": 0.05717985754843851,
2063
+ "grad_norm": 0.9028159379959106,
2064
+ "learning_rate": 1.932283232527956e-05,
2065
+ "loss": 1.7956,
2066
+ "step": 287
2067
+ },
2068
+ {
2069
+ "epoch": 0.05737909050156896,
2070
+ "grad_norm": 0.937842607498169,
2071
+ "learning_rate": 1.9005780638942982e-05,
2072
+ "loss": 2.145,
2073
+ "step": 288
2074
+ },
2075
+ {
2076
+ "epoch": 0.057578323454699404,
2077
+ "grad_norm": 0.9173859357833862,
2078
+ "learning_rate": 1.8690740123084316e-05,
2079
+ "loss": 2.0756,
2080
+ "step": 289
2081
+ },
2082
+ {
2083
+ "epoch": 0.057777556407829854,
2084
+ "grad_norm": 0.9420987367630005,
2085
+ "learning_rate": 1.837773122023114e-05,
2086
+ "loss": 1.9523,
2087
+ "step": 290
2088
+ },
2089
+ {
2090
+ "epoch": 0.057976789360960304,
2091
+ "grad_norm": 0.8245025873184204,
2092
+ "learning_rate": 1.8066774241082612e-05,
2093
+ "loss": 1.6465,
2094
+ "step": 291
2095
+ },
2096
+ {
2097
+ "epoch": 0.05817602231409075,
2098
+ "grad_norm": 1.0325926542282104,
2099
+ "learning_rate": 1.7757889363191483e-05,
2100
+ "loss": 2.0746,
2101
+ "step": 292
2102
+ },
2103
+ {
2104
+ "epoch": 0.0583752552672212,
2105
+ "grad_norm": 0.9942927956581116,
2106
+ "learning_rate": 1.745109662965481e-05,
2107
+ "loss": 2.1365,
2108
+ "step": 293
2109
+ },
2110
+ {
2111
+ "epoch": 0.05857448822035165,
2112
+ "grad_norm": 0.9741763472557068,
2113
+ "learning_rate": 1.714641594781347e-05,
2114
+ "loss": 1.8655,
2115
+ "step": 294
2116
+ },
2117
+ {
2118
+ "epoch": 0.05877372117348209,
2119
+ "grad_norm": 0.8840393424034119,
2120
+ "learning_rate": 1.684386708796025e-05,
2121
+ "loss": 1.9521,
2122
+ "step": 295
2123
+ },
2124
+ {
2125
+ "epoch": 0.05897295412661254,
2126
+ "grad_norm": 0.9799483418464661,
2127
+ "learning_rate": 1.6543469682057106e-05,
2128
+ "loss": 1.991,
2129
+ "step": 296
2130
+ },
2131
+ {
2132
+ "epoch": 0.05917218707974299,
2133
+ "grad_norm": 0.9580841660499573,
2134
+ "learning_rate": 1.62452432224612e-05,
2135
+ "loss": 1.8491,
2136
+ "step": 297
2137
+ },
2138
+ {
2139
+ "epoch": 0.059371420032873434,
2140
+ "grad_norm": 0.9038205742835999,
2141
+ "learning_rate": 1.5949207060660138e-05,
2142
+ "loss": 1.9239,
2143
+ "step": 298
2144
+ },
2145
+ {
2146
+ "epoch": 0.059570652986003884,
2147
+ "grad_norm": 0.9356576800346375,
2148
+ "learning_rate": 1.5655380406016235e-05,
2149
+ "loss": 1.7673,
2150
+ "step": 299
2151
+ },
2152
+ {
2153
+ "epoch": 0.059769885939134335,
2154
+ "grad_norm": 1.2466371059417725,
2155
+ "learning_rate": 1.536378232452003e-05,
2156
+ "loss": 2.0537,
2157
+ "step": 300
2158
+ },
2159
+ {
2160
+ "epoch": 0.059769885939134335,
2161
+ "eval_loss": 1.7397185564041138,
2162
+ "eval_runtime": 607.4946,
2163
+ "eval_samples_per_second": 13.916,
2164
+ "eval_steps_per_second": 3.48,
2165
+ "step": 300
2166
  }
2167
  ],
2168
  "logging_steps": 1,
 
2191
  "attributes": {}
2192
  }
2193
  },
2194
+ "total_flos": 4.26566605602816e+17,
2195
  "train_batch_size": 8,
2196
  "trial_name": null,
2197
  "trial_params": null