brixeus commited on
Commit
1de9306
·
verified ·
1 Parent(s): 676a509

Training in progress, step 300, checkpoint

Browse files
last-checkpoint/adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:58acdbaf2a95685c6722b6405b19372d905ef1fba6996d7695325050f3d72ea5
3
  size 389074464
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d74ee2018e75ec997a1647765de8e5874f837bd8ff0a569eeac1e7efbf7b3e31
3
  size 389074464
last-checkpoint/optimizer.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a446132d7c31b956eaefc7388b38251641542ce8b95d74805e64fc306de2f523
3
- size 198011252
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:645473c331ee3ba8ad75ba72958a4c4c0311a6ddbfd24e7db5850f9388a63ed4
3
+ size 198011700
last-checkpoint/rng_state.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:48d730db741b952a021078a26f33d6e0bf86090f9b5ed7a694df4d03784c8b62
3
  size 14244
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9198534d8bc7b8004c77975d3c50a6aefec563ba7af59f6c88e7ab49d15402bb
3
  size 14244
last-checkpoint/scheduler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7d5e1448282b30a66cf7be83aef18a251fdb6205c0184b42e99ae724602144bf
3
  size 1064
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43da0688aca60835f4e18fa7e0f3cc099504828f82fd5dd994118be26b760a0f
3
  size 1064
last-checkpoint/trainer_state.json CHANGED
@@ -1,9 +1,9 @@
1
  {
2
- "best_metric": 1.1618001461029053,
3
- "best_model_checkpoint": "miner_id_24/checkpoint-250",
4
- "epoch": 0.3395585738539898,
5
  "eval_steps": 50,
6
- "global_step": 250,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
@@ -1805,6 +1805,364 @@
1805
  "eval_samples_per_second": 16.333,
1806
  "eval_steps_per_second": 4.083,
1807
  "step": 250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808
  }
1809
  ],
1810
  "logging_steps": 1,
@@ -1833,7 +2191,7 @@
1833
  "attributes": {}
1834
  }
1835
  },
1836
- "total_flos": 2.0123162805849293e+17,
1837
  "train_batch_size": 8,
1838
  "trial_name": null,
1839
  "trial_params": null
 
1
  {
2
+ "best_metric": 1.1560478210449219,
3
+ "best_model_checkpoint": "miner_id_24/checkpoint-300",
4
+ "epoch": 0.4074702886247878,
5
  "eval_steps": 50,
6
+ "global_step": 300,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
 
1805
  "eval_samples_per_second": 16.333,
1806
  "eval_steps_per_second": 4.083,
1807
  "step": 250
1808
+ },
1809
+ {
1810
+ "epoch": 0.3409168081494058,
1811
+ "grad_norm": 0.21301254630088806,
1812
+ "learning_rate": 3.189374007355917e-05,
1813
+ "loss": 1.1747,
1814
+ "step": 251
1815
+ },
1816
+ {
1817
+ "epoch": 0.3422750424448217,
1818
+ "grad_norm": 0.2225201576948166,
1819
+ "learning_rate": 3.151889938850445e-05,
1820
+ "loss": 1.1631,
1821
+ "step": 252
1822
+ },
1823
+ {
1824
+ "epoch": 0.3436332767402377,
1825
+ "grad_norm": 0.2226182520389557,
1826
+ "learning_rate": 3.114525791558398e-05,
1827
+ "loss": 1.1984,
1828
+ "step": 253
1829
+ },
1830
+ {
1831
+ "epoch": 0.3449915110356537,
1832
+ "grad_norm": 0.23307554423809052,
1833
+ "learning_rate": 3.0772839899857464e-05,
1834
+ "loss": 1.1848,
1835
+ "step": 254
1836
+ },
1837
+ {
1838
+ "epoch": 0.3463497453310696,
1839
+ "grad_norm": 0.22128012776374817,
1840
+ "learning_rate": 3.0401669506996256e-05,
1841
+ "loss": 1.1897,
1842
+ "step": 255
1843
+ },
1844
+ {
1845
+ "epoch": 0.3477079796264856,
1846
+ "grad_norm": 0.22312457859516144,
1847
+ "learning_rate": 3.003177082171523e-05,
1848
+ "loss": 1.1978,
1849
+ "step": 256
1850
+ },
1851
+ {
1852
+ "epoch": 0.3490662139219015,
1853
+ "grad_norm": 0.21898281574249268,
1854
+ "learning_rate": 2.9663167846209998e-05,
1855
+ "loss": 1.1822,
1856
+ "step": 257
1857
+ },
1858
+ {
1859
+ "epoch": 0.3504244482173175,
1860
+ "grad_norm": 0.2056150883436203,
1861
+ "learning_rate": 2.9295884498599414e-05,
1862
+ "loss": 1.2227,
1863
+ "step": 258
1864
+ },
1865
+ {
1866
+ "epoch": 0.3517826825127334,
1867
+ "grad_norm": 0.221930593252182,
1868
+ "learning_rate": 2.8929944611373554e-05,
1869
+ "loss": 1.1336,
1870
+ "step": 259
1871
+ },
1872
+ {
1873
+ "epoch": 0.3531409168081494,
1874
+ "grad_norm": 0.21197658777236938,
1875
+ "learning_rate": 2.8565371929847284e-05,
1876
+ "loss": 1.205,
1877
+ "step": 260
1878
+ },
1879
+ {
1880
+ "epoch": 0.3544991511035654,
1881
+ "grad_norm": 0.20999324321746826,
1882
+ "learning_rate": 2.8202190110619493e-05,
1883
+ "loss": 1.1551,
1884
+ "step": 261
1885
+ },
1886
+ {
1887
+ "epoch": 0.3558573853989813,
1888
+ "grad_norm": 0.20450879633426666,
1889
+ "learning_rate": 2.784042272003794e-05,
1890
+ "loss": 1.1924,
1891
+ "step": 262
1892
+ },
1893
+ {
1894
+ "epoch": 0.3572156196943973,
1895
+ "grad_norm": 0.20566685497760773,
1896
+ "learning_rate": 2.7480093232670158e-05,
1897
+ "loss": 1.1541,
1898
+ "step": 263
1899
+ },
1900
+ {
1901
+ "epoch": 0.35857385398981323,
1902
+ "grad_norm": 0.2097368687391281,
1903
+ "learning_rate": 2.712122502978024e-05,
1904
+ "loss": 1.1414,
1905
+ "step": 264
1906
+ },
1907
+ {
1908
+ "epoch": 0.3599320882852292,
1909
+ "grad_norm": 0.21455705165863037,
1910
+ "learning_rate": 2.6763841397811573e-05,
1911
+ "loss": 1.1273,
1912
+ "step": 265
1913
+ },
1914
+ {
1915
+ "epoch": 0.36129032258064514,
1916
+ "grad_norm": 0.20965005457401276,
1917
+ "learning_rate": 2.64079655268759e-05,
1918
+ "loss": 1.2223,
1919
+ "step": 266
1920
+ },
1921
+ {
1922
+ "epoch": 0.3626485568760611,
1923
+ "grad_norm": 0.21943199634552002,
1924
+ "learning_rate": 2.605362050924848e-05,
1925
+ "loss": 1.2121,
1926
+ "step": 267
1927
+ },
1928
+ {
1929
+ "epoch": 0.3640067911714771,
1930
+ "grad_norm": 0.21387051045894623,
1931
+ "learning_rate": 2.57008293378697e-05,
1932
+ "loss": 1.1135,
1933
+ "step": 268
1934
+ },
1935
+ {
1936
+ "epoch": 0.36536502546689303,
1937
+ "grad_norm": 0.22179877758026123,
1938
+ "learning_rate": 2.534961490485313e-05,
1939
+ "loss": 1.1187,
1940
+ "step": 269
1941
+ },
1942
+ {
1943
+ "epoch": 0.366723259762309,
1944
+ "grad_norm": 0.21317237615585327,
1945
+ "learning_rate": 2.500000000000001e-05,
1946
+ "loss": 1.1579,
1947
+ "step": 270
1948
+ },
1949
+ {
1950
+ "epoch": 0.36808149405772495,
1951
+ "grad_norm": 0.2269050031900406,
1952
+ "learning_rate": 2.4652007309320498e-05,
1953
+ "loss": 1.1958,
1954
+ "step": 271
1955
+ },
1956
+ {
1957
+ "epoch": 0.36943972835314093,
1958
+ "grad_norm": 0.22643712162971497,
1959
+ "learning_rate": 2.430565941356157e-05,
1960
+ "loss": 1.1358,
1961
+ "step": 272
1962
+ },
1963
+ {
1964
+ "epoch": 0.37079796264855686,
1965
+ "grad_norm": 0.22138290107250214,
1966
+ "learning_rate": 2.3960978786741877e-05,
1967
+ "loss": 1.199,
1968
+ "step": 273
1969
+ },
1970
+ {
1971
+ "epoch": 0.37215619694397284,
1972
+ "grad_norm": 0.22572052478790283,
1973
+ "learning_rate": 2.361798779469336e-05,
1974
+ "loss": 1.1746,
1975
+ "step": 274
1976
+ },
1977
+ {
1978
+ "epoch": 0.3735144312393888,
1979
+ "grad_norm": 0.2312777042388916,
1980
+ "learning_rate": 2.3276708693609943e-05,
1981
+ "loss": 1.1201,
1982
+ "step": 275
1983
+ },
1984
+ {
1985
+ "epoch": 0.37487266553480475,
1986
+ "grad_norm": 0.21996109187602997,
1987
+ "learning_rate": 2.2937163628603435e-05,
1988
+ "loss": 1.0967,
1989
+ "step": 276
1990
+ },
1991
+ {
1992
+ "epoch": 0.37623089983022073,
1993
+ "grad_norm": 0.2212551087141037,
1994
+ "learning_rate": 2.259937463226651e-05,
1995
+ "loss": 1.118,
1996
+ "step": 277
1997
+ },
1998
+ {
1999
+ "epoch": 0.37758913412563666,
2000
+ "grad_norm": 0.22271205484867096,
2001
+ "learning_rate": 2.2263363623243054e-05,
2002
+ "loss": 1.1563,
2003
+ "step": 278
2004
+ },
2005
+ {
2006
+ "epoch": 0.37894736842105264,
2007
+ "grad_norm": 0.23066063225269318,
2008
+ "learning_rate": 2.192915240480596e-05,
2009
+ "loss": 1.1351,
2010
+ "step": 279
2011
+ },
2012
+ {
2013
+ "epoch": 0.38030560271646857,
2014
+ "grad_norm": 0.24335499107837677,
2015
+ "learning_rate": 2.1596762663442218e-05,
2016
+ "loss": 1.2207,
2017
+ "step": 280
2018
+ },
2019
+ {
2020
+ "epoch": 0.38166383701188455,
2021
+ "grad_norm": 0.23115313053131104,
2022
+ "learning_rate": 2.1266215967445824e-05,
2023
+ "loss": 1.1353,
2024
+ "step": 281
2025
+ },
2026
+ {
2027
+ "epoch": 0.3830220713073005,
2028
+ "grad_norm": 0.23002904653549194,
2029
+ "learning_rate": 2.0937533765518187e-05,
2030
+ "loss": 1.1279,
2031
+ "step": 282
2032
+ },
2033
+ {
2034
+ "epoch": 0.38438030560271647,
2035
+ "grad_norm": 0.2410050332546234,
2036
+ "learning_rate": 2.061073738537635e-05,
2037
+ "loss": 1.1076,
2038
+ "step": 283
2039
+ },
2040
+ {
2041
+ "epoch": 0.38573853989813245,
2042
+ "grad_norm": 0.23403891921043396,
2043
+ "learning_rate": 2.0285848032369137e-05,
2044
+ "loss": 1.1247,
2045
+ "step": 284
2046
+ },
2047
+ {
2048
+ "epoch": 0.3870967741935484,
2049
+ "grad_norm": 0.23966725170612335,
2050
+ "learning_rate": 1.996288678810105e-05,
2051
+ "loss": 1.1294,
2052
+ "step": 285
2053
+ },
2054
+ {
2055
+ "epoch": 0.38845500848896436,
2056
+ "grad_norm": 0.2466222494840622,
2057
+ "learning_rate": 1.9641874609064443e-05,
2058
+ "loss": 1.158,
2059
+ "step": 286
2060
+ },
2061
+ {
2062
+ "epoch": 0.3898132427843803,
2063
+ "grad_norm": 0.23464591801166534,
2064
+ "learning_rate": 1.932283232527956e-05,
2065
+ "loss": 1.1227,
2066
+ "step": 287
2067
+ },
2068
+ {
2069
+ "epoch": 0.39117147707979627,
2070
+ "grad_norm": 0.2456170916557312,
2071
+ "learning_rate": 1.9005780638942982e-05,
2072
+ "loss": 1.1333,
2073
+ "step": 288
2074
+ },
2075
+ {
2076
+ "epoch": 0.3925297113752122,
2077
+ "grad_norm": 0.25727927684783936,
2078
+ "learning_rate": 1.8690740123084316e-05,
2079
+ "loss": 1.148,
2080
+ "step": 289
2081
+ },
2082
+ {
2083
+ "epoch": 0.3938879456706282,
2084
+ "grad_norm": 0.2539084851741791,
2085
+ "learning_rate": 1.837773122023114e-05,
2086
+ "loss": 1.2192,
2087
+ "step": 290
2088
+ },
2089
+ {
2090
+ "epoch": 0.39524617996604416,
2091
+ "grad_norm": 0.2602689862251282,
2092
+ "learning_rate": 1.8066774241082612e-05,
2093
+ "loss": 1.1582,
2094
+ "step": 291
2095
+ },
2096
+ {
2097
+ "epoch": 0.3966044142614601,
2098
+ "grad_norm": 0.2653775215148926,
2099
+ "learning_rate": 1.7757889363191483e-05,
2100
+ "loss": 1.122,
2101
+ "step": 292
2102
+ },
2103
+ {
2104
+ "epoch": 0.3979626485568761,
2105
+ "grad_norm": 0.26318901777267456,
2106
+ "learning_rate": 1.745109662965481e-05,
2107
+ "loss": 1.0884,
2108
+ "step": 293
2109
+ },
2110
+ {
2111
+ "epoch": 0.399320882852292,
2112
+ "grad_norm": 0.28393861651420593,
2113
+ "learning_rate": 1.714641594781347e-05,
2114
+ "loss": 1.1316,
2115
+ "step": 294
2116
+ },
2117
+ {
2118
+ "epoch": 0.400679117147708,
2119
+ "grad_norm": 0.2693468928337097,
2120
+ "learning_rate": 1.684386708796025e-05,
2121
+ "loss": 1.1191,
2122
+ "step": 295
2123
+ },
2124
+ {
2125
+ "epoch": 0.4020373514431239,
2126
+ "grad_norm": 0.28361696004867554,
2127
+ "learning_rate": 1.6543469682057106e-05,
2128
+ "loss": 1.1576,
2129
+ "step": 296
2130
+ },
2131
+ {
2132
+ "epoch": 0.4033955857385399,
2133
+ "grad_norm": 0.30078738927841187,
2134
+ "learning_rate": 1.62452432224612e-05,
2135
+ "loss": 1.1782,
2136
+ "step": 297
2137
+ },
2138
+ {
2139
+ "epoch": 0.4047538200339559,
2140
+ "grad_norm": 0.31263673305511475,
2141
+ "learning_rate": 1.5949207060660138e-05,
2142
+ "loss": 1.1739,
2143
+ "step": 298
2144
+ },
2145
+ {
2146
+ "epoch": 0.4061120543293718,
2147
+ "grad_norm": 0.33561959862709045,
2148
+ "learning_rate": 1.5655380406016235e-05,
2149
+ "loss": 1.1671,
2150
+ "step": 299
2151
+ },
2152
+ {
2153
+ "epoch": 0.4074702886247878,
2154
+ "grad_norm": 0.4124099314212799,
2155
+ "learning_rate": 1.536378232452003e-05,
2156
+ "loss": 1.1998,
2157
+ "step": 300
2158
+ },
2159
+ {
2160
+ "epoch": 0.4074702886247878,
2161
+ "eval_loss": 1.1560478210449219,
2162
+ "eval_runtime": 75.727,
2163
+ "eval_samples_per_second": 16.375,
2164
+ "eval_steps_per_second": 4.094,
2165
+ "step": 300
2166
  }
2167
  ],
2168
  "logging_steps": 1,
 
2191
  "attributes": {}
2192
  }
2193
  },
2194
+ "total_flos": 2.4107663703303782e+17,
2195
  "train_batch_size": 8,
2196
  "trial_name": null,
2197
  "trial_params": null