File size: 3,642 Bytes
bb1cf3c
1e8c5c4
bb1cf3c
 
 
 
 
 
 
 
 
 
 
1e8c5c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb1cf3c
ff8ee48
bb1cf3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
language:
- en
thumbnail: https://avatars3.githubusercontent.com/u/32437151?s=460&u=4ec59abc8d21d5feea3dab323d23a5860e6996a4&v=4
tags:
- text-classification
- emotion
- pytorch
license: apache-2.0
datasets:
- emotion
metrics:
- Accuracy, F1 Score
model-index:
- name: bhadresh-savani/electra-base-emotion
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: emotion
      type: emotion
      config: default
      split: test
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9265
      verified: true
    - name: Precision Macro
      type: precision
      value: 0.911532655431019
      verified: true
    - name: Precision Micro
      type: precision
      value: 0.9265
      verified: true
    - name: Precision Weighted
      type: precision
      value: 0.9305456360257519
      verified: true
    - name: Recall Macro
      type: recall
      value: 0.8536923122511134
      verified: true
    - name: Recall Micro
      type: recall
      value: 0.9265
      verified: true
    - name: Recall Weighted
      type: recall
      value: 0.9265
      verified: true
    - name: F1 Macro
      type: f1
      value: 0.8657529340483895
      verified: true
    - name: F1 Micro
      type: f1
      value: 0.9265
      verified: true
    - name: F1 Weighted
      type: f1
      value: 0.924844632421077
      verified: true
    - name: loss
      type: loss
      value: 0.3268870413303375
      verified: true
---
# Electra-base-emotion

## Model description:

## Model Performance Comparision on Emotion Dataset from Twitter:

| Model | Accuracy | F1 Score |  Test Sample per Second |
| --- | --- | --- | --- |
| [Distilbert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion) | 93.8 | 93.79 | 398.69 |
| [Bert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/bert-base-uncased-emotion) | 94.05 | 94.06 | 190.152 |
| [Roberta-base-emotion](https://huggingface.co/bhadresh-savani/roberta-base-emotion) | 93.95 | 93.97| 195.639 |
| [Albert-base-v2-emotion](https://huggingface.co/bhadresh-savani/albert-base-v2-emotion) | 93.6 | 93.65 | 182.794 |
| [Electra-base-emotion](https://huggingface.co/bhadresh-savani/electra-base-emotion) | 91.95 | 91.90 | 472.72 |

## How to Use the model:
```python
from transformers import pipeline
classifier = pipeline("text-classification",model='bhadresh-savani/electra-base-emotion', return_all_scores=True)
prediction = classifier("I love using transformers. The best part is wide range of support and its easy to use", )
print(prediction)

"""
Output:
[[
{'label': 'sadness', 'score': 0.0006792712374590337}, 
{'label': 'joy', 'score': 0.9959300756454468}, 
{'label': 'love', 'score': 0.0009452480007894337}, 
{'label': 'anger', 'score': 0.0018055217806249857}, 
{'label': 'fear', 'score': 0.00041110432357527316}, 
{'label': 'surprise', 'score': 0.0002288572577526793}
]]
"""
```

## Dataset:
[Twitter-Sentiment-Analysis](https://huggingface.co/nlp/viewer/?dataset=emotion).

## Training procedure
[Colab Notebook](https://github.com/bhadreshpsavani/ExploringSentimentalAnalysis/blob/main/SentimentalAnalysisWithDistilbert.ipynb)

## Eval results
```json
{
 'epoch': 8.0,
 'eval_accuracy': 0.9195,
 'eval_f1': 0.918975455617076,
 'eval_loss': 0.3486028015613556,
 'eval_runtime': 4.2308,
 'eval_samples_per_second': 472.726,
 'eval_steps_per_second': 7.564
 }
 ```

## Reference:
* [Natural Language Processing with Transformer By Lewis Tunstall, Leandro von Werra, Thomas Wolf](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/)