beomus commited on
Commit
c74ff9d
·
1 Parent(s): 6dabe89

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # LayoutXLM finetuned on XFUN.ja
2
+
3
+ ```python
4
+ import torch
5
+ import numpy as np
6
+ from PIL import Image, ImageDraw, ImageFont
7
+ from pathlib import Path
8
+ from itertools import chain
9
+ from tqdm.notebook import tqdm
10
+ from pdf2image import convert_from_path
11
+ from transformers import LayoutXLMProcessor, LayoutLMv2ForTokenClassification
12
+
13
+ import os
14
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
15
+
16
+ labels = [
17
+ 'O',
18
+ 'B-QUESTION',
19
+ 'B-ANSWER',
20
+ 'B-HEADER',
21
+ 'I-ANSWER',
22
+ 'I-QUESTION',
23
+ 'I-HEADER'
24
+ ]
25
+ id2label = {v: k for v, k in enumerate(labels)}
26
+ label2id = {k: v for v, k in enumerate(labels)}
27
+
28
+ def unnormalize_box(bbox, width, height):
29
+ return [
30
+ width * (bbox[0] / 1000),
31
+ height * (bbox[1] / 1000),
32
+ width * (bbox[2] / 1000),
33
+ height * (bbox[3] / 1000),
34
+ ]
35
+
36
+ def iob_to_label(label):
37
+ label = label[2:]
38
+ if not label:
39
+ return 'other'
40
+ return label
41
+
42
+ label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
43
+
44
+ def infer(image, processor, model, label2color):
45
+ # Use this if you're loading images
46
+ # image = Image.open(img_path).convert("RGB")
47
+
48
+ image = image.convert("RGB") # loading PDFs
49
+ encoding = processor(image, return_offsets_mapping=True, return_tensors="pt", truncation=True, max_length=514)
50
+ offset_mapping = encoding.pop('offset_mapping')
51
+ outputs = model(**encoding)
52
+ predictions = outputs.logits.argmax(-1).squeeze().tolist()
53
+ token_boxes = encoding.bbox.squeeze().tolist()
54
+
55
+ width, height = image.size
56
+ is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
57
+
58
+ true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
59
+ true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
60
+ draw = ImageDraw.Draw(image)
61
+
62
+ font = ImageFont.load_default()
63
+
64
+ for prediction, box in zip(true_predictions, true_boxes):
65
+ predicted_label = iob_to_label(prediction).lower()
66
+ draw.rectangle(box, outline=label2color[predicted_label])
67
+ draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
68
+
69
+ return image
70
+
71
+ processor = LayoutXLMProcessor.from_pretrained('beomus/layoutxlm')
72
+ model = LayoutLMv2ForTokenClassification.from_pretrained("beomus/layoutxlm")
73
+
74
+
75
+ # imgs = [img_path for img_path in Path('/your/path/imgs/').glob('*.jpg')]
76
+
77
+ imgs = [convert_from_path(img_path) for img_path in Path('/your/path/pdfs/').glob('*.pdf')]
78
+ imgs = list(chain.from_iterable(imgs))
79
+
80
+
81
+ outputs = [infer(img_path, processor, model, label2color) for img_path in tqdm(imgs)]
82
+
83
+ # type(outputs[0]) -> PIL.Image.Image
84
+ ```