--- library_name: peft license: llama3 base_model: scb10x/llama-3-typhoon-v1.5-8b-instruct tags: - axolotl - generated_from_trainer model-index: - name: 0a38df88-fc7c-49e7-bf7d-8f32cf69d03e results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: scb10x/llama-3-typhoon-v1.5-8b-instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3cfe28882f55eaf5_train_data.json ds_type: json format: custom path: /workspace/input_data/3cfe28882f55eaf5_train_data.json type: field_input: userPrompt field_instruction: systemPrompt field_output: assistantResponse format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 3 eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: 200 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: baby-dev/0a38df88-fc7c-49e7-bf7d-8f32cf69d03e hub_strategy: end learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: constant max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 3186 micro_batch_size: 2 mlflow_experiment_name: /tmp/3cfe28882f55eaf5_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 200 saves_per_epoch: null sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 85afcc8e-3bdc-4429-8864-7e83f9f798bc wandb_project: SN56-45 wandb_run: your_name wandb_runid: 85afcc8e-3bdc-4429-8864-7e83f9f798bc warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ```

# 0a38df88-fc7c-49e7-bf7d-8f32cf69d03e This model is a fine-tuned version of [scb10x/llama-3-typhoon-v1.5-8b-instruct](https://huggingface.co/scb10x/llama-3-typhoon-v1.5-8b-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3691 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 50 - training_steps: 3186 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | 1.1534 | | 0.4031 | 0.0713 | 200 | 0.5365 | | 0.357 | 0.1427 | 400 | 0.4097 | | 0.3305 | 0.2140 | 600 | 0.4013 | | 0.3049 | 0.2854 | 800 | 0.3622 | | 0.2756 | 0.3567 | 1000 | 0.3420 | | 0.2821 | 0.4280 | 1200 | 0.3702 | | 0.2783 | 0.4994 | 1400 | 0.3428 | | 0.2618 | 0.5707 | 1600 | 0.3691 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1