--- license: mit base_model: Davlan/afro-xlmr-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: angela_shuffle_test results: [] --- # angela_shuffle_test This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1672 - Precision: 0.6214 - Recall: 0.4942 - F1: 0.5505 - Accuracy: 0.9504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1882 | 1.0 | 1283 | 0.1566 | 0.6823 | 0.4277 | 0.5258 | 0.9518 | | 0.1551 | 2.0 | 2566 | 0.1507 | 0.6940 | 0.4451 | 0.5423 | 0.9533 | | 0.1385 | 3.0 | 3849 | 0.1545 | 0.6903 | 0.4503 | 0.5450 | 0.9532 | | 0.1163 | 4.0 | 5132 | 0.1610 | 0.6288 | 0.4943 | 0.5535 | 0.9507 | | 0.0994 | 5.0 | 6415 | 0.1672 | 0.6214 | 0.4942 | 0.5505 | 0.9504 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.1 - Tokenizers 0.13.3