--- license: mit base_model: Davlan/afro-xlmr-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: angela_shuffle_diacritics_regular_eval results: [] --- # angela_shuffle_diacritics_regular_eval This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1666 - Precision: 0.4058 - Recall: 0.2753 - F1: 0.3281 - Accuracy: 0.9565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1497 | 1.0 | 1283 | 0.1387 | 0.4515 | 0.1507 | 0.2260 | 0.9593 | | 0.1272 | 2.0 | 2566 | 0.1329 | 0.4710 | 0.2103 | 0.2908 | 0.9600 | | 0.1092 | 3.0 | 3849 | 0.1442 | 0.4636 | 0.2263 | 0.3041 | 0.9598 | | 0.0884 | 4.0 | 5132 | 0.1532 | 0.4088 | 0.2785 | 0.3313 | 0.9565 | | 0.0708 | 5.0 | 6415 | 0.1666 | 0.4058 | 0.2753 | 0.3281 | 0.9565 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3