Upload 17 files
Browse files- .gitattributes +35 -35
- README.md +271 -0
- config.json +27 -0
- generation_config.json +6 -0
- latest +1 -0
- model-00001-of-00005.safetensors +3 -0
- model-00002-of-00005.safetensors +3 -0
- model-00003-of-00005.safetensors +3 -0
- model-00004-of-00005.safetensors +3 -0
- model-00005-of-00005.safetensors +3 -0
- model.safetensors.index.json +370 -0
- special_tokens_map.json +46 -0
- tokenizer.json +0 -0
- tokenizer_config.json +0 -0
- trainer_state.json +0 -0
- training_args.bin +3 -0
- zero_to_fp32.py +604 -0
.gitattributes
CHANGED
@@ -1,35 +1,35 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- fr
|
5 |
+
- de
|
6 |
+
- es
|
7 |
+
- it
|
8 |
+
- pt
|
9 |
+
- ru
|
10 |
+
- zh
|
11 |
+
- ja
|
12 |
+
license: apache-2.0
|
13 |
+
base_model: avemio-digital/Mistral-Nemo-Base-2407_CPT_with_2epochs
|
14 |
+
extra_gated_description: If you want to learn more about how we process your personal
|
15 |
+
data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
|
16 |
+
---
|
17 |
+
|
18 |
+
# Model Card for Mistral-Nemo-Instruct-2407
|
19 |
+
|
20 |
+
The Mistral-Nemo-Instruct-2407 Large Language Model (LLM) is an instruct fine-tuned version of the [Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407). Trained jointly by Mistral AI and NVIDIA, it significantly outperforms existing models smaller or similar in size.
|
21 |
+
|
22 |
+
For more details about this model please refer to our release [blog post](https://mistral.ai/news/mistral-nemo/).
|
23 |
+
|
24 |
+
## Key features
|
25 |
+
- Released under the **Apache 2 License**
|
26 |
+
- Pre-trained and instructed versions
|
27 |
+
- Trained with a **128k context window**
|
28 |
+
- Trained on a large proportion of **multilingual and code data**
|
29 |
+
- Drop-in replacement of Mistral 7B
|
30 |
+
|
31 |
+
## Model Architecture
|
32 |
+
Mistral Nemo is a transformer model, with the following architecture choices:
|
33 |
+
- **Layers:** 40
|
34 |
+
- **Dim:** 5,120
|
35 |
+
- **Head dim:** 128
|
36 |
+
- **Hidden dim:** 14,336
|
37 |
+
- **Activation Function:** SwiGLU
|
38 |
+
- **Number of heads:** 32
|
39 |
+
- **Number of kv-heads:** 8 (GQA)
|
40 |
+
- **Vocabulary size:** 2**17 ~= 128k
|
41 |
+
- **Rotary embeddings (theta = 1M)**
|
42 |
+
|
43 |
+
## Metrics
|
44 |
+
|
45 |
+
### Main Benchmarks
|
46 |
+
|
47 |
+
| Benchmark | Score |
|
48 |
+
| --- | --- |
|
49 |
+
| HellaSwag (0-shot) | 83.5% |
|
50 |
+
| Winogrande (0-shot) | 76.8% |
|
51 |
+
| OpenBookQA (0-shot) | 60.6% |
|
52 |
+
| CommonSenseQA (0-shot) | 70.4% |
|
53 |
+
| TruthfulQA (0-shot) | 50.3% |
|
54 |
+
| MMLU (5-shot) | 68.0% |
|
55 |
+
| TriviaQA (5-shot) | 73.8% |
|
56 |
+
| NaturalQuestions (5-shot) | 31.2% |
|
57 |
+
|
58 |
+
### Multilingual Benchmarks (MMLU)
|
59 |
+
|
60 |
+
| Language | Score |
|
61 |
+
| --- | --- |
|
62 |
+
| French | 62.3% |
|
63 |
+
| German | 62.7% |
|
64 |
+
| Spanish | 64.6% |
|
65 |
+
| Italian | 61.3% |
|
66 |
+
| Portuguese | 63.3% |
|
67 |
+
| Russian | 59.2% |
|
68 |
+
| Chinese | 59.0% |
|
69 |
+
| Japanese | 59.0% |
|
70 |
+
|
71 |
+
## Usage
|
72 |
+
|
73 |
+
The model can be used with three different frameworks
|
74 |
+
|
75 |
+
- [`mistral_inference`](https://github.com/mistralai/mistral-inference): See [here](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407#mistral-inference)
|
76 |
+
- [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers)
|
77 |
+
- [`NeMo`](https://github.com/NVIDIA/NeMo): See [nvidia/Mistral-NeMo-12B-Instruct](https://huggingface.co/nvidia/Mistral-NeMo-12B-Instruct)
|
78 |
+
|
79 |
+
### Mistral Inference
|
80 |
+
|
81 |
+
#### Install
|
82 |
+
|
83 |
+
It is recommended to use `mistralai/Mistral-Nemo-Instruct-2407` with [mistral-inference](https://github.com/mistralai/mistral-inference). For HF transformers code snippets, please keep scrolling.
|
84 |
+
|
85 |
+
```
|
86 |
+
pip install mistral_inference
|
87 |
+
```
|
88 |
+
|
89 |
+
#### Download
|
90 |
+
|
91 |
+
```py
|
92 |
+
from huggingface_hub import snapshot_download
|
93 |
+
from pathlib import Path
|
94 |
+
|
95 |
+
mistral_models_path = Path.home().joinpath('mistral_models', 'Nemo-Instruct')
|
96 |
+
mistral_models_path.mkdir(parents=True, exist_ok=True)
|
97 |
+
|
98 |
+
snapshot_download(repo_id="mistralai/Mistral-Nemo-Instruct-2407", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path)
|
99 |
+
```
|
100 |
+
|
101 |
+
#### Chat
|
102 |
+
|
103 |
+
After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. You can chat with the model using
|
104 |
+
|
105 |
+
```
|
106 |
+
mistral-chat $HOME/mistral_models/Nemo-Instruct --instruct --max_tokens 256 --temperature 0.35
|
107 |
+
```
|
108 |
+
|
109 |
+
*E.g.* Try out something like:
|
110 |
+
```
|
111 |
+
How expensive would it be to ask a window cleaner to clean all windows in Paris. Make a reasonable guess in US Dollar.
|
112 |
+
```
|
113 |
+
|
114 |
+
#### Instruct following
|
115 |
+
|
116 |
+
```py
|
117 |
+
from mistral_inference.transformer import Transformer
|
118 |
+
from mistral_inference.generate import generate
|
119 |
+
|
120 |
+
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
|
121 |
+
from mistral_common.protocol.instruct.messages import UserMessage
|
122 |
+
from mistral_common.protocol.instruct.request import ChatCompletionRequest
|
123 |
+
|
124 |
+
tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
|
125 |
+
model = Transformer.from_folder(mistral_models_path)
|
126 |
+
|
127 |
+
prompt = "How expensive would it be to ask a window cleaner to clean all windows in Paris. Make a reasonable guess in US Dollar."
|
128 |
+
|
129 |
+
completion_request = ChatCompletionRequest(messages=[UserMessage(content=prompt)])
|
130 |
+
|
131 |
+
tokens = tokenizer.encode_chat_completion(completion_request).tokens
|
132 |
+
|
133 |
+
out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
|
134 |
+
result = tokenizer.decode(out_tokens[0])
|
135 |
+
|
136 |
+
print(result)
|
137 |
+
```
|
138 |
+
|
139 |
+
#### Function calling
|
140 |
+
|
141 |
+
```py
|
142 |
+
from mistral_common.protocol.instruct.tool_calls import Function, Tool
|
143 |
+
from mistral_inference.transformer import Transformer
|
144 |
+
from mistral_inference.generate import generate
|
145 |
+
|
146 |
+
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
|
147 |
+
from mistral_common.protocol.instruct.messages import UserMessage
|
148 |
+
from mistral_common.protocol.instruct.request import ChatCompletionRequest
|
149 |
+
|
150 |
+
|
151 |
+
tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
|
152 |
+
model = Transformer.from_folder(mistral_models_path)
|
153 |
+
|
154 |
+
completion_request = ChatCompletionRequest(
|
155 |
+
tools=[
|
156 |
+
Tool(
|
157 |
+
function=Function(
|
158 |
+
name="get_current_weather",
|
159 |
+
description="Get the current weather",
|
160 |
+
parameters={
|
161 |
+
"type": "object",
|
162 |
+
"properties": {
|
163 |
+
"location": {
|
164 |
+
"type": "string",
|
165 |
+
"description": "The city and state, e.g. San Francisco, CA",
|
166 |
+
},
|
167 |
+
"format": {
|
168 |
+
"type": "string",
|
169 |
+
"enum": ["celsius", "fahrenheit"],
|
170 |
+
"description": "The temperature unit to use. Infer this from the users location.",
|
171 |
+
},
|
172 |
+
},
|
173 |
+
"required": ["location", "format"],
|
174 |
+
},
|
175 |
+
)
|
176 |
+
)
|
177 |
+
],
|
178 |
+
messages=[
|
179 |
+
UserMessage(content="What's the weather like today in Paris?"),
|
180 |
+
],
|
181 |
+
)
|
182 |
+
|
183 |
+
tokens = tokenizer.encode_chat_completion(completion_request).tokens
|
184 |
+
|
185 |
+
out_tokens, _ = generate([tokens], model, max_tokens=256, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
|
186 |
+
result = tokenizer.decode(out_tokens[0])
|
187 |
+
|
188 |
+
print(result)
|
189 |
+
```
|
190 |
+
|
191 |
+
### Transformers
|
192 |
+
|
193 |
+
> [!IMPORTANT]
|
194 |
+
> NOTE: Until a new release has been made, you need to install transformers from source:
|
195 |
+
> ```sh
|
196 |
+
> pip install git+https://github.com/huggingface/transformers.git
|
197 |
+
> ```
|
198 |
+
|
199 |
+
If you want to use Hugging Face `transformers` to generate text, you can do something like this.
|
200 |
+
|
201 |
+
```py
|
202 |
+
from transformers import pipeline
|
203 |
+
|
204 |
+
messages = [
|
205 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
206 |
+
{"role": "user", "content": "Who are you?"},
|
207 |
+
]
|
208 |
+
chatbot = pipeline("text-generation", model="mistralai/Mistral-Nemo-Instruct-2407",max_new_tokens=128)
|
209 |
+
chatbot(messages)
|
210 |
+
```
|
211 |
+
|
212 |
+
## Function calling with `transformers`
|
213 |
+
|
214 |
+
To use this example, you'll need `transformers` version 4.42.0 or higher. Please see the
|
215 |
+
[function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling)
|
216 |
+
in the `transformers` docs for more information.
|
217 |
+
|
218 |
+
```python
|
219 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
220 |
+
import torch
|
221 |
+
|
222 |
+
model_id = "mistralai/Mistral-Nemo-Instruct-2407"
|
223 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
224 |
+
|
225 |
+
def get_current_weather(location: str, format: str):
|
226 |
+
"""
|
227 |
+
Get the current weather
|
228 |
+
|
229 |
+
Args:
|
230 |
+
location: The city and state, e.g. San Francisco, CA
|
231 |
+
format: The temperature unit to use. Infer this from the users location. (choices: ["celsius", "fahrenheit"])
|
232 |
+
"""
|
233 |
+
pass
|
234 |
+
|
235 |
+
conversation = [{"role": "user", "content": "What's the weather like in Paris?"}]
|
236 |
+
tools = [get_current_weather]
|
237 |
+
|
238 |
+
# format and tokenize the tool use prompt
|
239 |
+
inputs = tokenizer.apply_chat_template(
|
240 |
+
conversation,
|
241 |
+
tools=tools,
|
242 |
+
add_generation_prompt=True,
|
243 |
+
return_dict=True,
|
244 |
+
return_tensors="pt",
|
245 |
+
)
|
246 |
+
|
247 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
|
248 |
+
|
249 |
+
inputs.to(model.device)
|
250 |
+
outputs = model.generate(**inputs, max_new_tokens=1000)
|
251 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
252 |
+
```
|
253 |
+
|
254 |
+
Note that, for reasons of space, this example does not show a complete cycle of calling a tool and adding the tool call and tool
|
255 |
+
results to the chat history so that the model can use them in its next generation. For a full tool calling example, please
|
256 |
+
see the [function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling),
|
257 |
+
and note that Mistral **does** use tool call IDs, so these must be included in your tool calls and tool results. They should be
|
258 |
+
exactly 9 alphanumeric characters.
|
259 |
+
|
260 |
+
> [!TIP]
|
261 |
+
> Unlike previous Mistral models, Mistral Nemo requires smaller temperatures. We recommend to use a temperature of 0.3.
|
262 |
+
|
263 |
+
## Limitations
|
264 |
+
|
265 |
+
The Mistral Nemo Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
|
266 |
+
It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
|
267 |
+
make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
|
268 |
+
|
269 |
+
## The Mistral AI Team
|
270 |
+
|
271 |
+
Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Alok Kothari, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Augustin Garreau, Austin Birky, Bam4d, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Carole Rambaud, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gaspard Blanchet, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Hichem Sattouf, Ian Mack, Jean-Malo Delignon, Jessica Chudnovsky, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, L茅lio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Micka毛l Seznec, Nicolas Schuhl, Niklas Muhs, Olivier de Garrigues, Patrick von Platen, Paul Jacob, Pauline Buche, Pavan Kumar Reddy, Perry Savas, Pierre Stock, Romain Sauvestre, Sagar Vaze, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibault Schueller, Thibaut Lavril, Thomas Wang, Th茅ophile Gervet, Timoth茅e Lacroix, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "avemio-digital/Mistral-Nemo-Base-2407_CPT_with_2epochs",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"head_dim": 128,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 5120,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 14336,
|
14 |
+
"max_position_embeddings": 1024000,
|
15 |
+
"model_type": "mistral",
|
16 |
+
"num_attention_heads": 32,
|
17 |
+
"num_hidden_layers": 40,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"rms_norm_eps": 1e-05,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": null,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.43.4",
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 131136
|
27 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 131073,
|
5 |
+
"transformers_version": "4.43.4"
|
6 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step9000
|
model-00001-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8996b8963ef494883ad5875f527874d1adfbdac625150bbc60d3935a5c689fe4
|
3 |
+
size 4866177856
|
model-00002-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d40857bfda6ebb2cda72c48fa1955aea6a4f3a60302b0124a1c72095eca90b14
|
3 |
+
size 4907529424
|
model-00003-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e45a4fab4467cf2110589048de14814b9000e56c9c5e44f231fa2c52fdc39b7
|
3 |
+
size 4907529456
|
model-00004-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f290ca9c530dbafb0f4677e68186249dd32686f0fa461ba4b863ddc83cadc22
|
3 |
+
size 4907529456
|
model-00005-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60f336119ed4b4e2d9b876565a4c3f05efa79953be981dbeb23ae5d2d9cc7855
|
3 |
+
size 4908151632
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 24496875520
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00005-of-00005.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00005.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
242 |
+
"model.layers.32.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
243 |
+
"model.layers.32.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
244 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
245 |
+
"model.layers.32.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
246 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
247 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
248 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
249 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
250 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
251 |
+
"model.layers.33.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
252 |
+
"model.layers.33.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
253 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
254 |
+
"model.layers.33.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
255 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
256 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
257 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
258 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
259 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
260 |
+
"model.layers.34.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
261 |
+
"model.layers.34.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
262 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
263 |
+
"model.layers.34.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
264 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
265 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
266 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
267 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
268 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
269 |
+
"model.layers.35.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
270 |
+
"model.layers.35.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
271 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
272 |
+
"model.layers.35.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
273 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
274 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
275 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
276 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
277 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
278 |
+
"model.layers.36.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
279 |
+
"model.layers.36.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
280 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
281 |
+
"model.layers.36.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
282 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
283 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
284 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
285 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
286 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
287 |
+
"model.layers.37.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
288 |
+
"model.layers.37.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
289 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
290 |
+
"model.layers.37.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
291 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
292 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
293 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
294 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
295 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
296 |
+
"model.layers.38.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
297 |
+
"model.layers.38.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
298 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
299 |
+
"model.layers.38.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
300 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
301 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
302 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
303 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
304 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
305 |
+
"model.layers.39.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
306 |
+
"model.layers.39.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
307 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
308 |
+
"model.layers.39.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
309 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
310 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
311 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
312 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
313 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
314 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
315 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
316 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
317 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
318 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
319 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
320 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
321 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
322 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
323 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
324 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
325 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
326 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
327 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
328 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
329 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
330 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
331 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
332 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
333 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
334 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
335 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
336 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
337 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
338 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
339 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
340 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
341 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
342 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
343 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
344 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
345 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
346 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
347 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
348 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
349 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
350 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
351 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
352 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
353 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
354 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
355 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
356 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
357 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
358 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
359 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
360 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
361 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
362 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
363 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
364 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
365 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
366 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
367 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
368 |
+
"model.norm.weight": "model-00005-of-00005.safetensors"
|
369 |
+
}
|
370 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "<|im_start|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"content": "<|im_end|>",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": false,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
}
|
17 |
+
],
|
18 |
+
"bos_token": {
|
19 |
+
"content": "<s>",
|
20 |
+
"lstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"rstrip": false,
|
23 |
+
"single_word": false
|
24 |
+
},
|
25 |
+
"eos_token": {
|
26 |
+
"content": "</s>",
|
27 |
+
"lstrip": false,
|
28 |
+
"normalized": false,
|
29 |
+
"rstrip": false,
|
30 |
+
"single_word": false
|
31 |
+
},
|
32 |
+
"pad_token": {
|
33 |
+
"content": "</s>",
|
34 |
+
"lstrip": false,
|
35 |
+
"normalized": false,
|
36 |
+
"rstrip": false,
|
37 |
+
"single_word": false
|
38 |
+
},
|
39 |
+
"unk_token": {
|
40 |
+
"content": "<unk>",
|
41 |
+
"lstrip": false,
|
42 |
+
"normalized": false,
|
43 |
+
"rstrip": false,
|
44 |
+
"single_word": false
|
45 |
+
}
|
46 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a611a396fe45fa3bac9743ac601f0fc55a81a61072fd8ae54a9ecf906b51bb2d
|
3 |
+
size 6840
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|