arielen commited on
Commit
3bedb2d
·
verified ·
1 Parent(s): 4b00c48

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,411 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:891
8
+ - loss:ContrastiveLoss
9
+ widget:
10
+ - source_sentence: 'note 14 4g 8/256gb (green) | color: green, ram: 8, rom: 256gb'
11
+ sentences:
12
+ - 'poco x7 12/512gb серебро (silver) | color: silver, ram: 12, rom: 512gb'
13
+ - 'apple iphone 16 pro 128gb пустынный титан (desert titanium) esim | color: desert
14
+ titanium, ram: 8, rom: 128gb'
15
+ - 'xiaomi redmi note 14 8/256gb зеленый (green) | color: green, ram: 8, rom: 256gb'
16
+ - source_sentence: 'infinix hot 50 6/256gb (gray) | color: gray, ram: 6, rom: 256gb'
17
+ sentences:
18
+ - 'infinix hot 50 6/256gb зеленый (sage green) eac | color: sage green, ram: 6,
19
+ rom: 256gb'
20
+ - 'xiaomi redmi 14c 8/256gb фиолетовый (purple) | color: purple, ram: 8, rom: 256gb'
21
+ - 'apple iphone 15 256gb черный (black) nano sim + esim | color: black, ram: nan,
22
+ rom: 256gb'
23
+ - source_sentence: 'note 14 pro 8/256gb (ocean blue) | color: ocean blue, ram: 8,
24
+ rom: 256gb'
25
+ sentences:
26
+ - 'apple ipad air 13 (2024) 1tb wi-fi серый космос (space gray) | color: space gray,
27
+ ram: nan, rom: 1024gb'
28
+ - 'xiaomi redmi note 14 pro 8/256gb белый (white) | color: white, ram: 8, rom: 256gb'
29
+ - 'xiaomi redmi pad se 4g 8.7 4/128gb синий (blue) | color: blue, ram: 4, rom: 128gb'
30
+ - source_sentence: 'poco m6 pro 12/512gb (purple) | color: purple, ram: 12, rom: 512gb'
31
+ sentences:
32
+ - 'realme 12+ 8/256gb зеленый (green) eac | color: green, ram: 8, rom: 256gb'
33
+ - 'apple iphone 14 256gb темная ночь (midnight) nano sim + esim | color: midnight,
34
+ ram: nan, rom: 256gb'
35
+ - 'poco m6 pro 12/512gb синий (blue) | color: blue, ram: 12, rom: 512gb'
36
+ - source_sentence: 'mi 14t 5g 12/256gb (green) | color: green, ram: 12, rom: 256gb'
37
+ sentences:
38
+ - 'infinix note 30i 8/128gb черный (black) eac | color: black, ram: 8, rom: 128gb'
39
+ - 'xiaomi 14t 12/256gb зелёный (lemon green) | color: lemon green, ram: 12, rom:
40
+ 256gb'
41
+ - 'poco c61 4/128gb белый (white) | color: white, ram: 4, rom: 128gb'
42
+ pipeline_tag: sentence-similarity
43
+ library_name: sentence-transformers
44
+ metrics:
45
+ - pearson_cosine
46
+ - spearman_cosine
47
+ model-index:
48
+ - name: SentenceTransformer
49
+ results:
50
+ - task:
51
+ type: semantic-similarity
52
+ name: Semantic Similarity
53
+ dataset:
54
+ name: Unknown
55
+ type: unknown
56
+ metrics:
57
+ - type: pearson_cosine
58
+ value: 0.8797406547235329
59
+ name: Pearson Cosine
60
+ - type: spearman_cosine
61
+ value: 0.845792518336755
62
+ name: Spearman Cosine
63
+ ---
64
+
65
+ # SentenceTransformer
66
+
67
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
68
+
69
+ ## Model Details
70
+
71
+ ### Model Description
72
+ - **Model Type:** Sentence Transformer
73
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
74
+ - **Maximum Sequence Length:** 512 tokens
75
+ - **Output Dimensionality:** 768 dimensions
76
+ - **Similarity Function:** Cosine Similarity
77
+ <!-- - **Training Dataset:** Unknown -->
78
+ <!-- - **Language:** Unknown -->
79
+ <!-- - **License:** Unknown -->
80
+
81
+ ### Model Sources
82
+
83
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
84
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
85
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
86
+
87
+ ### Full Model Architecture
88
+
89
+ ```
90
+ SentenceTransformer(
91
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
92
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
93
+ )
94
+ ```
95
+
96
+ ## Usage
97
+
98
+ ### Direct Usage (Sentence Transformers)
99
+
100
+ First install the Sentence Transformers library:
101
+
102
+ ```bash
103
+ pip install -U sentence-transformers
104
+ ```
105
+
106
+ Then you can load this model and run inference.
107
+ ```python
108
+ from sentence_transformers import SentenceTransformer
109
+
110
+ # Download from the 🤗 Hub
111
+ model = SentenceTransformer("arielen/fine-tuned-mpnet-v3")
112
+ # Run inference
113
+ sentences = [
114
+ 'mi 14t 5g 12/256gb (green) | color: green, ram: 12, rom: 256gb',
115
+ 'xiaomi 14t 12/256gb зелёный (lemon green) | color: lemon green, ram: 12, rom: 256gb',
116
+ 'poco c61 4/128gb белый (white) | color: white, ram: 4, rom: 128gb',
117
+ ]
118
+ embeddings = model.encode(sentences)
119
+ print(embeddings.shape)
120
+ # [3, 768]
121
+
122
+ # Get the similarity scores for the embeddings
123
+ similarities = model.similarity(embeddings, embeddings)
124
+ print(similarities.shape)
125
+ # [3, 3]
126
+ ```
127
+
128
+ <!--
129
+ ### Direct Usage (Transformers)
130
+
131
+ <details><summary>Click to see the direct usage in Transformers</summary>
132
+
133
+ </details>
134
+ -->
135
+
136
+ <!--
137
+ ### Downstream Usage (Sentence Transformers)
138
+
139
+ You can finetune this model on your own dataset.
140
+
141
+ <details><summary>Click to expand</summary>
142
+
143
+ </details>
144
+ -->
145
+
146
+ <!--
147
+ ### Out-of-Scope Use
148
+
149
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
150
+ -->
151
+
152
+ ## Evaluation
153
+
154
+ ### Metrics
155
+
156
+ #### Semantic Similarity
157
+
158
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
159
+
160
+ | Metric | Value |
161
+ |:--------------------|:-----------|
162
+ | pearson_cosine | 0.8797 |
163
+ | **spearman_cosine** | **0.8458** |
164
+
165
+ <!--
166
+ ## Bias, Risks and Limitations
167
+
168
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
169
+ -->
170
+
171
+ <!--
172
+ ### Recommendations
173
+
174
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
175
+ -->
176
+
177
+ ## Training Details
178
+
179
+ ### Training Dataset
180
+
181
+ #### Unnamed Dataset
182
+
183
+ * Size: 891 training samples
184
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
185
+ * Approximate statistics based on the first 891 samples:
186
+ | | sentence_0 | sentence_1 | label |
187
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
188
+ | type | string | string | float |
189
+ | details | <ul><li>min: 23 tokens</li><li>mean: 27.35 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 25 tokens</li><li>mean: 34.3 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 1.0</li></ul> |
190
+ * Samples:
191
+ | sentence_0 | sentence_1 | label |
192
+ |:------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:-----------------|
193
+ | <code>15 256gb (green) | color: green, ram: <na>, rom: 256gb</code> | <code>apple iphone 15 256gb зеленый (green) dualsim | color: green, ram: nan, rom: 256gb</code> | <code>0.0</code> |
194
+ | <code>realme c61 6/128gb (gold) | color: gold, ram: 6, rom: 128gb</code> | <code>realme c61 6/256gb золотой (gold) | color: gold, ram: 6, rom: 256gb</code> | <code>0.0</code> |
195
+ | <code>samsung f15 4/128gb (purple) | color: purple, ram: 4, rom: 128gb</code> | <code>samsung galaxy f15 4/128gb фиолетовый | color: purple, ram: 4, rom: 128gb</code> | <code>1.0</code> |
196
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
197
+ ```json
198
+ {
199
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
200
+ "margin": 0.5,
201
+ "size_average": true
202
+ }
203
+ ```
204
+
205
+ ### Training Hyperparameters
206
+ #### Non-Default Hyperparameters
207
+
208
+ - `eval_strategy`: steps
209
+ - `per_device_train_batch_size`: 16
210
+ - `per_device_eval_batch_size`: 16
211
+ - `num_train_epochs`: 10
212
+ - `multi_dataset_batch_sampler`: round_robin
213
+
214
+ #### All Hyperparameters
215
+ <details><summary>Click to expand</summary>
216
+
217
+ - `overwrite_output_dir`: False
218
+ - `do_predict`: False
219
+ - `eval_strategy`: steps
220
+ - `prediction_loss_only`: True
221
+ - `per_device_train_batch_size`: 16
222
+ - `per_device_eval_batch_size`: 16
223
+ - `per_gpu_train_batch_size`: None
224
+ - `per_gpu_eval_batch_size`: None
225
+ - `gradient_accumulation_steps`: 1
226
+ - `eval_accumulation_steps`: None
227
+ - `torch_empty_cache_steps`: None
228
+ - `learning_rate`: 5e-05
229
+ - `weight_decay`: 0.0
230
+ - `adam_beta1`: 0.9
231
+ - `adam_beta2`: 0.999
232
+ - `adam_epsilon`: 1e-08
233
+ - `max_grad_norm`: 1
234
+ - `num_train_epochs`: 10
235
+ - `max_steps`: -1
236
+ - `lr_scheduler_type`: linear
237
+ - `lr_scheduler_kwargs`: {}
238
+ - `warmup_ratio`: 0.0
239
+ - `warmup_steps`: 0
240
+ - `log_level`: passive
241
+ - `log_level_replica`: warning
242
+ - `log_on_each_node`: True
243
+ - `logging_nan_inf_filter`: True
244
+ - `save_safetensors`: True
245
+ - `save_on_each_node`: False
246
+ - `save_only_model`: False
247
+ - `restore_callback_states_from_checkpoint`: False
248
+ - `no_cuda`: False
249
+ - `use_cpu`: False
250
+ - `use_mps_device`: False
251
+ - `seed`: 42
252
+ - `data_seed`: None
253
+ - `jit_mode_eval`: False
254
+ - `use_ipex`: False
255
+ - `bf16`: False
256
+ - `fp16`: False
257
+ - `fp16_opt_level`: O1
258
+ - `half_precision_backend`: auto
259
+ - `bf16_full_eval`: False
260
+ - `fp16_full_eval`: False
261
+ - `tf32`: None
262
+ - `local_rank`: 0
263
+ - `ddp_backend`: None
264
+ - `tpu_num_cores`: None
265
+ - `tpu_metrics_debug`: False
266
+ - `debug`: []
267
+ - `dataloader_drop_last`: False
268
+ - `dataloader_num_workers`: 0
269
+ - `dataloader_prefetch_factor`: None
270
+ - `past_index`: -1
271
+ - `disable_tqdm`: False
272
+ - `remove_unused_columns`: True
273
+ - `label_names`: None
274
+ - `load_best_model_at_end`: False
275
+ - `ignore_data_skip`: False
276
+ - `fsdp`: []
277
+ - `fsdp_min_num_params`: 0
278
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
279
+ - `fsdp_transformer_layer_cls_to_wrap`: None
280
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
281
+ - `deepspeed`: None
282
+ - `label_smoothing_factor`: 0.0
283
+ - `optim`: adamw_torch
284
+ - `optim_args`: None
285
+ - `adafactor`: False
286
+ - `group_by_length`: False
287
+ - `length_column_name`: length
288
+ - `ddp_find_unused_parameters`: None
289
+ - `ddp_bucket_cap_mb`: None
290
+ - `ddp_broadcast_buffers`: False
291
+ - `dataloader_pin_memory`: True
292
+ - `dataloader_persistent_workers`: False
293
+ - `skip_memory_metrics`: True
294
+ - `use_legacy_prediction_loop`: False
295
+ - `push_to_hub`: False
296
+ - `resume_from_checkpoint`: None
297
+ - `hub_model_id`: None
298
+ - `hub_strategy`: every_save
299
+ - `hub_private_repo`: None
300
+ - `hub_always_push`: False
301
+ - `gradient_checkpointing`: False
302
+ - `gradient_checkpointing_kwargs`: None
303
+ - `include_inputs_for_metrics`: False
304
+ - `include_for_metrics`: []
305
+ - `eval_do_concat_batches`: True
306
+ - `fp16_backend`: auto
307
+ - `push_to_hub_model_id`: None
308
+ - `push_to_hub_organization`: None
309
+ - `mp_parameters`:
310
+ - `auto_find_batch_size`: False
311
+ - `full_determinism`: False
312
+ - `torchdynamo`: None
313
+ - `ray_scope`: last
314
+ - `ddp_timeout`: 1800
315
+ - `torch_compile`: False
316
+ - `torch_compile_backend`: None
317
+ - `torch_compile_mode`: None
318
+ - `dispatch_batches`: None
319
+ - `split_batches`: None
320
+ - `include_tokens_per_second`: False
321
+ - `include_num_input_tokens_seen`: False
322
+ - `neftune_noise_alpha`: None
323
+ - `optim_target_modules`: None
324
+ - `batch_eval_metrics`: False
325
+ - `eval_on_start`: False
326
+ - `use_liger_kernel`: False
327
+ - `eval_use_gather_object`: False
328
+ - `average_tokens_across_devices`: False
329
+ - `prompts`: None
330
+ - `batch_sampler`: batch_sampler
331
+ - `multi_dataset_batch_sampler`: round_robin
332
+
333
+ </details>
334
+
335
+ ### Training Logs
336
+ | Epoch | Step | Training Loss | spearman_cosine |
337
+ |:------:|:----:|:-------------:|:---------------:|
338
+ | 1.0 | 56 | - | 0.5701 |
339
+ | 1.7857 | 100 | - | 0.7464 |
340
+ | 2.0 | 112 | - | 0.7828 |
341
+ | 3.0 | 168 | - | 0.8074 |
342
+ | 3.5714 | 200 | - | 0.8109 |
343
+ | 4.0 | 224 | - | 0.8191 |
344
+ | 5.0 | 280 | - | 0.8400 |
345
+ | 5.3571 | 300 | - | 0.8401 |
346
+ | 6.0 | 336 | - | 0.8431 |
347
+ | 7.0 | 392 | - | 0.8446 |
348
+ | 7.1429 | 400 | - | 0.8442 |
349
+ | 8.0 | 448 | - | 0.8451 |
350
+ | 8.9286 | 500 | 0.0107 | 0.8456 |
351
+ | 9.0 | 504 | - | 0.8456 |
352
+ | 10.0 | 560 | - | 0.8458 |
353
+
354
+
355
+ ### Framework Versions
356
+ - Python: 3.13.1
357
+ - Sentence Transformers: 3.4.1
358
+ - Transformers: 4.48.2
359
+ - PyTorch: 2.6.0+cu124
360
+ - Accelerate: 1.3.0
361
+ - Datasets: 3.2.0
362
+ - Tokenizers: 0.21.0
363
+
364
+ ## Citation
365
+
366
+ ### BibTeX
367
+
368
+ #### Sentence Transformers
369
+ ```bibtex
370
+ @inproceedings{reimers-2019-sentence-bert,
371
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
372
+ author = "Reimers, Nils and Gurevych, Iryna",
373
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
374
+ month = "11",
375
+ year = "2019",
376
+ publisher = "Association for Computational Linguistics",
377
+ url = "https://arxiv.org/abs/1908.10084",
378
+ }
379
+ ```
380
+
381
+ #### ContrastiveLoss
382
+ ```bibtex
383
+ @inproceedings{hadsell2006dimensionality,
384
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
385
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
386
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
387
+ year={2006},
388
+ volume={2},
389
+ number={},
390
+ pages={1735-1742},
391
+ doi={10.1109/CVPR.2006.100}
392
+ }
393
+ ```
394
+
395
+ <!--
396
+ ## Glossary
397
+
398
+ *Clearly define terms in order to be accessible across audiences.*
399
+ -->
400
+
401
+ <!--
402
+ ## Model Card Authors
403
+
404
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
405
+ -->
406
+
407
+ <!--
408
+ ## Model Card Contact
409
+
410
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
411
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "fine_tuned_mpnet_v3",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.2",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2938407c21a9b9776020a4292e6fded4773953d2c8bb8376b7ef69de13e92497
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "max_length": 512,
53
+ "model_max_length": 512,
54
+ "never_split": null,
55
+ "pad_to_multiple_of": null,
56
+ "pad_token": "<pad>",
57
+ "pad_token_type_id": 0,
58
+ "padding_side": "right",
59
+ "sep_token": "</s>",
60
+ "stride": 0,
61
+ "strip_accents": null,
62
+ "tokenize_chinese_chars": true,
63
+ "tokenizer_class": "MPNetTokenizer",
64
+ "truncation_side": "right",
65
+ "truncation_strategy": "longest_first",
66
+ "unk_token": "[UNK]"
67
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff