|
from transformers import PretrainedConfig |
|
|
|
|
|
class AriaConfig(PretrainedConfig): |
|
model_type = "aria" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size: int = 17731, |
|
hidden_size: int = 1536, |
|
num_hidden_layers: int = 16, |
|
num_attention_heads: int = 64, |
|
intermediate_size: int = 6144, |
|
max_position_embeddings: int = 8192, |
|
use_cache: bool = True, |
|
bos_token_id: int = 0, |
|
eos_token_id: int = 1, |
|
tie_word_embeddings: bool = False, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = False, |
|
**kwargs, |
|
): |
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.use_cache = use_cache |
|
self.tie_word_embeddings = tie_word_embeddings |
|
self.output_attentions = output_attentions |
|
self.output_hidden_states = output_hidden_states |
|
self.return_dict = return_dict |
|
|
|
if self.intermediate_size % self.hidden_size != 0: |
|
raise ValueError( |
|
"The intermediate size needs to be divisible by hidden size." |
|
) |
|
|
|
if self.hidden_size % self.num_attention_heads != 0: |
|
raise ValueError( |
|
"The hidden size needs to be divisible by the number of attention heads." |
|
) |
|
|
|
@property |
|
def ff_mult(self): |
|
return self.intermediate_size // self.hidden_size |
|
|
|
|
|
__all__ = ["AriaConfig"] |
|
|