--- library_name: peft license: llama3 base_model: elyza/Llama-3-ELYZA-JP-8B tags: - axolotl - generated_from_trainer model-index: - name: c3a5196a-aecd-41d8-b63f-9cfe184a9685 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: elyza/Llama-3-ELYZA-JP-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6e63881f64708e53_train_data.json ds_type: json format: custom path: /workspace/input_data/6e63881f64708e53_train_data.json type: field_instruction: project field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: true fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: ardaspear/c3a5196a-aecd-41d8-b63f-9cfe184a9685 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: true lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 72GB max_steps: 50 micro_batch_size: 4 mlflow_experiment_name: /tmp/6e63881f64708e53_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: false sample_packing: false saves_per_epoch: 4 sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: leixa-personal wandb_mode: online wandb_name: c3a5196a-aecd-41d8-b63f-9cfe184a9685 wandb_project: Gradients-On-Two wandb_run: your_name wandb_runid: c3a5196a-aecd-41d8-b63f-9cfe184a9685 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# c3a5196a-aecd-41d8-b63f-9cfe184a9685 This model is a fine-tuned version of [elyza/Llama-3-ELYZA-JP-8B](https://huggingface.co/elyza/Llama-3-ELYZA-JP-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | 7.6987 | | 7.7694 | 0.0028 | 5 | 6.3809 | | 5.5567 | 0.0057 | 10 | 5.0275 | | 4.8478 | 0.0085 | 15 | 4.5398 | | 4.5758 | 0.0113 | 20 | 4.3166 | | 4.2336 | 0.0142 | 25 | 4.1449 | | 4.1821 | 0.0170 | 30 | 4.0649 | | 4.0664 | 0.0198 | 35 | 4.0087 | | 3.8698 | 0.0227 | 40 | 3.9499 | | 3.8685 | 0.0255 | 45 | 3.9186 | | 4.0048 | 0.0283 | 50 | 3.9124 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1