--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-instruct-v0.3 tags: - axolotl - generated_from_trainer model-index: - name: b3c0b14f-d033-4843-b041-e2029afb35e7 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-instruct-v0.3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 50f3de17dcca2192_train_data.json ds_type: json format: custom path: /workspace/input_data/50f3de17dcca2192_train_data.json type: field_input: '' field_instruction: rendered_input field_output: summary format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: ardaspear/b3c0b14f-d033-4843-b041-e2029afb35e7 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/50f3de17dcca2192_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 729adb6c-9b7d-454a-b2b2-040e7bf39050 wandb_project: Gradients-On-Five wandb_run: your_name wandb_runid: 729adb6c-9b7d-454a-b2b2-040e7bf39050 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# b3c0b14f-d033-4843-b041-e2029afb35e7 This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.3](https://huggingface.co/unsloth/mistral-7b-instruct-v0.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8530 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 2.0751 | | 4.8841 | 0.0027 | 9 | 1.0569 | | 3.3807 | 0.0053 | 18 | 0.9211 | | 3.4477 | 0.0080 | 27 | 0.8963 | | 3.675 | 0.0106 | 36 | 0.8811 | | 3.1355 | 0.0133 | 45 | 0.8736 | | 3.3764 | 0.0159 | 54 | 0.8668 | | 3.4102 | 0.0186 | 63 | 0.8610 | | 3.2835 | 0.0212 | 72 | 0.8611 | | 3.3175 | 0.0239 | 81 | 0.8552 | | 3.1059 | 0.0265 | 90 | 0.8534 | | 3.2693 | 0.0292 | 99 | 0.8530 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1