Upload magNet.py
Browse files
magNet.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""MagNet
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1SkI4k3L-26U2AdE2C505wro_28vsprLz
|
8 |
+
"""
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.optim as optim
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
|
15 |
+
# Define grid size
|
16 |
+
grid_size = 20
|
17 |
+
|
18 |
+
# Create a grid with random initial wealth data
|
19 |
+
wealth_data = torch.rand((grid_size, grid_size))
|
20 |
+
|
21 |
+
# Define a simple neural network that will adjust the wealth data
|
22 |
+
class WealthNet(nn.Module):
|
23 |
+
def __init__(self):
|
24 |
+
super(WealthNet, self).__init__()
|
25 |
+
self.fc1 = nn.Linear(grid_size * grid_size, 128)
|
26 |
+
self.fc2 = nn.Linear(128, grid_size * grid_size)
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
x = torch.relu(self.fc1(x))
|
30 |
+
x = self.fc2(x)
|
31 |
+
return x
|
32 |
+
|
33 |
+
# Instantiate the network, loss function, and optimizer
|
34 |
+
net = WealthNet()
|
35 |
+
criterion = nn.MSELoss()
|
36 |
+
optimizer = optim.Adam(net.parameters(), lr=0.01)
|
37 |
+
|
38 |
+
# Target direction to direct wealth (e.g., bottom right corner)
|
39 |
+
target_wealth = torch.zeros((grid_size, grid_size))
|
40 |
+
target_wealth[-5:, -5:] = 1 # Direct wealth towards the bottom right corner
|
41 |
+
|
42 |
+
# Convert the grid to a single vector for the neural network
|
43 |
+
input_data = wealth_data.view(-1)
|
44 |
+
target_data = target_wealth.view(-1)
|
45 |
+
|
46 |
+
# Training the network
|
47 |
+
epochs = 500
|
48 |
+
for epoch in range(epochs):
|
49 |
+
optimizer.zero_grad()
|
50 |
+
output = net(input_data)
|
51 |
+
loss = criterion(output, target_data)
|
52 |
+
loss.backward()
|
53 |
+
optimizer.step()
|
54 |
+
|
55 |
+
# Reshape the output to the grid size
|
56 |
+
output_grid = output.detach().view(grid_size, grid_size)
|
57 |
+
|
58 |
+
# Plot the original and adjusted wealth distribution
|
59 |
+
fig, axes = plt.subplots(1, 2, figsize=(12, 6))
|
60 |
+
axes[0].imshow(wealth_data, cmap='viridis')
|
61 |
+
axes[0].set_title('Original Wealth Distribution')
|
62 |
+
axes[1].imshow(output_grid, cmap='viridis')
|
63 |
+
axes[1].set_title('Directed Wealth Distribution')
|
64 |
+
plt.show()
|
65 |
+
|
66 |
+
import torch
|
67 |
+
import torch.nn as nn
|
68 |
+
import torch.optim as optim
|
69 |
+
import matplotlib.pyplot as plt
|
70 |
+
|
71 |
+
# Define grid size
|
72 |
+
grid_size = 20
|
73 |
+
|
74 |
+
# Create a grid with random initial wealth data
|
75 |
+
wealth_data = torch.rand((grid_size, grid_size))
|
76 |
+
|
77 |
+
# Define a neural network with an additional layer for infrared conversion
|
78 |
+
class WealthNet(nn.Module):
|
79 |
+
def __init__(self):
|
80 |
+
super(WealthNet, self).__init__()
|
81 |
+
self.fc1 = nn.Linear(grid_size * grid_size, 128)
|
82 |
+
self.fc2 = nn.Linear(128, 128)
|
83 |
+
self.fc3 = nn.Linear(128, grid_size * grid_size)
|
84 |
+
self.infrared_layer = nn.Sigmoid() # Simulating the conversion to infrared energy
|
85 |
+
|
86 |
+
def forward(self, x):
|
87 |
+
x = torch.relu(self.fc1(x))
|
88 |
+
stored_wealth = torch.relu(self.fc2(x)) # Store wealth data here
|
89 |
+
infrared_energy = self.infrared_layer(stored_wealth) # Convert to infrared energy
|
90 |
+
x = self.fc3(infrared_energy)
|
91 |
+
return x, stored_wealth, infrared_energy
|
92 |
+
|
93 |
+
# Instantiate the network, loss function, and optimizer
|
94 |
+
net = WealthNet()
|
95 |
+
criterion = nn.MSELoss()
|
96 |
+
optimizer = optim.Adam(net.parameters(), lr=0.01)
|
97 |
+
|
98 |
+
# Target direction to direct wealth (e.g., bottom right corner)
|
99 |
+
target_wealth = torch.zeros((grid_size, grid_size))
|
100 |
+
target_wealth[-5:, -5:] = 1 # Direct wealth towards the bottom right corner
|
101 |
+
|
102 |
+
# Convert the grid to a single vector for the neural network
|
103 |
+
input_data = wealth_data.view(-1)
|
104 |
+
target_data = target_wealth.view(-1)
|
105 |
+
|
106 |
+
# Training the network
|
107 |
+
epochs = 500
|
108 |
+
for epoch in range(epochs):
|
109 |
+
optimizer.zero_grad()
|
110 |
+
output, stored_wealth, infrared_energy = net(input_data)
|
111 |
+
loss = criterion(output, target_data)
|
112 |
+
loss.backward()
|
113 |
+
optimizer.step()
|
114 |
+
|
115 |
+
# Reshape the outputs to the grid size
|
116 |
+
output_grid = output.detach().view(grid_size, grid_size)
|
117 |
+
stored_wealth_grid = stored_wealth.detach().view(128) # Displayed as a 1D representation
|
118 |
+
infrared_energy_grid = infrared_energy.detach().view(128) # Displayed as a 1D representation
|
119 |
+
|
120 |
+
# Plot the original and adjusted wealth distribution
|
121 |
+
fig, axes = plt.subplots(1, 4, figsize=(20, 6))
|
122 |
+
axes[0].imshow(wealth_data, cmap='viridis')
|
123 |
+
axes[0].set_title('Original Wealth Distribution')
|
124 |
+
axes[1].imshow(output_grid, cmap='viridis')
|
125 |
+
axes[1].set_title('Directed Wealth Distribution')
|
126 |
+
axes[2].plot(stored_wealth_grid.numpy())
|
127 |
+
axes[2].set_title('Stored Wealth Data (1D)')
|
128 |
+
axes[3].plot(infrared_energy_grid.numpy())
|
129 |
+
axes[3].set_title('Infrared Energy (1D)')
|
130 |
+
plt.show()
|
131 |
+
|
132 |
+
import torch
|
133 |
+
import torch.nn as nn
|
134 |
+
import torch.optim as optim
|
135 |
+
import matplotlib.pyplot as plt
|
136 |
+
|
137 |
+
# Define grid size
|
138 |
+
grid_size = 20
|
139 |
+
|
140 |
+
# Create a grid with random initial wealth data
|
141 |
+
wealth_data = torch.rand((grid_size, grid_size))
|
142 |
+
|
143 |
+
# Define a neural network with an additional layer for data protection
|
144 |
+
class WealthNet(nn.Module):
|
145 |
+
def __init__(self):
|
146 |
+
super(WealthNet, self).__init__()
|
147 |
+
self.fc1 = nn.Linear(grid_size * grid_size, 128)
|
148 |
+
self.fc2 = nn.Linear(128, 128)
|
149 |
+
self.fc3 = nn.Linear(128, grid_size * grid_size)
|
150 |
+
self.infrared_layer = nn.Sigmoid() # Simulating the conversion to infrared energy
|
151 |
+
# Removed the incorrect instantiation of GaussianNoise here
|
152 |
+
|
153 |
+
def forward(self, x):
|
154 |
+
x = torch.relu(self.fc1(x))
|
155 |
+
stored_wealth = torch.relu(self.fc2(x)) # Store wealth data here
|
156 |
+
protected_wealth = self.protection_layer(stored_wealth) # Protect the stored data
|
157 |
+
infrared_energy = self.infrared_layer(protected_wealth) # Convert to infrared energy
|
158 |
+
x = self.fc3(infrared_energy)
|
159 |
+
return x, stored_wealth, protected_wealth, infrared_energy
|
160 |
+
|
161 |
+
# Custom layer to add Gaussian noise (PyTorch does not have this built-in)
|
162 |
+
class GaussianNoise(nn.Module):
|
163 |
+
def __init__(self, stddev):
|
164 |
+
super(GaussianNoise, self).__init__()
|
165 |
+
self.stddev = stddev
|
166 |
+
|
167 |
+
def forward(self, x):
|
168 |
+
if self.training:
|
169 |
+
noise = torch.randn_like(x) * self.stddev
|
170 |
+
return x + noise
|
171 |
+
return x
|
172 |
+
|
173 |
+
# Instantiate the network, loss function, and optimizer
|
174 |
+
net = WealthNet()
|
175 |
+
# Add the GaussianNoise layer to the network instance
|
176 |
+
net.protection_layer = GaussianNoise(0.1)
|
177 |
+
criterion = nn.MSELoss()
|
178 |
+
optimizer = optim.Adam(net.parameters(), lr=0.01)
|
179 |
+
|
180 |
+
# Target direction to direct wealth (e.g., bottom right corner)
|
181 |
+
target_wealth = torch.zeros((grid_size, grid_size))
|
182 |
+
target_wealth[-5:, -5:] = 1 # Direct wealth towards the bottom right corner
|
183 |
+
|
184 |
+
# Convert the grid to a single vector for the neural network
|
185 |
+
input_data = wealth_data.view(-1)
|
186 |
+
target_data = target_wealth.view(-1)
|
187 |
+
|
188 |
+
# Training the network
|
189 |
+
epochs = 500
|
190 |
+
for epoch in range(epochs):
|
191 |
+
optimizer.zero_grad()
|
192 |
+
output, stored_wealth, protected_wealth, infrared_energy = net(input_data)
|
193 |
+
loss = criterion(output, target_data)
|
194 |
+
loss.backward()
|
195 |
+
optimizer.step()
|
196 |
+
|
197 |
+
# Reshape the outputs to the grid size
|
198 |
+
output_grid = output.detach().view(grid_size, grid_size)
|
199 |
+
stored_wealth_grid = stored_wealth.detach().view(128) # Displayed as a 1D representation
|
200 |
+
protected_wealth_grid = protected_wealth.detach().view(128) # Displayed as a 1D representation
|
201 |
+
infrared_energy_grid = infrared_energy.detach().view(128) # Displayed as a 1D representation
|
202 |
+
|
203 |
+
# Plot the original and adjusted wealth distribution
|
204 |
+
fig, axes = plt.subplots(1, 5, figsize=(25, 6))
|
205 |
+
axes[0].imshow(wealth_data, cmap='viridis')
|
206 |
+
axes[0].set_title('Original Wealth Distribution')
|
207 |
+
axes[1].imshow(output_grid, cmap='viridis')
|
208 |
+
axes[1].set_title('Directed Wealth Distribution')
|
209 |
+
axes[2].plot(stored_wealth_grid.numpy())
|
210 |
+
axes[2].set_title('Stored Wealth Data (1D)')
|
211 |
+
axes[3].plot(protected_wealth_grid.numpy())
|
212 |
+
axes[3].set_title('Protected Wealth Data (1D)')
|
213 |
+
axes[4].plot(infrared_energy_grid)
|