File size: 9,230 Bytes
aa590b5 cad60cc aa590b5 b6edb72 e9abf48 aa590b5 6a15c97 aa590b5 6d7f30f aa590b5 6d7f30f aa590b5 453beb6 cad60cc 6d7f30f aa590b5 6d7f30f aa590b5 6d7f30f 776a8ad 6d7f30f 776a8ad 6d7f30f df694a6 6d7f30f 6dcdc99 6d7f30f cad60cc 6dcdc99 6d7f30f 6a15c97 6d7f30f 6a15c97 6d7f30f 6a15c97 6d7f30f 776a8ad 6d7f30f 8b2a165 6d7f30f aa590b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
---
tags:
- adapter-transformers
- bert
datasets:
- allenai/scirepeval
---
# Adapter `allenai/specter2` for allenai/specter2_base
**Aug 2023 Update: The SPECTER 2.0 base and proximity adapter models have been renamed in Hugging Face based upon usage patterns as follows:**
|Old Name|New Name|
|--|--|
|allenai/specter2|[allenai/specter2_base](https://huggingface.co/allenai/specter2_base)|
|allenai/specter2_proximity|[allenai/specter2](https://huggingface.co/allenai/specter2)|
An [adapter](https://adapterhub.ml) for the [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) model that was trained on the [allenai/scirepeval](https://huggingface.co/datasets/allenai/scirepeval/) dataset.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoAdapterModel
model = AutoAdapterModel.from_pretrained("allenai/specter2_base")
adapter_name = model.load_adapter("allenai/specter2", source="hf", set_active=True)
```
## SPECTER 2.0
<!-- Provide a quick summary of what the model is/does. -->
SPECTER 2.0 is the successor to [SPECTER](allenai/specter) and is capable of generating task specific embeddings for scientific tasks when paired with [adapters](https://huggingface.co/models?search=allenai/specter-2).
This is the proximity adapter and should be used for all general embedding purposes.
Given the combination of title and abstract of a scientific paper or a short texual query, the model can be used to generate effective embeddings to be used in downstream applications.
# Model Details
## Model Description
SPECTER 2.0 has been trained on over 6M triplets of scientific paper citations, which are available [here](https://huggingface.co/datasets/allenai/scirepeval/viewer/cite_prediction_new/evaluation).
Post that it is trained on all the [SciRepEval](https://huggingface.co/datasets/allenai/scirepeval) training tasks, with task format specific adapters.
Task Formats trained on:
- Classification
- Regression
- Proximity
- Adhoc Search
This is a retrieval specific adapter. For tasks where given a paper query, other relevant papers have to be retrieved from a corpus, use this adapter to generate the embeddings.
It builds on the work done in [SciRepEval: A Multi-Format Benchmark for Scientific Document Representations](https://api.semanticscholar.org/CorpusID:254018137) and we evaluate the trained model on this benchmark as well.
- **Developed by:** Amanpreet Singh, Mike D'Arcy, Arman Cohan, Doug Downey, Sergey Feldman
- **Shared by :** Allen AI
- **Model type:** bert-base-uncased + adapters
- **License:** Apache 2.0
- **Finetuned from model:** [allenai/scibert](https://huggingface.co/allenai/scibert_scivocab_uncased).
## Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** [https://github.com/allenai/SPECTER2_0](https://github.com/allenai/SPECTER2_0)
- **Paper:** [https://api.semanticscholar.org/CorpusID:254018137](https://api.semanticscholar.org/CorpusID:254018137)
- **Demo:** [Usage](https://github.com/allenai/SPECTER2_0/blob/main/README.md)
# Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
## Direct Use
|Model|Name and HF link|Description|
|--|--|--|
|Retrieval*|[allenai/specter2_proximity](https://huggingface.co/allenai/specter2)|Encode papers as queries and candidates eg. Link Prediction, Nearest Neighbor Search|
|Adhoc Query|[allenai/specter2_adhoc_query](https://huggingface.co/allenai/specter2_adhoc_query)|Encode short raw text queries for search tasks. (Candidate papers can be encoded with proximity)|
|Classification|[allenai/specter2_classification](https://huggingface.co/allenai/specter2_classification)|Encode papers to feed into linear classifiers as features|
|Regression|[allenai/specter2_regression](https://huggingface.co/allenai/specter2_regression)|Encode papers to feed into linear regressors as features|
*Retrieval model should suffice for downstream task types not mentioned above
```python
from transformers import AutoTokenizer, AutoModel
# load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('allenai/specter2_base')
#load base model
model = AutoModel.from_pretrained('allenai/specter2_base')
#load the adapter(s) as per the required task, provide an identifier for the adapter in load_as argument and activate it
model.load_adapter("allenai/specter2", source="hf", load_as="specter2", set_active=True)
papers = [{'title': 'BERT', 'abstract': 'We introduce a new language representation model called BERT'},
{'title': 'Attention is all you need', 'abstract': ' The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'}]
# concatenate title and abstract
text_batch = [d['title'] + tokenizer.sep_token + (d.get('abstract') or '') for d in papers]
# preprocess the input
inputs = self.tokenizer(text_batch, padding=True, truncation=True,
return_tensors="pt", return_token_type_ids=False, max_length=512)
output = model(**inputs)
# take the first token in the batch as the embedding
embeddings = output.last_hidden_state[:, 0, :]
```
## Downstream Use
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
For evaluation and downstream usage, please refer to [https://github.com/allenai/scirepeval/blob/main/evaluation/INFERENCE.md](https://github.com/allenai/scirepeval/blob/main/evaluation/INFERENCE.md).
# Training Details
## Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
The base model is trained on citation links between papers and the adapters are trained on 8 large scale tasks across the four formats.
All the data is a part of SciRepEval benchmark and is available [here](https://huggingface.co/datasets/allenai/scirepeval).
The citation link are triplets in the form
```json
{"query": {"title": ..., "abstract": ...}, "pos": {"title": ..., "abstract": ...}, "neg": {"title": ..., "abstract": ...}}
```
consisting of a query paper, a positive citation and a negative which can be from the same/different field of study as the query or citation of a citation.
## Training Procedure
Please refer to the [SPECTER paper](https://api.semanticscholar.org/CorpusID:215768677).
### Training Hyperparameters
The model is trained in two stages using [SciRepEval](https://github.com/allenai/scirepeval/blob/main/training/TRAINING.md):
- Base Model: First a base model is trained on the above citation triplets.
``` batch size = 1024, max input length = 512, learning rate = 2e-5, epochs = 2 warmup steps = 10% fp16```
- Adapters: Thereafter, task format specific adapters are trained on the SciRepEval training tasks, where 600K triplets are sampled from above and added to the training data as well.
``` batch size = 256, max input length = 512, learning rate = 1e-4, epochs = 6 warmup = 1000 steps fp16```
# Evaluation
We evaluate the model on [SciRepEval](https://github.com/allenai/scirepeval), a large scale eval benchmark for scientific embedding tasks which which has [SciDocs] as a subset.
We also evaluate and establish a new SoTA on [MDCR](https://github.com/zoranmedic/mdcr), a large scale citation recommendation benchmark.
|Model|SciRepEval In-Train|SciRepEval Out-of-Train|SciRepEval Avg|MDCR(MAP, Recall@5)|
|--|--|--|--|--|
|[BM-25](https://api.semanticscholar.org/CorpusID:252199740)|n/a|n/a|n/a|(33.7, 28.5)|
|[SPECTER](https://huggingface.co/allenai/specter)|54.7|57.4|68.0|(30.6, 25.5)|
|[SciNCL](https://huggingface.co/malteos/scincl)|55.6|57.8|69.0|(32.6, 27.3)|
|[SciRepEval-Adapters](https://huggingface.co/models?search=scirepeval)|61.9|59.0|70.9|(35.3, 29.6)|
|[SPECTER 2.0-Adapters](https://huggingface.co/models?search=allenai/specter-2)|**62.3**|**59.2**|**71.2**|**(38.4, 33.0)**|
Please cite the following works if you end up using SPECTER 2.0:
[SPECTER paper](https://api.semanticscholar.org/CorpusID:215768677):
```bibtex
@inproceedings{specter2020cohan,
title={{SPECTER: Document-level Representation Learning using Citation-informed Transformers}},
author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld},
booktitle={ACL},
year={2020}
}
```
[SciRepEval paper](https://api.semanticscholar.org/CorpusID:254018137)
```bibtex
@article{Singh2022SciRepEvalAM,
title={SciRepEval: A Multi-Format Benchmark for Scientific Document Representations},
author={Amanpreet Singh and Mike D'Arcy and Arman Cohan and Doug Downey and Sergey Feldman},
journal={ArXiv},
year={2022},
volume={abs/2211.13308}
}
```
|