Adapters
bert
File size: 9,230 Bytes
aa590b5
 
 
 
 
 
 
 
cad60cc
aa590b5
b6edb72
 
 
 
 
 
 
 
e9abf48
aa590b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a15c97
 
aa590b5
6d7f30f
aa590b5
6d7f30f
aa590b5
453beb6
cad60cc
6d7f30f
aa590b5
6d7f30f
aa590b5
6d7f30f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
776a8ad
6d7f30f
776a8ad
6d7f30f
 
 
df694a6
 
 
6d7f30f
 
 
 
 
 
 
6dcdc99
6d7f30f
cad60cc
6dcdc99
 
 
 
 
6d7f30f
 
 
 
 
6a15c97
6d7f30f
 
6a15c97
6d7f30f
 
6a15c97
6d7f30f
 
 
 
 
 
 
 
 
 
 
 
 
 
776a8ad
6d7f30f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b2a165
6d7f30f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa590b5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---
tags:
- adapter-transformers
- bert
datasets:
- allenai/scirepeval
---

# Adapter `allenai/specter2` for allenai/specter2_base

**Aug 2023 Update: The SPECTER 2.0 base and proximity adapter models have been renamed in Hugging Face based upon usage patterns as follows:**

|Old Name|New Name|
|--|--|
|allenai/specter2|[allenai/specter2_base](https://huggingface.co/allenai/specter2_base)|
|allenai/specter2_proximity|[allenai/specter2](https://huggingface.co/allenai/specter2)|


An [adapter](https://adapterhub.ml) for the [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) model that was trained on the [allenai/scirepeval](https://huggingface.co/datasets/allenai/scirepeval/) dataset.

This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.

## Usage

First, install `adapter-transformers`:

```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_

Now, the adapter can be loaded and activated like this:

```python
from transformers import AutoAdapterModel

model = AutoAdapterModel.from_pretrained("allenai/specter2_base")
adapter_name = model.load_adapter("allenai/specter2", source="hf", set_active=True)
```
## SPECTER 2.0

<!-- Provide a quick summary of what the model is/does. -->

SPECTER 2.0 is the successor to [SPECTER](allenai/specter) and is capable of generating task specific embeddings for scientific tasks when paired with [adapters](https://huggingface.co/models?search=allenai/specter-2).
This is the proximity adapter and should be used for all general embedding purposes.
Given the combination of title and abstract of a scientific paper or a short texual query, the model can be used to generate effective embeddings to be used in downstream applications.

# Model Details

## Model Description

SPECTER 2.0 has been trained on over 6M triplets of scientific paper citations, which are available [here](https://huggingface.co/datasets/allenai/scirepeval/viewer/cite_prediction_new/evaluation).
Post that it is trained on all the [SciRepEval](https://huggingface.co/datasets/allenai/scirepeval) training tasks, with task format specific adapters.

Task Formats trained on:
- Classification
- Regression
- Proximity
- Adhoc Search

This is a retrieval specific adapter. For tasks where given a paper query, other relevant papers have to be retrieved from a corpus, use this adapter to generate the embeddings.

  
It builds on the work done in [SciRepEval: A Multi-Format Benchmark for Scientific Document Representations](https://api.semanticscholar.org/CorpusID:254018137) and we evaluate the trained model on this benchmark as well.



- **Developed by:** Amanpreet Singh, Mike D'Arcy, Arman Cohan, Doug Downey, Sergey Feldman
- **Shared by :** Allen AI
- **Model type:** bert-base-uncased + adapters
- **License:** Apache 2.0
- **Finetuned from model:** [allenai/scibert](https://huggingface.co/allenai/scibert_scivocab_uncased).

## Model Sources

<!-- Provide the basic links for the model. -->

- **Repository:** [https://github.com/allenai/SPECTER2_0](https://github.com/allenai/SPECTER2_0)
- **Paper:** [https://api.semanticscholar.org/CorpusID:254018137](https://api.semanticscholar.org/CorpusID:254018137)
- **Demo:** [Usage](https://github.com/allenai/SPECTER2_0/blob/main/README.md)

# Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

## Direct Use

|Model|Name and HF link|Description|
|--|--|--|
|Retrieval*|[allenai/specter2_proximity](https://huggingface.co/allenai/specter2)|Encode papers as queries and candidates eg. Link Prediction, Nearest Neighbor Search|
|Adhoc Query|[allenai/specter2_adhoc_query](https://huggingface.co/allenai/specter2_adhoc_query)|Encode short raw text queries for search tasks. (Candidate papers can be encoded with proximity)|
|Classification|[allenai/specter2_classification](https://huggingface.co/allenai/specter2_classification)|Encode papers to feed into linear classifiers as features|
|Regression|[allenai/specter2_regression](https://huggingface.co/allenai/specter2_regression)|Encode papers to feed into linear regressors as features|

*Retrieval model should suffice for downstream task types not mentioned above

```python
from transformers import AutoTokenizer, AutoModel

# load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('allenai/specter2_base')

#load base model
model = AutoModel.from_pretrained('allenai/specter2_base')

#load the adapter(s) as per the required task, provide an identifier for the adapter in load_as argument and activate it
model.load_adapter("allenai/specter2", source="hf", load_as="specter2", set_active=True)

papers = [{'title': 'BERT', 'abstract': 'We introduce a new language representation model called BERT'},
          {'title': 'Attention is all you need', 'abstract': ' The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'}]

# concatenate title and abstract
text_batch = [d['title'] + tokenizer.sep_token + (d.get('abstract') or '') for d in papers]
# preprocess the input
inputs = self.tokenizer(text_batch, padding=True, truncation=True,
                                   return_tensors="pt", return_token_type_ids=False, max_length=512)
output = model(**inputs)
# take the first token in the batch as the embedding
embeddings = output.last_hidden_state[:, 0, :]
```

## Downstream Use

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

For evaluation and downstream usage, please refer to [https://github.com/allenai/scirepeval/blob/main/evaluation/INFERENCE.md](https://github.com/allenai/scirepeval/blob/main/evaluation/INFERENCE.md).

# Training Details

## Training Data

<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

The base model is trained on citation links between papers and the adapters are trained on 8 large scale tasks across the four formats.
All the data is a part of SciRepEval benchmark and is available [here](https://huggingface.co/datasets/allenai/scirepeval).

The citation link are triplets in the form 

```json
{"query": {"title": ..., "abstract": ...}, "pos": {"title": ..., "abstract": ...}, "neg": {"title": ..., "abstract": ...}}
```

consisting of a query paper, a positive citation and a negative which can be from the same/different field of study as the query or citation of a citation.

## Training Procedure 

Please refer to the [SPECTER paper](https://api.semanticscholar.org/CorpusID:215768677).


### Training Hyperparameters


The model is trained in two stages using [SciRepEval](https://github.com/allenai/scirepeval/blob/main/training/TRAINING.md):
- Base Model: First a base model is trained on the above citation triplets.
``` batch size = 1024, max input length = 512, learning rate = 2e-5, epochs = 2 warmup steps = 10% fp16```
- Adapters: Thereafter, task format specific adapters are trained on the SciRepEval training tasks, where 600K triplets are sampled from above and added to the training data as well.
``` batch size = 256, max input length = 512, learning rate = 1e-4, epochs = 6 warmup = 1000 steps fp16```


# Evaluation

We evaluate the model on [SciRepEval](https://github.com/allenai/scirepeval), a large scale eval benchmark for scientific embedding tasks which which has [SciDocs] as a subset.
We also evaluate and establish a new SoTA on [MDCR](https://github.com/zoranmedic/mdcr), a large scale citation recommendation benchmark.

|Model|SciRepEval In-Train|SciRepEval Out-of-Train|SciRepEval Avg|MDCR(MAP, Recall@5)|
|--|--|--|--|--|
|[BM-25](https://api.semanticscholar.org/CorpusID:252199740)|n/a|n/a|n/a|(33.7, 28.5)|
|[SPECTER](https://huggingface.co/allenai/specter)|54.7|57.4|68.0|(30.6, 25.5)|
|[SciNCL](https://huggingface.co/malteos/scincl)|55.6|57.8|69.0|(32.6, 27.3)|
|[SciRepEval-Adapters](https://huggingface.co/models?search=scirepeval)|61.9|59.0|70.9|(35.3, 29.6)|
|[SPECTER 2.0-Adapters](https://huggingface.co/models?search=allenai/specter-2)|**62.3**|**59.2**|**71.2**|**(38.4, 33.0)**|

Please cite the following works if you end up using SPECTER 2.0:

[SPECTER paper](https://api.semanticscholar.org/CorpusID:215768677):  

```bibtex
@inproceedings{specter2020cohan,
  title={{SPECTER: Document-level Representation Learning using Citation-informed Transformers}},
  author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld},
  booktitle={ACL},
  year={2020}
}
```
[SciRepEval paper](https://api.semanticscholar.org/CorpusID:254018137)
```bibtex
@article{Singh2022SciRepEvalAM,
  title={SciRepEval: A Multi-Format Benchmark for Scientific Document Representations},
  author={Amanpreet Singh and Mike D'Arcy and Arman Cohan and Doug Downey and Sergey Feldman},
  journal={ArXiv},
  year={2022},
  volume={abs/2211.13308}
}
```