File size: 3,555 Bytes
78df4e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
---
license: llama2
base_model: codellama/CodeLlama-7b-Instruct-hf
tags:
- generated_from_trainer
model-index:
- name: code-llama-instruct-7b-text-to-sparql-axiom
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# code-llama-instruct-7b-text-to-sparql-axiom
This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1333
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 800
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.3919 | 0.0710 | 20 | 1.3906 |
| 0.8712 | 0.1421 | 40 | 0.4591 |
| 0.2672 | 0.2131 | 60 | 0.2378 |
| 0.213 | 0.2842 | 80 | 0.2065 |
| 0.1697 | 0.3552 | 100 | 0.2208 |
| 0.2068 | 0.4263 | 120 | 0.1886 |
| 0.1808 | 0.4973 | 140 | 0.1843 |
| 0.2073 | 0.5684 | 160 | 0.1812 |
| 0.1833 | 0.6394 | 180 | 0.1735 |
| 0.1556 | 0.7105 | 200 | 0.1836 |
| 0.1813 | 0.7815 | 220 | 0.1688 |
| 0.166 | 0.8526 | 240 | 0.1642 |
| 0.1773 | 0.9236 | 260 | 0.1609 |
| 0.1514 | 0.9947 | 280 | 0.1597 |
| 0.1592 | 1.0657 | 300 | 0.1581 |
| 0.1632 | 1.1368 | 320 | 0.1552 |
| 0.1601 | 1.2078 | 340 | 0.1554 |
| 0.1529 | 1.2789 | 360 | 0.1523 |
| 0.1352 | 1.3499 | 380 | 0.1528 |
| 0.1601 | 1.4210 | 400 | 0.1496 |
| 0.1523 | 1.4920 | 420 | 0.1482 |
| 0.1568 | 1.5631 | 440 | 0.1482 |
| 0.1598 | 1.6341 | 460 | 0.1461 |
| 0.1432 | 1.7052 | 480 | 0.1471 |
| 0.158 | 1.7762 | 500 | 0.1430 |
| 0.1479 | 1.8472 | 520 | 0.1422 |
| 0.1488 | 1.9183 | 540 | 0.1429 |
| 0.1422 | 1.9893 | 560 | 0.1397 |
| 0.149 | 2.0604 | 580 | 0.1391 |
| 0.1352 | 2.1314 | 600 | 0.1381 |
| 0.1357 | 2.2025 | 620 | 0.1389 |
| 0.1519 | 2.2735 | 640 | 0.1369 |
| 0.1321 | 2.3446 | 660 | 0.1367 |
| 0.1381 | 2.4156 | 680 | 0.1361 |
| 0.1362 | 2.4867 | 700 | 0.1349 |
| 0.1329 | 2.5577 | 720 | 0.1351 |
| 0.1457 | 2.6288 | 740 | 0.1340 |
| 0.1267 | 2.6998 | 760 | 0.1336 |
| 0.1433 | 2.7709 | 780 | 0.1335 |
| 0.1343 | 2.8419 | 800 | 0.1333 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.10.1
- Tokenizers 0.19.1
|