Update README.md
Browse files
README.md
CHANGED
@@ -1,120 +1,99 @@
|
|
1 |
-
---
|
2 |
-
library_name: transformers
|
3 |
-
tags:
|
4 |
-
- 4-bit
|
5 |
-
- AWQ
|
6 |
-
- text-generation
|
7 |
-
- autotrain_compatible
|
8 |
-
- endpoints_compatible
|
9 |
-
- Llama-3
|
10 |
-
- instruct
|
11 |
-
- finetune
|
12 |
-
- chatml
|
13 |
-
- DPO
|
14 |
-
- RLHF
|
15 |
-
- gpt4
|
16 |
-
- synthetic data
|
17 |
-
- distillation
|
18 |
-
- function calling
|
19 |
-
- json mode
|
20 |
-
- axolotl
|
21 |
-
model-index:
|
22 |
-
- name: Hermes-2-Pro-Llama-3-8B
|
23 |
-
results: []
|
24 |
-
license: apache-2.0
|
25 |
-
language:
|
26 |
-
- en
|
27 |
-
datasets:
|
28 |
-
- teknium/OpenHermes-2.5
|
29 |
-
widget:
|
30 |
-
- example_title: Hermes 2 Pro
|
31 |
-
messages:
|
32 |
-
- role: system
|
33 |
-
content: You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.
|
34 |
-
- role: user
|
35 |
-
content: Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.
|
36 |
-
pipeline_tag: text-generation
|
37 |
-
inference: false
|
38 |
-
quantized_by: Suparious
|
39 |
-
---
|
40 |
-
# NousResearch/Hermes-2-Pro-Llama-3-8B AWQ
|
41 |
-
|
42 |
-
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
streamer
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
return_tensors='pt').input_ids.cuda()
|
101 |
-
|
102 |
-
# Generate output
|
103 |
-
generation_output = model.generate(tokens,
|
104 |
-
streamer=streamer,
|
105 |
-
max_new_tokens=512)
|
106 |
-
```
|
107 |
-
|
108 |
-
### About AWQ
|
109 |
-
|
110 |
-
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
|
111 |
-
|
112 |
-
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
|
113 |
-
|
114 |
-
It is supported by:
|
115 |
-
|
116 |
-
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
|
117 |
-
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
|
118 |
-
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
|
119 |
-
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
|
120 |
-
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- 4-bit
|
5 |
+
- AWQ
|
6 |
+
- text-generation
|
7 |
+
- autotrain_compatible
|
8 |
+
- endpoints_compatible
|
9 |
+
- Llama-3
|
10 |
+
- instruct
|
11 |
+
- finetune
|
12 |
+
- chatml
|
13 |
+
- DPO
|
14 |
+
- RLHF
|
15 |
+
- gpt4
|
16 |
+
- synthetic data
|
17 |
+
- distillation
|
18 |
+
- function calling
|
19 |
+
- json mode
|
20 |
+
- axolotl
|
21 |
+
model-index:
|
22 |
+
- name: Hermes-2-Pro-Llama-3-8B
|
23 |
+
results: []
|
24 |
+
license: apache-2.0
|
25 |
+
language:
|
26 |
+
- en
|
27 |
+
datasets:
|
28 |
+
- teknium/OpenHermes-2.5
|
29 |
+
widget:
|
30 |
+
- example_title: Hermes 2 Pro
|
31 |
+
messages:
|
32 |
+
- role: system
|
33 |
+
content: You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.
|
34 |
+
- role: user
|
35 |
+
content: Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.
|
36 |
+
pipeline_tag: text-generation
|
37 |
+
inference: false
|
38 |
+
quantized_by: Suparious
|
39 |
+
---
|
40 |
+
# NousResearch/Hermes-2-Pro-Llama-3-8B AWQ
|
41 |
+
|
42 |
+
- Original model: [Hermes-2-Pro-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B)
|
43 |
+
|
44 |
+
```bash
|
45 |
+
pip install --upgrade autoawq autoawq-kernels
|
46 |
+
```
|
47 |
+
|
48 |
+
### Example Python code
|
49 |
+
|
50 |
+
```python
|
51 |
+
from awq import AutoAWQForCausalLM
|
52 |
+
from transformers import AutoTokenizer, TextStreamer
|
53 |
+
|
54 |
+
model_path = "solidrust/Hermes-2-Pro-Llama-3-8B-AWQ"
|
55 |
+
system_message = "You are Hermes-2-Pro-Llama-3-8B, incarnated as a powerful AI. You were created by NousResearch."
|
56 |
+
|
57 |
+
# Load model
|
58 |
+
model = AutoAWQForCausalLM.from_quantized(model_path,
|
59 |
+
fuse_layers=True)
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
61 |
+
trust_remote_code=True)
|
62 |
+
streamer = TextStreamer(tokenizer,
|
63 |
+
skip_prompt=True,
|
64 |
+
skip_special_tokens=True)
|
65 |
+
|
66 |
+
# Convert prompt to tokens
|
67 |
+
prompt_template = """\
|
68 |
+
<|im_start|>system
|
69 |
+
{system_message}<|im_end|>
|
70 |
+
<|im_start|>user
|
71 |
+
{prompt}<|im_end|>
|
72 |
+
<|im_start|>assistant"""
|
73 |
+
|
74 |
+
prompt = "You're standing on the surface of the Earth. "\
|
75 |
+
"You walk one mile south, one mile west and one mile north. "\
|
76 |
+
"You end up exactly where you started. Where are you?"
|
77 |
+
|
78 |
+
tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
|
79 |
+
return_tensors='pt').input_ids.cuda()
|
80 |
+
|
81 |
+
# Generate output
|
82 |
+
generation_output = model.generate(tokens,
|
83 |
+
streamer=streamer,
|
84 |
+
max_new_tokens=512)
|
85 |
+
```
|
86 |
+
|
87 |
+
### About AWQ
|
88 |
+
|
89 |
+
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
|
90 |
+
|
91 |
+
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
|
92 |
+
|
93 |
+
It is supported by:
|
94 |
+
|
95 |
+
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
|
96 |
+
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
|
97 |
+
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
|
98 |
+
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
|
99 |
+
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|