File size: 34,179 Bytes
ff23dd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:408
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: What sets TechChefz apart?
sentences:
- 'Sharing Stories from Our Team
Discover firsthand experiences, growth journeys, and the vibrant culture that
fuels our success.
I have been a part of Techchefz for 3 years, and I can confidently say it''s been
a remarkable journey. From day one, I was welcomed into a vibrant community that
values collaboration, creativity, and personal growth. The company culture here
isn''t just a buzzword, it''s tangible in every interaction and initiative.
profileImg
Aashish Massand
Sr. Manager Delivery
TechChefz has been a transformative journey, equipping me with invaluable skills
and fostering a supportive community. From coding fundamentals to advanced techniques,
I''ve gained confidence and expertise. Grateful for this experience and opportunity.
profileImg
Pankaj Datt
Associate Technology'
- 'After a transformative scuba dive in the Maldives, Mayank Maggon made a pivotal
decision to depart from the corporate ladder in December 2016. Fueled by a clear
vision to revolutionize the digital landscape, Mayank set out to leverage the
best technology ingredients, crafting custom applications and digital ecosystems
tailored to clients'' specific needs, limitations, and budgets.
However, this solo journey was not without its challenges. Mayank had to initiate
the revenue engine by offering corporate trainings and conducting online batches
for tech training across the USA. He also undertook small projects and subcontracted
modules of larger projects for clients in the US, UK, and India. It was only after
this initial groundwork that Mayank was able to hire a group of interns, whom
he meticulously trained and groomed to prepare them for handling Enterprise Level
Applications. This journey reflects Mayank''s resilience, determination, and entrepreneurial
spirit in building TechChefz Digital from the ground up.
With a passion for innovation and a relentless drive for excellence, Mayank has
steered TechChefz Digital through strategic partnerships, groundbreaking projects,
and exponential growth. His leadership has been instrumental in shaping TechChefz
Digital into a leading force in the digital transformation arena, inspiring a
culture of innovation and excellence that continues to propel the company forward.'
- TechChefz Digital has established its presence in two countries, showcasing its
global reach and influence. The company’s headquarters is strategically located
in Noida, India, serving as the central hub for its operations and leadership.
In addition to the headquarters, TechChefz Digital has expanded its footprint
with offices in Delaware, United States, allowing the company to cater to the
North American market with ease and efficiency.
- source_sentence: How does this solution comply with data regulations?
sentences:
- 'Introducing the world of General Insurance Firm
In this project, we implemented Digital Solution and Implementation with Headless
Drupal as the CMS, and lightweight React JS (Next JS SSR on Node JS) with the
following features:
PWA & AMP based Web Pages
Page Speed Optimization
Reusable and scalable React JS / Next JS Templates and Components
Headless Drupal CMS with Content & Experience management, approval workflows,
etc for seamless collaboration between the business and marketing teams
Minimalistic Buy and Renewal Journeys for various products, with API integrations
and adherence to data compliances
We achieved 250% Reduction in Operational Time and Effort in managing the Content
& Experience for Buy & renew Journeys,220% Reduction in Customer Drops during
buy and renewal journeys, 300% Reduction in bounce rate on policy landing and
campaign pages'
- 'We assist businesses by transforming their goals, teams, and cultures with digital
technology to make them colinear with the digital age. Through digitalization,
organizations can facilitate advanced decision-making and management.
'
- 'Microservices Transformation Process
Requirements Analysis
We begin by understanding the client's needs and objectives for the website.
Identify key features, functionality, and any specific design preferences.
Planning
Then create a detailed project plan outlining the scope, timeline, and milestones.
Define the technology stack and development tools suitable for the project.
User Experience Design
Then comes the stage of Developing wireframes or prototypes to visualize the website''s
structure and layout. We create a custom design that aligns with the brand identity
and user experience goals.
Development
After getting Sign-off on Design from Client, we break the requirements into Sprints
on Agile Methodology, and start developing them.
Testing
After each sprint we conduct thorough testing of the website to identify and fix
any bugs or issues. Perform usability testing to ensure a positive user experience.
Deployment
After testing we deploy the website sprint by sprint, to a hosting environment,
ensuring proper configuration for security and performance. Our expert DevOps
team sets up any necessary domain and server configurations and ensure smooth
running of website.'
- source_sentence: What tasks can we automate using machine learning?
sentences:
- 'Check out our latest news, announcements, and featured insights.
Explore our latest insights and stay informed with our thought-provoking content.
Dive in now for valuable perspectives.
Our Featured Insights
How UX and UI Work Together in Web Design
Navigating the Post-Cookie Era: Strategies for Effective Targeting and Personalization
Data-Driven Decision Making in Digital Advertising: Leveraging Analytics for Success
SEO Unleashed: Navigating the Digital Landscape with Advanced Search Engine Optimization
Tools
Is manual testing replaced by automation Testing?'
- 'In what ways can machine learning optimize our operations?
Machine learning algorithms can analyze operational data to identify inefficiencies,
predict maintenance needs, optimize supply chains, and automate repetitive tasks,
significantly improving operational efficiency and reducing costs.'
- Mayank Maggon is CEO of Techchefz Digital
- source_sentence: How can you help us grow our partnerships?
sentences:
- "Partner Experience (PX)\n From optimized collaboration tools to data-driven insights,\
\ our solutions are designed to drive efficiency, transparency, and growth in\
\ partner relationships. With a keen understanding of complexities of partner\
\ ecosystems, we help enterprise brands unlock new opportunities, strengthen alliances,\
\ and achieve shared success in today’s dynamic business environment."
- At Techchefz Digital, we specialize in guiding companies through the complexities
of adopting and integrating Artificial Intelligence and Machine Learning technologies.
Our consultancy services are designed to enhance your operational efficiency and
decision-making capabilities across all sectors. With a global network of AI/ML
experts and a commitment to excellence, we are your partners in transforming innovative
possibilities into real-world achievements.
- 'COMMERCE PLATFORMS
Discover the strength of our partnership.
Adobe Commerce Cloud
A comprehensive e-commerce platform that allows businesses to create, manage,
and optimize their online stores. Formerly known as Magento Commerce, Adobe Commerce
Cloud provides a range of features and capabilities to help businesses create
engaging online shopping experiences, manage their products and catalogs, process
orders, and drive online sales.
Magento
An open-source e-commerce platform that allows businesses to create online stores
and manage their digital operations. It was first released in 2008 and has since
become one of the most popular e-commerce platforms in the world.
Shopify
Salesforce Commerce Cloud (SFCC)'
- source_sentence: How is an Enterprise CMS different from a headless CMS?
sentences:
- 'How do I figure out how much your services will cost?
Determining the cost of our services is best achieved through a 15-30 minute discovery
call, where we can understand your unique requirements. Following that, we will
provide a transparent and detailed price within 24-48 hours tailored specifically
to you'
- 'Discover the right CMS for your Business Requirements
Headless CMS
They separate the backend content repository from the frontend presentation layer,
allowing content to be delivered to any device or platform via APIs offering flexibility
and scalability.
Enterprise CMS
ECMSs are more comprehensive systems designed to manage all types of content within
an organization, including documents, images, videos, and other digital assets.'
- We offer custom software development, digital marketing strategies, and tailored
solutions to drive tangible results for your business. Our expert team combines
technical prowess with industry insights to propel your business forward in the
digital landscape.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.0784313725490196
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.4019607843137255
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5196078431372549
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0261437908496732
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.08039215686274509
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05196078431372548
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.0784313725490196
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.4019607843137255
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5196078431372549
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.20681828171013134
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.11193977591036408
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.12704742492729623
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.0784313725490196
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.4019607843137255
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5196078431372549
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0261437908496732
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.08039215686274509
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05196078431372548
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.0784313725490196
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.4019607843137255
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5196078431372549
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.20587690425273067
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.11086601307189538
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.12502250584870636
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.06862745098039216
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.39215686274509803
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5098039215686274
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.02287581699346405
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.0784313725490196
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05098039215686274
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.06862745098039216
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.39215686274509803
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5098039215686274
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.20200410483390918
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.10891690009337061
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.12124652633795324
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.058823529411764705
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3137254901960784
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.49019607843137253
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0196078431372549
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06274509803921569
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04901960784313725
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.058823529411764705
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3137254901960784
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.49019607843137253
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.18661585783989612
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.09673202614379077
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.11007694082793783
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.029411764705882353
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.28431372549019607
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.4117647058823529
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.00980392156862745
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.05686274509803922
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04117647058823529
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.029411764705882353
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.28431372549019607
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.4117647058823529
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.15696823886592676
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.08097572362278241
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.09297982754610348
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("akashmaggon/bge-base-financial-matryoshka-finetuning-tcz-1")
# Run inference
sentences = [
'How is an Enterprise CMS different from a headless CMS?',
'Discover the right CMS for your Business Requirements\nHeadless CMS\nThey separate the backend content repository from the frontend presentation layer, allowing content to be delivered to any device or platform via APIs offering flexibility and scalability.\n\n\nEnterprise CMS\nECMSs are more comprehensive systems designed to manage all types of content within an organization, including documents, images, videos, and other digital assets.',
'How do I figure out how much your services will cost?\nDetermining the cost of our services is best achieved through a 15-30 minute discovery call, where we can understand your unique requirements. Following that, we will provide a transparent and detailed price within 24-48 hours tailored specifically to you',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|:--------------------|:-----------|:-----------|:----------|:-----------|:----------|
| cosine_accuracy@1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| cosine_accuracy@3 | 0.0784 | 0.0784 | 0.0686 | 0.0588 | 0.0294 |
| cosine_accuracy@5 | 0.402 | 0.402 | 0.3922 | 0.3137 | 0.2843 |
| cosine_accuracy@10 | 0.5196 | 0.5196 | 0.5098 | 0.4902 | 0.4118 |
| cosine_precision@1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| cosine_precision@3 | 0.0261 | 0.0261 | 0.0229 | 0.0196 | 0.0098 |
| cosine_precision@5 | 0.0804 | 0.0804 | 0.0784 | 0.0627 | 0.0569 |
| cosine_precision@10 | 0.052 | 0.052 | 0.051 | 0.049 | 0.0412 |
| cosine_recall@1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| cosine_recall@3 | 0.0784 | 0.0784 | 0.0686 | 0.0588 | 0.0294 |
| cosine_recall@5 | 0.402 | 0.402 | 0.3922 | 0.3137 | 0.2843 |
| cosine_recall@10 | 0.5196 | 0.5196 | 0.5098 | 0.4902 | 0.4118 |
| **cosine_ndcg@10** | **0.2068** | **0.2059** | **0.202** | **0.1866** | **0.157** |
| cosine_mrr@10 | 0.1119 | 0.1109 | 0.1089 | 0.0967 | 0.081 |
| cosine_map@100 | 0.127 | 0.125 | 0.1212 | 0.1101 | 0.093 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 408 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 408 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 12.63 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 94.18 tokens</li><li>max: 270 tokens</li></ul> |
* Samples:
| anchor | positive |
|:-----------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What's it like working at Techchefz?</code> | <code>Join one of the most resourceful tech teams<br><br>Discover your future with us. Explore opportunities, values, and culture. Join a dynamic and innovative team at Techchefz.<br><br>LIFE AT TECHCHEFZ<br>Make an Impact from Day One.<br><br>We believe in the power of collaboration to create, innovate, and develop groundbreaking solutions. Our teams work closely with clients and partners to co-create solutions that drive innovation and business growth.<br>Your new journey awaits!</code> |
| <code>How can I contact TechChefz if I'm in the US?</code> | <code>TechChefz Digital has established its presence in two countries, showcasing its global reach and influence. The company’s headquarters is strategically located in Noida, India, serving as the central hub for its operations and leadership. In addition to the headquarters, TechChefz Digital has expanded its footprint with offices in Delaware, United States, allowing the company to cater to the North American market with ease and efficiency.</code> |
| <code>What results can I expect from your services?</code> | <code>We offer custom software development, digital marketing strategies, and tailored solutions to drive tangible results for your business. Our expert team combines technical prowess with industry insights to propel your business forward in the digital landscape.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.6154 | 1 | 0.2038 | 0.1993 | 0.1953 | 0.1764 | 0.1595 |
| 1.6154 | 2 | 0.2038 | 0.1993 | 0.1953 | 0.1764 | 0.1595 |
| **2.6154** | **3** | **0.2068** | **0.2059** | **0.202** | **0.1866** | **0.157** |
| 3.6154 | 4 | 0.2068 | 0.2059 | 0.2020 | 0.1866 | 0.1570 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |