--- library_name: transformers license: apache-2.0 base_model: google/mt5-small tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-Drishtants-summaries results: [] --- # mt5-small-finetuned-Drishtants-summaries This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7354 - Rouge1: 0.0368 - Rouge2: 0.0186 - Rougel: 0.0344 - Rougelsum: 0.0335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 21.5975 | 1.0 | 18 | 11.3745 | 0.0 | 0.0 | 0.0 | 0.0 | | 18.236 | 2.0 | 36 | 10.6384 | 0.0102 | 0.0 | 0.0102 | 0.0102 | | 15.5742 | 3.0 | 54 | 9.9438 | 0.0201 | 0.0084 | 0.0160 | 0.0160 | | 13.9098 | 4.0 | 72 | 8.4129 | 0.0250 | 0.0084 | 0.0209 | 0.0245 | | 12.3694 | 5.0 | 90 | 6.1433 | 0.0250 | 0.0084 | 0.0209 | 0.0245 | | 10.7687 | 6.0 | 108 | 6.1726 | 0.0102 | 0.0 | 0.0102 | 0.0102 | | 9.4084 | 7.0 | 126 | 5.0390 | 0.0102 | 0.0 | 0.0102 | 0.0102 | | 8.532 | 8.0 | 144 | 4.2376 | 0.0135 | 0.0 | 0.0139 | 0.0127 | | 7.7273 | 9.0 | 162 | 3.8524 | 0.0268 | 0.0 | 0.0259 | 0.0258 | | 6.9872 | 10.0 | 180 | 3.6113 | 0.0512 | 0.0070 | 0.0462 | 0.0425 | | 6.4007 | 11.0 | 198 | 3.3596 | 0.0489 | 0.0118 | 0.0500 | 0.0496 | | 6.021 | 12.0 | 216 | 3.2024 | 0.0441 | 0.0173 | 0.0403 | 0.0392 | | 5.6179 | 13.0 | 234 | 3.1161 | 0.0498 | 0.0173 | 0.0466 | 0.0454 | | 5.2275 | 14.0 | 252 | 3.0076 | 0.0411 | 0.0217 | 0.0396 | 0.0382 | | 4.9888 | 15.0 | 270 | 2.9215 | 0.0449 | 0.0217 | 0.0434 | 0.0433 | | 4.7543 | 16.0 | 288 | 2.8484 | 0.0368 | 0.0186 | 0.0344 | 0.0335 | | 4.5961 | 17.0 | 306 | 2.7913 | 0.0368 | 0.0186 | 0.0344 | 0.0335 | | 4.4748 | 18.0 | 324 | 2.7587 | 0.0368 | 0.0186 | 0.0344 | 0.0335 | | 4.4339 | 19.0 | 342 | 2.7405 | 0.0368 | 0.0186 | 0.0344 | 0.0335 | | 4.4859 | 20.0 | 360 | 2.7354 | 0.0368 | 0.0186 | 0.0344 | 0.0335 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0