aiartwork commited on
Commit
2612296
·
1 Parent(s): f0a4461

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 273.94 +/- 12.72
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5c97b83550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5c97b835e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5c97b83670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5c97b83700>", "_build": "<function ActorCriticPolicy._build at 0x7f5c97b83790>", "forward": "<function ActorCriticPolicy.forward at 0x7f5c97b83820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5c97b838b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5c97b83940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5c97b839d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5c97b83a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5c97b83af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5c97b83b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5c97b82270>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678262293704564833, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAOnb32UFi6OsWmu+uGFDgfSwI7tlgWNwAAAAAAAIA/IP+UvlP7Gz/NbtO6OVb+vrV5tb6wCeM9AAAAAAAAAACz1nU9FFP9O5pU4r1r83W+4L3hvBYK1bwAAAAAAAAAAM1+S7xET4k9cwunPSYRYr5a/bM91AGxvQAAAAAAAAAAvZlQvlY/gz4MA68+ygKJvi/Pyj2KD9o9AAAAAAAAAAAg7zO+/OKFPwqZXr6r6BK/kudLvo7md70AAAAAAAAAADPlVbzowPc+QwdZPLz3lb7yjBg9bp7gPAAAAAAAAAAAwBahPVpXiD59f029OYuHviFMJz6MaAi9AAAAAAAAAABA2Ky9AwVFvEQ0STsasmo8zROuvdzVQj0AAAAAAACAP5qITL3DtTS6jlmHuYKxYLS4ICi7tr2eOAAAgD8AAIA/WDSxvtnbij+Fhfa+oTQqv2Pcxb7PZhW+AAAAAAAAAADN8Yc8z/iXPpM+HT2sn62+b+izPMhqaT0AAAAAAAAAAEphuD6r85I/ZlgiPvS+w770Grg+Cr+YvQAAAAAAAAAATYtWPdbRUD+V+XE9GQnevh4+vj2zwKm7AAAAAAAAAADNBiS8H6OQu1JJsDsSh32+MEvxOyN7zz4AAIA/AACAP80i7D28QuI+oT7Mvexrt755WzM8YqSwvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVVRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImiSWlDvGbECUhpRSlIwBbJRL8owBdJRHQJHkscMmWt51fZQoaAZoCWgPQwjOp45VCqdwQJSGlFKUaBVNHwFoFkdAkeTYL5RCQnV9lChoBmgJaA9DCMug2uAE2XBAlIaUUpRoFUvyaBZHQJHlOCCjDbd1fZQoaAZoCWgPQwhybD1DuFhyQJSGlFKUaBVL92gWR0CR5ZiQT238dX2UKGgGaAloD0MIYaqZtVRvcUCUhpRSlGgVTQABaBZHQJHmy6MBIWh1fZQoaAZoCWgPQwjkSdI1E4tuQJSGlFKUaBVL/GgWR0CR6AxjJ+2FdX2UKGgGaAloD0MIgXaHFMPmckCUhpRSlGgVS/9oFkdAkeg6rNnoPnV9lChoBmgJaA9DCJc7M8Hw+HBAlIaUUpRoFUv0aBZHQJHon0g8r7R1fZQoaAZoCWgPQwhcrROXI1pwQJSGlFKUaBVNSAFoFkdAkei9Esrd33V9lChoBmgJaA9DCLJkjuVd13BAlIaUUpRoFU0UAWgWR0CR6SbobGWEdX2UKGgGaAloD0MId9hEZm4ncUCUhpRSlGgVTRQBaBZHQJHpsMz/IbR1fZQoaAZoCWgPQwj4/DBC+IRuQJSGlFKUaBVL/GgWR0CR6gr92ovSdX2UKGgGaAloD0MISzs1lxt9cUCUhpRSlGgVTQgBaBZHQJHqS4y44Id1fZQoaAZoCWgPQwjw/Q3aqy9SQJSGlFKUaBVN6ANoFkdAkeshZdOZcHV9lChoBmgJaA9DCItwk1GlxnFAlIaUUpRoFUv+aBZHQJHrPVsk6cR1fZQoaAZoCWgPQwg3xHjNq+RvQJSGlFKUaBVL+2gWR0CR61BI4EOidX2UKGgGaAloD0MIGmzqPKo5bkCUhpRSlGgVTRcBaBZHQJHrgdPtUn51fZQoaAZoCWgPQwj1S8Rbpx5wQJSGlFKUaBVNDQFoFkdAkeuPwqiGnHV9lChoBmgJaA9DCFLTLqYZanJAlIaUUpRoFU0OAWgWR0CR7AtShrWRdX2UKGgGaAloD0MIt7bwvNTXcUCUhpRSlGgVTRQBaBZHQJHsgniNsFd1fZQoaAZoCWgPQwjEW+ffLupvQJSGlFKUaBVL6GgWR0CR7KXZXdTHdX2UKGgGaAloD0MIaaz9ne28b0CUhpRSlGgVS9VoFkdAke1UrTYukHV9lChoBmgJaA9DCCPcZFSZxW9AlIaUUpRoFUvuaBZHQJHuXvQWvbJ1fZQoaAZoCWgPQwjY1eQpq4dvQJSGlFKUaBVNDwFoFkdAke6b/Khcq3V9lChoBmgJaA9DCPvKg/SU/XBAlIaUUpRoFU0GAWgWR0CR7uPPszEadX2UKGgGaAloD0MIx9l0BDAGc0CUhpRSlGgVS+5oFkdAke+l0T101nV9lChoBmgJaA9DCBAGnnuPS3BAlIaUUpRoFU0LAWgWR0CR8MEyLyc1dX2UKGgGaAloD0MICMvY0A0YcUCUhpRSlGgVS+9oFkdAkfD0rf+CLHV9lChoBmgJaA9DCPNzQ1P2XG5AlIaUUpRoFUvzaBZHQJHxJPKuB+Z1fZQoaAZoCWgPQwikjo6r0TdzQJSGlFKUaBVNRgFoFkdAkfExTn7pFHV9lChoBmgJaA9DCHQkl/+QlXBAlIaUUpRoFU1FAWgWR0CR8avJzT4MdX2UKGgGaAloD0MIMq8jDllDc0CUhpRSlGgVTQwBaBZHQJHx+XRgJC11fZQoaAZoCWgPQwiwARHiyoVzQJSGlFKUaBVNJwFoFkdAkfI5HmRvFXV9lChoBmgJaA9DCCMShZb19HBAlIaUUpRoFU0fAWgWR0CR8n0g8r7PdX2UKGgGaAloD0MILLe0GpKXb0CUhpRSlGgVTQsBaBZHQJHymD8Lrop1fZQoaAZoCWgPQwiGcqJdhVdxQJSGlFKUaBVNDgFoFkdAkfMrwe/5+HV9lChoBmgJaA9DCLO0U3M5kG5AlIaUUpRoFU0CAWgWR0CR89nDziCKdX2UKGgGaAloD0MIOxvyz8xEcUCUhpRSlGgVTSIBaBZHQJHz2khzNll1fZQoaAZoCWgPQwhsCI7L+GFxQJSGlFKUaBVNAwFoFkdAkg16LCN0eXV9lChoBmgJaA9DCIiBrn2BfHFAlIaUUpRoFU0UAWgWR0CSDcD7IkqudX2UKGgGaAloD0MIyol2FdLmbUCUhpRSlGgVTQYBaBZHQJIN42aUiY91fZQoaAZoCWgPQwjT9UTXBWVtQJSGlFKUaBVL9mgWR0CSDi4Vh1DCdX2UKGgGaAloD0MIAmcpWU4ScECUhpRSlGgVS+RoFkdAkg6eW8h9s3V9lChoBmgJaA9DCMXnTrD/YXJAlIaUUpRoFUvxaBZHQJIPPjvNNah1fZQoaAZoCWgPQwgpPj4hO1lzQJSGlFKUaBVL22gWR0CSD4O5avA5dX2UKGgGaAloD0MIaJWZ0jofc0CUhpRSlGgVTQgBaBZHQJIPzTz/ZNB1fZQoaAZoCWgPQwinQdE8gMRxQJSGlFKUaBVNKwFoFkdAkhBm/nGKh3V9lChoBmgJaA9DCBk9t9BVJXJAlIaUUpRoFU0ZAWgWR0CSEKaUzKs/dX2UKGgGaAloD0MIJSNnYU+Zb0CUhpRSlGgVTQYBaBZHQJIRNdAxBVx1fZQoaAZoCWgPQwiKVu4FJuByQJSGlFKUaBVNGAFoFkdAkhFDQ3PzF3V9lChoBmgJaA9DCF95kJ5ilHJAlIaUUpRoFU0SAWgWR0CSEWIF/x2CdX2UKGgGaAloD0MI+zxGeSbpcECUhpRSlGgVTQIBaBZHQJIRu0hNdqt1fZQoaAZoCWgPQwjwMVhxKv1tQJSGlFKUaBVL7GgWR0CSEdOB19v1dX2UKGgGaAloD0MIzLVoAdoKcUCUhpRSlGgVS/RoFkdAkhH/Kp1ifHV9lChoBmgJaA9DCEPmyqBa0XBAlIaUUpRoFUvxaBZHQJITzeTFERd1fZQoaAZoCWgPQwgJcHoXb15wQJSGlFKUaBVNAwFoFkdAkhPsBZIQOHV9lChoBmgJaA9DCPPJiuEqJnJAlIaUUpRoFU0rAWgWR0CSFJfqX4TLdX2UKGgGaAloD0MIDTM0nogIcECUhpRSlGgVS9ZoFkdAkhSpRbbDdnV9lChoBmgJaA9DCC1DHOsi03FAlIaUUpRoFU0oAWgWR0CSFLznA6+4dX2UKGgGaAloD0MIK2nFN9QCcUCUhpRSlGgVTRsBaBZHQJIVYqOLiuN1fZQoaAZoCWgPQwi9xcN7zg9zQJSGlFKUaBVL8GgWR0CSFZwSJ0nxdX2UKGgGaAloD0MIbJVgcTiSckCUhpRSlGgVTR0BaBZHQJIWEcHWz4V1fZQoaAZoCWgPQwhMGM3KtopyQJSGlFKUaBVNBgFoFkdAkha/Ot4iYHV9lChoBmgJaA9DCEccsoE0qHBAlIaUUpRoFUvTaBZHQJIW5P1tfol1fZQoaAZoCWgPQwiDoQ4rnAZwQJSGlFKUaBVL72gWR0CSFyCJoCdSdX2UKGgGaAloD0MIbsFSXYCfc0CUhpRSlGgVTR8BaBZHQJIXnMOf/WF1fZQoaAZoCWgPQwjEQUKUb8BxQJSGlFKUaBVNFAFoFkdAkhfZoGpuM3V9lChoBmgJaA9DCONV1jYFgXBAlIaUUpRoFU0QAWgWR0CSGETs6aLGdX2UKGgGaAloD0MIMgOV8S/JcUCUhpRSlGgVTSUBaBZHQJIYToRqXWx1fZQoaAZoCWgPQwh/3enO06FxQJSGlFKUaBVNDgFoFkdAkhh+M6zVt3V9lChoBmgJaA9DCERQNXq1cG5AlIaUUpRoFUv+aBZHQJIaHEWIoE11fZQoaAZoCWgPQwjZ6JyfomhzQJSGlFKUaBVL4GgWR0CSGiWdEsredX2UKGgGaAloD0MI7Uj1nd+/bUCUhpRSlGgVTQsBaBZHQJIaVDKHO8l1fZQoaAZoCWgPQwjhtyHGqyhxQJSGlFKUaBVNEAFoFkdAkhtOS8rZrnV9lChoBmgJaA9DCB0CRwINmHFAlIaUUpRoFUveaBZHQJIbiiqQzUJ1fZQoaAZoCWgPQwgnT1lNV0xuQJSGlFKUaBVNKAFoFkdAkhvfGIbfg3V9lChoBmgJaA9DCI7pCUv8enNAlIaUUpRoFUvUaBZHQJIcJ90A93d1fZQoaAZoCWgPQwjRPesaLQVuQJSGlFKUaBVNEwFoFkdAkhxi5RTCL3V9lChoBmgJaA9DCF/uk6NAeXFAlIaUUpRoFU07AWgWR0CSHS+gUUO/dX2UKGgGaAloD0MIrhBWYwnPb0CUhpRSlGgVTQoBaBZHQJIdZy+6Ae91fZQoaAZoCWgPQwjgY7DiFCpwQJSGlFKUaBVL92gWR0CSHcuxKQJYdX2UKGgGaAloD0MIlNxhExk0c0CUhpRSlGgVS99oFkdAkh3ojB2wFHV9lChoBmgJaA9DCP7tsl83n3JAlIaUUpRoFUviaBZHQJId8plSS/11fZQoaAZoCWgPQwhmZ9E7ladyQJSGlFKUaBVL82gWR0CSHe7mdRR/dX2UKGgGaAloD0MIyy4YXPPIckCUhpRSlGgVTScBaBZHQJIeZVHWjGl1fZQoaAZoCWgPQwiM8szL4c5wQJSGlFKUaBVNLQFoFkdAkh/cbiqABnV9lChoBmgJaA9DCJCeIodILXJAlIaUUpRoFUvyaBZHQJIgBuO0b991fZQoaAZoCWgPQwhWKT3TC8pxQJSGlFKUaBVL+GgWR0CSIDR0U47zdX2UKGgGaAloD0MIhNVYwlpocUCUhpRSlGgVTQQBaBZHQJIgrPkaMrF1fZQoaAZoCWgPQwigwDv5dJZuQJSGlFKUaBVL/2gWR0CSIYxnnMdMdX2UKGgGaAloD0MIObcJ98oQc0CUhpRSlGgVS+poFkdAkiHfSc9W63V9lChoBmgJaA9DCCYbD7ZY+nBAlIaUUpRoFU0GAWgWR0CSIf0Nz8xcdX2UKGgGaAloD0MIZ7gBn59pcECUhpRSlGgVS+poFkdAkiIaNEPUa3V9lChoBmgJaA9DCB0EHa2qYHBAlIaUUpRoFU0SAWgWR0CSIpGEPDpDdX2UKGgGaAloD0MIdsb3xWWTcUCUhpRSlGgVS99oFkdAkiLG5xzaK3V9lChoBmgJaA9DCOLl6VyRGnFAlIaUUpRoFUvraBZHQJIjd+d9Ujt1fZQoaAZoCWgPQwjO4O8Xs7RvQJSGlFKUaBVNCwFoFkdAkiOpcC5mRXV9lChoBmgJaA9DCA7z5QXYl29AlIaUUpRoFUv5aBZHQJIj6nHeaa11fZQoaAZoCWgPQwiNXaJ6K7dxQJSGlFKUaBVL+mgWR0CSI/ScLBsRdX2UKGgGaAloD0MI7l2DvnQvckCUhpRSlGgVS+poFkdAkiQWZmZmZnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30c46a76067f24b602e6a8ff719ac8e652adef51c977351955b4fd6de0745d6e
3
+ size 147368
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5c97b83550>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5c97b835e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5c97b83670>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5c97b83700>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5c97b83790>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5c97b83820>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5c97b838b0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5c97b83940>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5c97b839d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5c97b83a60>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5c97b83af0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5c97b83b80>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f5c97b82270>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678262293704564833,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAOnb32UFi6OsWmu+uGFDgfSwI7tlgWNwAAAAAAAIA/IP+UvlP7Gz/NbtO6OVb+vrV5tb6wCeM9AAAAAAAAAACz1nU9FFP9O5pU4r1r83W+4L3hvBYK1bwAAAAAAAAAAM1+S7xET4k9cwunPSYRYr5a/bM91AGxvQAAAAAAAAAAvZlQvlY/gz4MA68+ygKJvi/Pyj2KD9o9AAAAAAAAAAAg7zO+/OKFPwqZXr6r6BK/kudLvo7md70AAAAAAAAAADPlVbzowPc+QwdZPLz3lb7yjBg9bp7gPAAAAAAAAAAAwBahPVpXiD59f029OYuHviFMJz6MaAi9AAAAAAAAAABA2Ky9AwVFvEQ0STsasmo8zROuvdzVQj0AAAAAAACAP5qITL3DtTS6jlmHuYKxYLS4ICi7tr2eOAAAgD8AAIA/WDSxvtnbij+Fhfa+oTQqv2Pcxb7PZhW+AAAAAAAAAADN8Yc8z/iXPpM+HT2sn62+b+izPMhqaT0AAAAAAAAAAEphuD6r85I/ZlgiPvS+w770Grg+Cr+YvQAAAAAAAAAATYtWPdbRUD+V+XE9GQnevh4+vj2zwKm7AAAAAAAAAADNBiS8H6OQu1JJsDsSh32+MEvxOyN7zz4AAIA/AACAP80i7D28QuI+oT7Mvexrt755WzM8YqSwvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVVRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImiSWlDvGbECUhpRSlIwBbJRL8owBdJRHQJHkscMmWt51fZQoaAZoCWgPQwjOp45VCqdwQJSGlFKUaBVNHwFoFkdAkeTYL5RCQnV9lChoBmgJaA9DCMug2uAE2XBAlIaUUpRoFUvyaBZHQJHlOCCjDbd1fZQoaAZoCWgPQwhybD1DuFhyQJSGlFKUaBVL92gWR0CR5ZiQT238dX2UKGgGaAloD0MIYaqZtVRvcUCUhpRSlGgVTQABaBZHQJHmy6MBIWh1fZQoaAZoCWgPQwjkSdI1E4tuQJSGlFKUaBVL/GgWR0CR6AxjJ+2FdX2UKGgGaAloD0MIgXaHFMPmckCUhpRSlGgVS/9oFkdAkeg6rNnoPnV9lChoBmgJaA9DCJc7M8Hw+HBAlIaUUpRoFUv0aBZHQJHon0g8r7R1fZQoaAZoCWgPQwhcrROXI1pwQJSGlFKUaBVNSAFoFkdAkei9Esrd33V9lChoBmgJaA9DCLJkjuVd13BAlIaUUpRoFU0UAWgWR0CR6SbobGWEdX2UKGgGaAloD0MId9hEZm4ncUCUhpRSlGgVTRQBaBZHQJHpsMz/IbR1fZQoaAZoCWgPQwj4/DBC+IRuQJSGlFKUaBVL/GgWR0CR6gr92ovSdX2UKGgGaAloD0MISzs1lxt9cUCUhpRSlGgVTQgBaBZHQJHqS4y44Id1fZQoaAZoCWgPQwjw/Q3aqy9SQJSGlFKUaBVN6ANoFkdAkeshZdOZcHV9lChoBmgJaA9DCItwk1GlxnFAlIaUUpRoFUv+aBZHQJHrPVsk6cR1fZQoaAZoCWgPQwg3xHjNq+RvQJSGlFKUaBVL+2gWR0CR61BI4EOidX2UKGgGaAloD0MIGmzqPKo5bkCUhpRSlGgVTRcBaBZHQJHrgdPtUn51fZQoaAZoCWgPQwj1S8Rbpx5wQJSGlFKUaBVNDQFoFkdAkeuPwqiGnHV9lChoBmgJaA9DCFLTLqYZanJAlIaUUpRoFU0OAWgWR0CR7AtShrWRdX2UKGgGaAloD0MIt7bwvNTXcUCUhpRSlGgVTRQBaBZHQJHsgniNsFd1fZQoaAZoCWgPQwjEW+ffLupvQJSGlFKUaBVL6GgWR0CR7KXZXdTHdX2UKGgGaAloD0MIaaz9ne28b0CUhpRSlGgVS9VoFkdAke1UrTYukHV9lChoBmgJaA9DCCPcZFSZxW9AlIaUUpRoFUvuaBZHQJHuXvQWvbJ1fZQoaAZoCWgPQwjY1eQpq4dvQJSGlFKUaBVNDwFoFkdAke6b/Khcq3V9lChoBmgJaA9DCPvKg/SU/XBAlIaUUpRoFU0GAWgWR0CR7uPPszEadX2UKGgGaAloD0MIx9l0BDAGc0CUhpRSlGgVS+5oFkdAke+l0T101nV9lChoBmgJaA9DCBAGnnuPS3BAlIaUUpRoFU0LAWgWR0CR8MEyLyc1dX2UKGgGaAloD0MICMvY0A0YcUCUhpRSlGgVS+9oFkdAkfD0rf+CLHV9lChoBmgJaA9DCPNzQ1P2XG5AlIaUUpRoFUvzaBZHQJHxJPKuB+Z1fZQoaAZoCWgPQwikjo6r0TdzQJSGlFKUaBVNRgFoFkdAkfExTn7pFHV9lChoBmgJaA9DCHQkl/+QlXBAlIaUUpRoFU1FAWgWR0CR8avJzT4MdX2UKGgGaAloD0MIMq8jDllDc0CUhpRSlGgVTQwBaBZHQJHx+XRgJC11fZQoaAZoCWgPQwiwARHiyoVzQJSGlFKUaBVNJwFoFkdAkfI5HmRvFXV9lChoBmgJaA9DCCMShZb19HBAlIaUUpRoFU0fAWgWR0CR8n0g8r7PdX2UKGgGaAloD0MILLe0GpKXb0CUhpRSlGgVTQsBaBZHQJHymD8Lrop1fZQoaAZoCWgPQwiGcqJdhVdxQJSGlFKUaBVNDgFoFkdAkfMrwe/5+HV9lChoBmgJaA9DCLO0U3M5kG5AlIaUUpRoFU0CAWgWR0CR89nDziCKdX2UKGgGaAloD0MIOxvyz8xEcUCUhpRSlGgVTSIBaBZHQJHz2khzNll1fZQoaAZoCWgPQwhsCI7L+GFxQJSGlFKUaBVNAwFoFkdAkg16LCN0eXV9lChoBmgJaA9DCIiBrn2BfHFAlIaUUpRoFU0UAWgWR0CSDcD7IkqudX2UKGgGaAloD0MIyol2FdLmbUCUhpRSlGgVTQYBaBZHQJIN42aUiY91fZQoaAZoCWgPQwjT9UTXBWVtQJSGlFKUaBVL9mgWR0CSDi4Vh1DCdX2UKGgGaAloD0MIAmcpWU4ScECUhpRSlGgVS+RoFkdAkg6eW8h9s3V9lChoBmgJaA9DCMXnTrD/YXJAlIaUUpRoFUvxaBZHQJIPPjvNNah1fZQoaAZoCWgPQwgpPj4hO1lzQJSGlFKUaBVL22gWR0CSD4O5avA5dX2UKGgGaAloD0MIaJWZ0jofc0CUhpRSlGgVTQgBaBZHQJIPzTz/ZNB1fZQoaAZoCWgPQwinQdE8gMRxQJSGlFKUaBVNKwFoFkdAkhBm/nGKh3V9lChoBmgJaA9DCBk9t9BVJXJAlIaUUpRoFU0ZAWgWR0CSEKaUzKs/dX2UKGgGaAloD0MIJSNnYU+Zb0CUhpRSlGgVTQYBaBZHQJIRNdAxBVx1fZQoaAZoCWgPQwiKVu4FJuByQJSGlFKUaBVNGAFoFkdAkhFDQ3PzF3V9lChoBmgJaA9DCF95kJ5ilHJAlIaUUpRoFU0SAWgWR0CSEWIF/x2CdX2UKGgGaAloD0MI+zxGeSbpcECUhpRSlGgVTQIBaBZHQJIRu0hNdqt1fZQoaAZoCWgPQwjwMVhxKv1tQJSGlFKUaBVL7GgWR0CSEdOB19v1dX2UKGgGaAloD0MIzLVoAdoKcUCUhpRSlGgVS/RoFkdAkhH/Kp1ifHV9lChoBmgJaA9DCEPmyqBa0XBAlIaUUpRoFUvxaBZHQJITzeTFERd1fZQoaAZoCWgPQwgJcHoXb15wQJSGlFKUaBVNAwFoFkdAkhPsBZIQOHV9lChoBmgJaA9DCPPJiuEqJnJAlIaUUpRoFU0rAWgWR0CSFJfqX4TLdX2UKGgGaAloD0MIDTM0nogIcECUhpRSlGgVS9ZoFkdAkhSpRbbDdnV9lChoBmgJaA9DCC1DHOsi03FAlIaUUpRoFU0oAWgWR0CSFLznA6+4dX2UKGgGaAloD0MIK2nFN9QCcUCUhpRSlGgVTRsBaBZHQJIVYqOLiuN1fZQoaAZoCWgPQwi9xcN7zg9zQJSGlFKUaBVL8GgWR0CSFZwSJ0nxdX2UKGgGaAloD0MIbJVgcTiSckCUhpRSlGgVTR0BaBZHQJIWEcHWz4V1fZQoaAZoCWgPQwhMGM3KtopyQJSGlFKUaBVNBgFoFkdAkha/Ot4iYHV9lChoBmgJaA9DCEccsoE0qHBAlIaUUpRoFUvTaBZHQJIW5P1tfol1fZQoaAZoCWgPQwiDoQ4rnAZwQJSGlFKUaBVL72gWR0CSFyCJoCdSdX2UKGgGaAloD0MIbsFSXYCfc0CUhpRSlGgVTR8BaBZHQJIXnMOf/WF1fZQoaAZoCWgPQwjEQUKUb8BxQJSGlFKUaBVNFAFoFkdAkhfZoGpuM3V9lChoBmgJaA9DCONV1jYFgXBAlIaUUpRoFU0QAWgWR0CSGETs6aLGdX2UKGgGaAloD0MIMgOV8S/JcUCUhpRSlGgVTSUBaBZHQJIYToRqXWx1fZQoaAZoCWgPQwh/3enO06FxQJSGlFKUaBVNDgFoFkdAkhh+M6zVt3V9lChoBmgJaA9DCERQNXq1cG5AlIaUUpRoFUv+aBZHQJIaHEWIoE11fZQoaAZoCWgPQwjZ6JyfomhzQJSGlFKUaBVL4GgWR0CSGiWdEsredX2UKGgGaAloD0MI7Uj1nd+/bUCUhpRSlGgVTQsBaBZHQJIaVDKHO8l1fZQoaAZoCWgPQwjhtyHGqyhxQJSGlFKUaBVNEAFoFkdAkhtOS8rZrnV9lChoBmgJaA9DCB0CRwINmHFAlIaUUpRoFUveaBZHQJIbiiqQzUJ1fZQoaAZoCWgPQwgnT1lNV0xuQJSGlFKUaBVNKAFoFkdAkhvfGIbfg3V9lChoBmgJaA9DCI7pCUv8enNAlIaUUpRoFUvUaBZHQJIcJ90A93d1fZQoaAZoCWgPQwjRPesaLQVuQJSGlFKUaBVNEwFoFkdAkhxi5RTCL3V9lChoBmgJaA9DCF/uk6NAeXFAlIaUUpRoFU07AWgWR0CSHS+gUUO/dX2UKGgGaAloD0MIrhBWYwnPb0CUhpRSlGgVTQoBaBZHQJIdZy+6Ae91fZQoaAZoCWgPQwjgY7DiFCpwQJSGlFKUaBVL92gWR0CSHcuxKQJYdX2UKGgGaAloD0MIlNxhExk0c0CUhpRSlGgVS99oFkdAkh3ojB2wFHV9lChoBmgJaA9DCP7tsl83n3JAlIaUUpRoFUviaBZHQJId8plSS/11fZQoaAZoCWgPQwhmZ9E7ladyQJSGlFKUaBVL82gWR0CSHe7mdRR/dX2UKGgGaAloD0MIyy4YXPPIckCUhpRSlGgVTScBaBZHQJIeZVHWjGl1fZQoaAZoCWgPQwiM8szL4c5wQJSGlFKUaBVNLQFoFkdAkh/cbiqABnV9lChoBmgJaA9DCJCeIodILXJAlIaUUpRoFUvyaBZHQJIgBuO0b991fZQoaAZoCWgPQwhWKT3TC8pxQJSGlFKUaBVL+GgWR0CSIDR0U47zdX2UKGgGaAloD0MIhNVYwlpocUCUhpRSlGgVTQQBaBZHQJIgrPkaMrF1fZQoaAZoCWgPQwigwDv5dJZuQJSGlFKUaBVL/2gWR0CSIYxnnMdMdX2UKGgGaAloD0MIObcJ98oQc0CUhpRSlGgVS+poFkdAkiHfSc9W63V9lChoBmgJaA9DCCYbD7ZY+nBAlIaUUpRoFU0GAWgWR0CSIf0Nz8xcdX2UKGgGaAloD0MIZ7gBn59pcECUhpRSlGgVS+poFkdAkiIaNEPUa3V9lChoBmgJaA9DCB0EHa2qYHBAlIaUUpRoFU0SAWgWR0CSIpGEPDpDdX2UKGgGaAloD0MIdsb3xWWTcUCUhpRSlGgVS99oFkdAkiLG5xzaK3V9lChoBmgJaA9DCOLl6VyRGnFAlIaUUpRoFUvraBZHQJIjd+d9Ujt1fZQoaAZoCWgPQwjO4O8Xs7RvQJSGlFKUaBVNCwFoFkdAkiOpcC5mRXV9lChoBmgJaA9DCA7z5QXYl29AlIaUUpRoFUv5aBZHQJIj6nHeaa11fZQoaAZoCWgPQwiNXaJ6K7dxQJSGlFKUaBVL+mgWR0CSI/ScLBsRdX2UKGgGaAloD0MI7l2DvnQvckCUhpRSlGgVS+poFkdAkiQWZmZmZnVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4de50ebd9ce8cf49176f86da7b6e006d368cebbb9bd34351a99e6960d66f27f0
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7ba28a72e650540dabbf9a9abcb2937f59c37fa873fdf1e8d6f1279d99abb7c
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (221 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 273.942993855659, "std_reward": 12.715505769713065, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-08T08:19:55.267468"}