--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-base-16-thesis-demo-ISIC-multi-class results: [] --- # vit-base-16-thesis-demo-ISIC-multi-class This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the ahishamm/isic_enhanced_dec_balanced dataset. It achieves the following results on the evaluation set: - Loss: 0.0906 - Accuracy: 0.9748 - Recall: 0.9748 - F1: 0.9748 - Precision: 0.9748 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.575 | 0.98 | 50 | 0.4132 | 0.8491 | 0.8491 | 0.8491 | 0.8491 | | 0.2771 | 1.96 | 100 | 0.2329 | 0.9182 | 0.9182 | 0.9182 | 0.9182 | | 0.1703 | 2.94 | 150 | 0.1821 | 0.9497 | 0.9497 | 0.9497 | 0.9497 | | 0.1186 | 3.92 | 200 | 0.0906 | 0.9748 | 0.9748 | 0.9748 | 0.9748 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0