|
from transformers import PreTrainedTokenizer |
|
from tokenizers import Tokenizer, models, pre_tokenizers, trainers, decoders |
|
import json |
|
from typing import List, Optional, Union, Dict |
|
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding |
|
from transformers.utils import PaddingStrategy |
|
|
|
class OBITokenizer(PreTrainedTokenizer): |
|
def __init__( |
|
self, |
|
vocab_file, |
|
unk_token="<unk>", |
|
bos_token="<s>", |
|
eos_token="</s>", |
|
pad_token=None, |
|
add_bos_token=True, |
|
add_eos_token=False, |
|
clean_up_tokenization_spaces=False, |
|
auto_map={"AutoTokenizer": ["tokenizeConfig.OBITokenizer"]}, |
|
tokenizer_class="OBITokenizer", |
|
**kwargs, |
|
): |
|
super().__init__( |
|
unk_token=unk_token, |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
pad_token=pad_token, |
|
add_bos_token=add_bos_token, |
|
add_eos_token=add_eos_token, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
**kwargs, |
|
) |
|
|
|
|
|
bpe_model = models.BPE() |
|
self.tokenizer = Tokenizer(bpe_model) |
|
|
|
|
|
self.tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel() |
|
self.tokenizer.decoder = decoders.ByteLevel() |
|
|
|
|
|
self.pad_token = "[PAD]" |
|
|
|
|
|
self.cls_token = "[CLS]" |
|
self.sep_token = "[SEP]" |
|
self.unk_token = "[UNK]" |
|
self.mask_token = "[MASK]" |
|
self.bos_token = "[CLS]" |
|
self.eos_token = "[SEP]" |
|
self.pad_token = "[PAD]" |
|
|
|
|
|
self.tokenizer.get_vocab().add_special_tokens([self.cls_token, self.sep_token, self.unk_token, self.mask_token]) |
|
|
|
def _pad( |
|
self, |
|
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], |
|
max_length: Optional[int] = None, |
|
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
) -> dict: |
|
|
|
|
|
return super()._pad(encoded_inputs, max_length, padding_strategy, pad_to_multiple_of, return_attention_mask) |
|
|
|
def train(self, files, save_path): |
|
|
|
trainer = trainers.BpeTrainer(special_tokens=["[PAD]", "[CLS]", "[SEP]", "[MASK]", "[UNK]"]) |
|
self.tokenizer.train(trainer=trainer, files=files) |
|
|
|
self.tokenizer.save(save_path) |
|
|
|
def save_config(self, config_file): |
|
|
|
config_dict = { |
|
"tokenizer_type": "custom", |
|
"vocab_size": self.tokenizer.get_vocab_size(), |
|
"tokenizer_class": "OBITokenizer", |
|
"auto_map": { |
|
"AutoTokenizer": ["tokenizeConfig.OBITokenizer", "null"] |
|
}, |
|
"bos_token": "[CLS]", |
|
"eos_token": "[SEP]", |
|
"unk_token": "[UNK]", |
|
"pad_token": "[PAD]", |
|
"mask_token": "[MASK]" |
|
|
|
} |
|
with open(config_file, "w") as f: |
|
json.dump(config_dict, f) |
|
|
|
def encode(self, text): |
|
|
|
encoding = self.tokenizer.encode(text) |
|
return encoding.ids |
|
|
|
def decode(self, ids): |
|
|
|
return self.tokenizer.decode(ids) |
|
|