import requests | |
from PIL import Image | |
from transformers import Blip2Processor, Blip2ForConditionalGeneration | |
from typing import Dict, List, Any | |
import torch | |
class EndpointHandler(): | |
def __init__(self, path=""): | |
self.processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") | |
self.model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b") | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
self.model.to(self.device) | |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: | |
image = data.pop("inputs", data) | |
processed = self.processor(images=image, return_tensors="pt").to(self.device) | |
out = self.model.generate(**processed) | |
return self.processor.decode(out[0], skip_special_tokens=True) |