--- language: - en license: apache-2.0 library_name: transformers datasets: - argilla/distilabel-capybara-dpo-7k-binarized --- # Mistral-v0.2-orpo ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/at8Hw9EadVmHsO8UQTrBV.jpeg) *Mistral-v0.2-orpo* is a fine-tuned version of the new **[Mistral-7B-v0.2](https://huggingface.co/alpindale/Mistral-7B-v0.2-hf)** on **[argilla/distilabel-capybara-dpo-7k-binarized](https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-7k-binarized)** preference dataset using *Odds Ratio Preference Optimization (ORPO)*. The model has been trained for 1 epoch. It took almost 8 hours on A100 GPU. ## 💥 LazyORPO This model has been trained using **[LazyORPO](https://colab.research.google.com/drive/19ci5XIcJDxDVPY2xC1ftZ5z1kc2ah_rx?usp=sharing)**. A colab notebook that makes the training process much easier. Based on [ORPO paper](https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fhuggingface.co%2Fpapers%2F2403.07691) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/2h3guPdFocisjFClFr0Kh.png) #### 🎭 What is ORPO? Odds Ratio Preference Optimization (ORPO) proposes a new method to train LLMs by combining SFT and Alignment into a new objective (loss function), achieving state of the art results. Some highlights of this techniques are: * 🧠 Reference model-free → memory friendly * 🔄 Replaces SFT+DPO/PPO with 1 single method (ORPO) * 🏆 ORPO Outperforms SFT, SFT+DPO on PHI-2, Llama 2, and Mistral * 📊 Mistral ORPO achieves 12.20% on AlpacaEval2.0, 66.19% on IFEval, and 7.32 on MT-Bench out Hugging Face Zephyr Beta #### 💻 Usage ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer torch.set_default_device("cuda") model = AutoModelForCausalLM.from_pretrained("abideen/Mistral-v0.2-orpo", torch_dtype="auto", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("abideen/Mistral-v0.2-orpo", trust_remote_code=True) inputs = tokenizer(''' """ Write a detailed analogy between mathematics and a lighthouse. """''', return_tensors="pt", return_attention_mask=False) outputs = model.generate(**inputs, max_length=200) text = tokenizer.batch_decode(outputs)[0] print(text) ``` ## 🏆 Evaluation ### COMING SOON