File size: 3,163 Bytes
9c4a64f 02795ef 9c4a64f 02795ef 9c4a64f ffd326d b163394 9c4a64f 8303e64 9c4a64f ffd326d 9c4a64f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
- lewtun/dog_food
metrics:
- accuracy
model-index:
- name: convnext-tiny-finetuned-dogfood
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: lewtun/dog_food
type: lewtun/dog_food
args: lewtun--dog_food
metrics:
- name: Accuracy
type: accuracy
value: 0.7253333333333334
- task:
type: image-classification
name: Image Classification
dataset:
name: lewtun/dog_food
type: lewtun/dog_food
config: lewtun--dog_food
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.6866666666666666
verified: true
- name: Precision Macro
type: precision
value: 0.7181484576740136
verified: true
- name: Precision Micro
type: precision
value: 0.6866666666666666
verified: true
- name: Precision Weighted
type: precision
value: 0.7235392474854474
verified: true
- name: Recall Macro
type: recall
value: 0.7006250320552644
verified: true
- name: Recall Micro
type: recall
value: 0.6866666666666666
verified: true
- name: Recall Weighted
type: recall
value: 0.6866666666666666
verified: true
- name: F1 Macro
type: f1
value: 0.6690027379410202
verified: true
- name: F1 Micro
type: f1
value: 0.6866666666666666
verified: true
- name: F1 Weighted
type: f1
value: 0.6647526870157503
verified: true
- name: loss
type: loss
value: 0.9549381732940674
verified: true
- name: matthews_correlation
type: matthews_correlation
value: 0.5737269361889515
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# convnext-tiny-finetuned-dogfood
This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the lewtun/dog_food dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9277
- Accuracy: 0.7253
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0681 | 1.0 | 16 | 0.9125 | 0.7422 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|