abaddon182 commited on
Commit
4646a30
·
verified ·
1 Parent(s): 28a828d

End of training

Browse files
Files changed (2) hide show
  1. README.md +163 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: 4e7f724b-8ea6-4b8b-938d-e5f02c5f1f85
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4
22
+ bf16: true
23
+ chat_template: llama3
24
+ dataset_prepared_path: null
25
+ datasets:
26
+ - data_files:
27
+ - 3a5633aeea7fbdc6_train_data.json
28
+ ds_type: json
29
+ format: custom
30
+ path: /workspace/input_data/3a5633aeea7fbdc6_train_data.json
31
+ type:
32
+ field_instruction: original_question
33
+ field_output: response
34
+ format: '{instruction}'
35
+ no_input_format: '{instruction}'
36
+ system_format: '{system}'
37
+ system_prompt: ''
38
+ debug: null
39
+ deepspeed: null
40
+ device_map: auto
41
+ do_eval: true
42
+ early_stopping_patience: 5
43
+ eval_batch_size: 4
44
+ eval_max_new_tokens: 128
45
+ eval_steps: 50
46
+ eval_table_size: null
47
+ evals_per_epoch: null
48
+ flash_attention: true
49
+ fp16: false
50
+ fsdp: null
51
+ fsdp_config: null
52
+ gradient_accumulation_steps: 4
53
+ gradient_checkpointing: true
54
+ group_by_length: true
55
+ hub_model_id: abaddon182/4e7f724b-8ea6-4b8b-938d-e5f02c5f1f85
56
+ hub_repo: null
57
+ hub_strategy: checkpoint
58
+ hub_token: null
59
+ learning_rate: 0.0001
60
+ load_in_4bit: false
61
+ load_in_8bit: false
62
+ local_rank: null
63
+ logging_steps: 1
64
+ lora_alpha: 128
65
+ lora_dropout: 0.05
66
+ lora_fan_in_fan_out: null
67
+ lora_model_dir: null
68
+ lora_r: 64
69
+ lora_target_linear: true
70
+ lr_scheduler: cosine
71
+ max_grad_norm: 1.0
72
+ max_memory:
73
+ 0: 75GB
74
+ max_steps: 200
75
+ micro_batch_size: 8
76
+ mlflow_experiment_name: /tmp/3a5633aeea7fbdc6_train_data.json
77
+ model_type: AutoModelForCausalLM
78
+ num_epochs: 1
79
+ optim_args:
80
+ adam_beta1: 0.9
81
+ adam_beta2: 0.95
82
+ adam_epsilon: 1e-5
83
+ optimizer: adamw_bnb_8bit
84
+ output_dir: miner_id_24
85
+ pad_to_sequence_len: true
86
+ resume_from_checkpoint: null
87
+ s2_attention: null
88
+ sample_packing: false
89
+ save_steps: 50
90
+ saves_per_epoch: null
91
+ sequence_len: 1024
92
+ strict: false
93
+ tf32: true
94
+ tokenizer_type: AutoTokenizer
95
+ train_on_inputs: false
96
+ trust_remote_code: true
97
+ val_set_size: 0.05
98
+ wandb_entity: null
99
+ wandb_mode: online
100
+ wandb_name: 7ccde7ac-5b70-43bf-8171-be1c7873e223
101
+ wandb_project: Gradients-On-Demand
102
+ wandb_run: your_name
103
+ wandb_runid: 7ccde7ac-5b70-43bf-8171-be1c7873e223
104
+ warmup_steps: 10
105
+ weight_decay: 0.0
106
+ xformers_attention: null
107
+
108
+ ```
109
+
110
+ </details><br>
111
+
112
+ # 4e7f724b-8ea6-4b8b-938d-e5f02c5f1f85
113
+
114
+ This model is a fine-tuned version of [MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4](https://huggingface.co/MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4) on the None dataset.
115
+ It achieves the following results on the evaluation set:
116
+ - Loss: 0.2356
117
+
118
+ ## Model description
119
+
120
+ More information needed
121
+
122
+ ## Intended uses & limitations
123
+
124
+ More information needed
125
+
126
+ ## Training and evaluation data
127
+
128
+ More information needed
129
+
130
+ ## Training procedure
131
+
132
+ ### Training hyperparameters
133
+
134
+ The following hyperparameters were used during training:
135
+ - learning_rate: 0.0001
136
+ - train_batch_size: 8
137
+ - eval_batch_size: 4
138
+ - seed: 42
139
+ - gradient_accumulation_steps: 4
140
+ - total_train_batch_size: 32
141
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
142
+ - lr_scheduler_type: cosine
143
+ - lr_scheduler_warmup_steps: 10
144
+ - training_steps: 200
145
+
146
+ ### Training results
147
+
148
+ | Training Loss | Epoch | Step | Validation Loss |
149
+ |:-------------:|:------:|:----:|:---------------:|
150
+ | 0.4214 | 0.0001 | 1 | 0.7483 |
151
+ | 0.3647 | 0.0043 | 50 | 0.3194 |
152
+ | 0.3311 | 0.0085 | 100 | 0.2895 |
153
+ | 0.3932 | 0.0128 | 150 | 0.2475 |
154
+ | 0.3512 | 0.0171 | 200 | 0.2356 |
155
+
156
+
157
+ ### Framework versions
158
+
159
+ - PEFT 0.13.2
160
+ - Transformers 4.46.0
161
+ - Pytorch 2.5.0+cu124
162
+ - Datasets 3.0.1
163
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be7eeac4f288a831174a223dc40faf6b573b8c9aa760a00bcde8efb0d1b2f230
3
+ size 1195555730