--- language: en tags: - distilbert - emotion-classification - text-classification datasets: - dair-ai/emotion metrics: - accuracy --- # Emotion Classification Model ## Model Description This model fine-tunes DistilBERT for multi-class emotion classification on the `dair-ai/emotion` dataset. The model is designed to classify text into one of six emotions: sadness, joy, love, anger, fear, or surprise. It can be used in applications requiring emotional analysis in English text. ## Training and Evaluation - **Training Dataset**: `dair-ai/emotion` (16,000 examples) - **Training Time**: 8 minutes and 51 seconds - **Training Hyperparameters**: - Learning Rate: `3e-5` - Batch Size: `32` - Epochs: `4` - Weight Decay: `0.01` ### Training results | Training Loss | Epoch | Step | Validation Loss | Val. Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------: | | 0.5164 | 1.0 | 500 | 0.1887 | 0.9275 | | 0.1464 | 2.0 | 1000 | 0.1487 | 0.9345 | | 0.0994 | 3.0 | 1500 | 0.1389 | 0.94 | | 0.0701 | 4.0 | 2000 | 0.1479 | 0.94 | - **Overall Training Loss**: 0.2081 - **Test Accuracy**: 100% accuracy on the 10 examples tested. Confidence scores ranged from 90% to 100%. ## Usage ```python from transformers import pipeline classifier = pipeline("text-classification", model="Zoopa/emotion-classification-model") text = "I am so happy today!" result = classifier(text) print(result) ``` ## Limitations - The model only supports English. - The training dataset may contain biases, affecting model predictions on test data. - Edge Cases like mixed emotions might reduce accuracy.