File size: 34,880 Bytes
4ababee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c52089
4ababee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
---
base_model: roberta-large
datasets:
- YurtsAI/named_entity_recognition_document_context
language:
- en
library_name: span-marker
metrics:
- precision
- recall
- f1
pipeline_tag: token-classification
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
widget:
- text: '* * phone call transcript: university research paper discussion * * * * date:
    * * 09041942 * * time: * * 3:45 pm * * participants: * * dr. emily carter (ec)
    - principal investigator dr. john smith (js) - co-investigator--- * * ec: * *
    hey john, got a minute to discuss the latest draft of our paper on crispr-cas9?'
- text: monday is a chill day  beach time at barceloneta and maybe some shopping
    at la rambla.
- text: don't forget to fast for at least 8 hours before the procedure  that means
    no food or drink after midnight!
- text: whether it's buying a house in 5 years, saving for a killer vacation next
    summer, or just building an emergency fund, write it down.
- text: '- * * full integration: * * all recipes from the rbso must be incorporated
    into event menus by november 1, 2023.'
model-index:
- name: SpanMarker with roberta-large on YurtsAI/named_entity_recognition_document_context
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    dataset:
      name: Unknown
      type: YurtsAI/named_entity_recognition_document_context
      split: eval
    metrics:
    - type: f1
      value: 0.8349078585045542
      name: F1
    - type: precision
      value: 0.8308950630296387
      name: Precision
    - type: recall
      value: 0.8389596015495296
      name: Recall
---

# SpanMarker with roberta-large on YurtsAI/named_entity_recognition_document_context

This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [YurtsAI/named_entity_recognition_document_context](https://huggingface.co/datasets/YurtsAI/named_entity_recognition_document_context) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [roberta-large](https://huggingface.co/roberta-large) as the underlying encoder.

## Model Details

### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [roberta-large](https://huggingface.co/roberta-large)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 11 words
- **Training Dataset:** [YurtsAI/named_entity_recognition_document_context](https://huggingface.co/datasets/YurtsAI/named_entity_recognition_document_context)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)

### Model Labels
| Label                                             | Examples                                                                                                                      |
|:--------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------|
| DATETIME__absolute                                | "14:00 hrs", "15th november 2023 at 10:00 am", "october 15th , 2023"                                                          |
| DATETIME__authored                                | "25 february 26", "sunday , 21 august , 1938", "1961-05-08"                                                                   |
| DATETIME__range                                   | "29th of oct. , 2023", "september 2021 to august 2023", "jan 2022 - dec 2022"                                                 |
| DATETIME__relative                                | "eod friday", "dec 15 , 11:59 pm", "10/15"                                                                                    |
| GENERAL__art-broadcastprogram                     | "stranger things", "live q & a", "product design concept sketchbook for kids"                                                 |
| GENERAL__art-film                                 | "the crown", "kill bill", "stranger things"                                                                                   |
| GENERAL__art-music                                |                                                                                                                               |
| GENERAL__art-other                                | "statue of liberty", "broadway show", "wicked"                                                                                |
| GENERAL__art-painting                             | "draw your dream house", "design a superhero costume"                                                                         |
| GENERAL__art-writtenart                           | "optimization of quantum algorithms for cryptographic applications", "introduction to algorithms", "intro to cs '' by j. doe" |
| GENERAL__building-airport                         | "ory", "charles de gaulle", "cdg"                                                                                             |
| GENERAL__building-hospital                        | "green valley clinic", "department of oncology", "st. mary 's hospital"                                                       |
| GENERAL__building-hotel                           | "le jules verne", "hôtel ritz", "the beverly hills hotel"                                                                     |
| GENERAL__building-library                         | "ancient library", "the grand library", "jefferson library"                                                                   |
| GENERAL__building-other                           | "louvre museum", "engineering building", "eiffel tower"                                                                       |
| GENERAL__building-restaurant                      | "l'ambroisie", "bella 's bistro", "in-n-out burger"                                                                           |
| GENERAL__building-sportsfacility                  | "fenway"                                                                                                                      |
| GENERAL__building-theater                         | "gershwin theatre", "opera house", "broadway"                                                                                 |
| GENERAL__event-attack/battle/war/militaryconflict | "1863 battle of ridgefield", "battle of gettysburg", "war of 1812"                                                            |
| GENERAL__event-other                              | "annual science fair", "summer splash '23", "research methodology workshop"                                                   |
| GENERAL__event-sportsevent                        | "international olympiad in informatics", "ftx", "ioi"                                                                         |
| GENERAL__location-GPE                             | "fr", "paris ,", "italy"                                                                                                      |
| GENERAL__location-bodiesofwater                   | "river x", "river blue", "seine river"                                                                                        |
| GENERAL__location-island                          | "maldives", "similan islands", "ellis island"                                                                                 |
| GENERAL__location-mountain                        | "andes mountains", "swiss alps", "pine ridge"                                                                                 |
| GENERAL__location-other                           | "times square", "old market", "venice beach"                                                                                  |
| GENERAL__location-park                            | "central park", "ueno park", "universal studios"                                                                              |
| GENERAL__location-road/railway/highway/transit    | "i-95", "underground railroad", "hollywood walk of fame"                                                                      |
| GENERAL__organization-company                     | "green earth organics", "xyz corporation", "north atlantic fisheries"                                                         |
| GENERAL__organization-education                   | "graduate school", "xyz", "xyz university"                                                                                    |
| GENERAL__organization-government/governmentagency | "department of economic development", "moe", "ministry of environment"                                                        |
| GENERAL__organization-media/newspaper             | "pinterest", "yelp", "insta"                                                                                                  |
| GENERAL__organization-other                       | "historical society", "grants office", "admissions committee"                                                                 |
| GENERAL__organization-religion                    | "buddhist", "zen buddhist", "shinto"                                                                                          |
| GENERAL__organization-showorganization            | "phare", "the soundbytes"                                                                                                     |
| GENERAL__organization-sportsteam                  | "varsity soccer team", "red sox"                                                                                              |
| GENERAL__other-astronomything                     |                                                                                                                               |
| GENERAL__other-award                              | "team excellence award", "innovation award", "employee of the month"                                                          |
| GENERAL__other-biologything                       | "fodmap", "troponin i", "cmp"                                                                                                 |
| GENERAL__other-chemicalthing                      | "co2", "pm2.5", "nitrate"                                                                                                     |
| GENERAL__other-currency                           | "usd", "inr", "$ $ $"                                                                                                         |
| GENERAL__other-disease                            | "mi", "irritable bowel syndrome", "myocardial infarction"                                                                     |
| GENERAL__other-educationaldegree                  | "executive mba", "phd in quantum computing ,", "phd"                                                                          |
| GENERAL__other-god                                | "inari", "athena", "inari taisha"                                                                                             |
| GENERAL__other-language                           | "french", "english", "spanish"                                                                                                |
| GENERAL__other-law                                | "cas", "clean air standards", "environmental protection act ( epa ) 2023"                                                     |
| GENERAL__other-livingthing                        | "eastern box turtle", "monarch butterfly", "western burrowing owl"                                                            |
| GENERAL__other-medical                            | "asa", "dapt", "clopidogrel"                                                                                                  |
| GENERAL__person-artist/author                     | "carol", "picasso", "warhol"                                                                                                  |
| GENERAL__person-other                             | "jamie", "sarah", "mark"                                                                                                      |
| GENERAL__person-politician                        | "jane doe", "vespasian", "constantine i"                                                                                      |
| GENERAL__person-scholar                           | "dr. smith", "dr. lee", "dr. johnson"                                                                                         |
| GENERAL__person-soldier                           | "davis", "lt. sarah johnson", "col. r. johnson"                                                                               |
| GENERAL__product-airplane                         | "hmmwvs", "uh-60s", "m1a2s"                                                                                                   |
| GENERAL__product-car                              | "hmmwvs", "high mobility multipurpose wheeled vehicles", "mine-resistant ambush protected"                                    |
| GENERAL__product-food                             | "pumpkin spice", "quinoa salad", "golden jubilee feast"                                                                       |
| GENERAL__product-game                             | "stardew valley", "valorant", "call of duty : warzone"                                                                        |
| GENERAL__product-other                            | "engagement metrics", "xj-200", "smart goal templates"                                                                        |
| GENERAL__product-ship                             | "liberty island ferry", "hms victory", "thames river cruise"                                                                  |
| GENERAL__product-software                         | "instagram", "svm", "r"                                                                                                       |
| GENERAL__product-train                            | "n'ex", "shinkansen", "tgv"                                                                                                   |
| GENERAL__product-weapon                           | "m1 abrams", "m4 carbine", "m4 carbines"                                                                                      |

## Evaluation

### Metrics
| Label                                             | Precision | Recall | F1     |
|:--------------------------------------------------|:----------|:-------|:-------|
| **all**                                           | 0.8309    | 0.8390 | 0.8349 |
| DATETIME__absolute                                | 0.8744    | 0.8577 | 0.8660 |
| DATETIME__authored                                | 0.9956    | 0.9935 | 0.9946 |
| DATETIME__range                                   | 0.8451    | 0.9262 | 0.8838 |
| DATETIME__relative                                | 0.8266    | 0.7498 | 0.7863 |
| GENERAL__art-broadcastprogram                     | 0.6538    | 0.6296 | 0.6415 |
| GENERAL__art-film                                 | 0.8       | 1.0    | 0.8889 |
| GENERAL__art-music                                | 0.0       | 0.0    | 0.0    |
| GENERAL__art-other                                | 0.625     | 0.7143 | 0.6667 |
| GENERAL__art-painting                             | 0.0       | 0.0    | 0.0    |
| GENERAL__art-writtenart                           | 0.7373    | 0.8047 | 0.7695 |
| GENERAL__building-airport                         | 0.8668    | 0.9689 | 0.9150 |
| GENERAL__building-hospital                        | 0.8378    | 0.9323 | 0.8826 |
| GENERAL__building-hotel                           | 0.7577    | 0.8603 | 0.8057 |
| GENERAL__building-library                         | 0.0       | 0.0    | 0.0    |
| GENERAL__building-other                           | 0.7597    | 0.8409 | 0.7982 |
| GENERAL__building-restaurant                      | 0.7953    | 0.8695 | 0.8307 |
| GENERAL__building-sportsfacility                  | 0.0       | 0.0    | 0.0    |
| GENERAL__building-theater                         | 0.6       | 0.6667 | 0.6316 |
| GENERAL__event-attack/battle/war/militaryconflict | 0.8438    | 0.9310 | 0.8852 |
| GENERAL__event-other                              | 0.6019    | 0.6382 | 0.6195 |
| GENERAL__event-sportsevent                        | 0.0       | 0.0    | 0.0    |
| GENERAL__location-GPE                             | 0.7232    | 0.7888 | 0.7546 |
| GENERAL__location-bodiesofwater                   | 0.6724    | 0.975  | 0.7959 |
| GENERAL__location-island                          | 0.7455    | 0.9111 | 0.8200 |
| GENERAL__location-mountain                        | 0.7436    | 0.8529 | 0.7945 |
| GENERAL__location-other                           | 0.7186    | 0.7793 | 0.7477 |
| GENERAL__location-park                            | 0.7899    | 0.8704 | 0.8282 |
| GENERAL__location-road/railway/highway/transit    | 0.6325    | 0.7095 | 0.6688 |
| GENERAL__organization-company                     | 0.8665    | 0.8605 | 0.8635 |
| GENERAL__organization-education                   | 0.8256    | 0.8608 | 0.8428 |
| GENERAL__organization-government/governmentagency | 0.8344    | 0.8318 | 0.8331 |
| GENERAL__organization-media/newspaper             | 0.6667    | 0.4    | 0.5    |
| GENERAL__organization-other                       | 0.7790    | 0.8105 | 0.7944 |
| GENERAL__organization-religion                    | 0.6667    | 0.8    | 0.7273 |
| GENERAL__organization-showorganization            | 0.0       | 0.0    | 0.0    |
| GENERAL__organization-sportsteam                  | 0.0       | 0.0    | 0.0    |
| GENERAL__other-astronomything                     | 0.0       | 0.0    | 0.0    |
| GENERAL__other-award                              | 0.8216    | 0.8859 | 0.8525 |
| GENERAL__other-biologything                       | 0.7246    | 0.8961 | 0.8013 |
| GENERAL__other-chemicalthing                      | 0.7687    | 0.8047 | 0.7863 |
| GENERAL__other-currency                           | 0.6304    | 0.6744 | 0.6517 |
| GENERAL__other-disease                            | 0.8594    | 0.9048 | 0.8815 |
| GENERAL__other-educationaldegree                  | 0.7119    | 0.75   | 0.7304 |
| GENERAL__other-god                                | 0.8       | 0.5714 | 0.6667 |
| GENERAL__other-language                           | 0.6818    | 1.0    | 0.8108 |
| GENERAL__other-law                                | 0.7978    | 0.8462 | 0.8212 |
| GENERAL__other-livingthing                        | 0.7385    | 0.9320 | 0.8240 |
| GENERAL__other-medical                            | 0.7778    | 0.8343 | 0.8050 |
| GENERAL__person-artist/author                     | 0.625     | 0.3846 | 0.4762 |
| GENERAL__person-other                             | 0.8839    | 0.8979 | 0.8908 |
| GENERAL__person-politician                        | 0.7534    | 0.7432 | 0.7483 |
| GENERAL__person-scholar                           | 0.8640    | 0.8769 | 0.8704 |
| GENERAL__person-soldier                           | 0.7674    | 0.7586 | 0.7630 |
| GENERAL__product-airplane                         | 0.6774    | 0.6364 | 0.6562 |
| GENERAL__product-car                              | 0.9286    | 0.7879 | 0.8525 |
| GENERAL__product-food                             | 0.7798    | 0.7859 | 0.7828 |
| GENERAL__product-game                             | 0.75      | 0.75   | 0.75   |
| GENERAL__product-other                            | 0.7175    | 0.7537 | 0.7351 |
| GENERAL__product-ship                             | 0.0       | 0.0    | 0.0    |
| GENERAL__product-software                         | 0.8093    | 0.8403 | 0.8245 |
| GENERAL__product-train                            | 0.75      | 0.375  | 0.5    |
| GENERAL__product-weapon                           | 0.7794    | 0.8833 | 0.8281 |

## Uses

### Direct Use for Inference

```python
from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("YurtsAI/named_entity_recognition_document_context")
# Run inference
entities = model.predict("monday is a chill day – beach time at barceloneta and maybe some shopping at la rambla.")
```

### Downstream Use
You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

```python
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("YurtsAI/ner-document-context")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("YurtsAI/named_entity_recognition_document_context-finetuned")
```
</details>

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set          | Min | Median  | Max |
|:----------------------|:----|:--------|:----|
| Sentence length       | 1   | 14.6796 | 691 |
| Entities per sentence | 0   | 0.4235  | 35  |

### Training Hyperparameters
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training Results
| Epoch  | Step  | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:-----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.0299 | 500   | 0.0254          | 0.5244               | 0.0116            | 0.0228        | 0.9292              |
| 0.0597 | 1000  | 0.0144          | 0.5380               | 0.3492            | 0.4235        | 0.9444              |
| 0.0896 | 1500  | 0.0099          | 0.7134               | 0.4410            | 0.5450        | 0.9534              |
| 0.1194 | 2000  | 0.0088          | 0.6461               | 0.6571            | 0.6516        | 0.9596              |
| 0.1493 | 2500  | 0.0074          | 0.7177               | 0.6363            | 0.6745        | 0.9628              |
| 0.1791 | 3000  | 0.0075          | 0.6612               | 0.7342            | 0.6958        | 0.9637              |
| 0.2090 | 3500  | 0.0073          | 0.6686               | 0.7286            | 0.6973        | 0.9634              |
| 0.2388 | 4000  | 0.0061          | 0.7552               | 0.7044            | 0.7289        | 0.9693              |
| 0.2687 | 4500  | 0.0062          | 0.7385               | 0.7150            | 0.7266        | 0.9682              |
| 0.2986 | 5000  | 0.0070          | 0.6667               | 0.7792            | 0.7186        | 0.9654              |
| 0.3284 | 5500  | 0.0063          | 0.6984               | 0.7774            | 0.7358        | 0.9689              |
| 0.3583 | 6000  | 0.0055          | 0.7941               | 0.7023            | 0.7454        | 0.9706              |
| 0.3881 | 6500  | 0.0055          | 0.7540               | 0.7640            | 0.7589        | 0.9722              |
| 0.4180 | 7000  | 0.0053          | 0.7700               | 0.7614            | 0.7657        | 0.9732              |
| 0.4478 | 7500  | 0.0053          | 0.7791               | 0.7698            | 0.7744        | 0.9742              |
| 0.4777 | 8000  | 0.0054          | 0.7396               | 0.8062            | 0.7715        | 0.9729              |
| 0.5075 | 8500  | 0.0051          | 0.7653               | 0.7944            | 0.7796        | 0.9741              |
| 0.5374 | 9000  | 0.0050          | 0.7773               | 0.7844            | 0.7808        | 0.9747              |
| 0.5672 | 9500  | 0.0049          | 0.7954               | 0.7711            | 0.7830        | 0.9757              |
| 0.5971 | 10000 | 0.0049          | 0.7844               | 0.7876            | 0.7860        | 0.9754              |
| 0.6270 | 10500 | 0.0047          | 0.7898               | 0.7940            | 0.7919        | 0.9761              |
| 0.6568 | 11000 | 0.0047          | 0.7852               | 0.7929            | 0.7890        | 0.9761              |
| 0.6867 | 11500 | 0.0047          | 0.8001               | 0.7908            | 0.7954        | 0.9770              |
| 0.7165 | 12000 | 0.0050          | 0.7643               | 0.8145            | 0.7886        | 0.9755              |
| 0.7464 | 12500 | 0.0047          | 0.7991               | 0.7892            | 0.7941        | 0.9764              |
| 0.7762 | 13000 | 0.0046          | 0.7948               | 0.8084            | 0.8015        | 0.9774              |
| 0.8061 | 13500 | 0.0046          | 0.7841               | 0.8154            | 0.7994        | 0.9771              |
| 0.8359 | 14000 | 0.0043          | 0.8283               | 0.7776            | 0.8021        | 0.9783              |
| 0.8658 | 14500 | 0.0044          | 0.8054               | 0.7993            | 0.8023        | 0.9773              |
| 0.8957 | 15000 | 0.0047          | 0.7704               | 0.8152            | 0.7922        | 0.9758              |
| 0.9255 | 15500 | 0.0043          | 0.8018               | 0.8149            | 0.8083        | 0.9782              |
| 0.9554 | 16000 | 0.0043          | 0.8255               | 0.7938            | 0.8093        | 0.9789              |
| 0.9852 | 16500 | 0.0042          | 0.8201               | 0.8008            | 0.8104        | 0.9787              |
| 1.0151 | 17000 | 0.0044          | 0.7947               | 0.8175            | 0.8059        | 0.9784              |
| 1.0449 | 17500 | 0.0044          | 0.7942               | 0.8195            | 0.8066        | 0.9777              |
| 1.0748 | 18000 | 0.0043          | 0.8124               | 0.8110            | 0.8117        | 0.9789              |
| 1.1046 | 18500 | 0.0043          | 0.7987               | 0.8157            | 0.8071        | 0.9788              |
| 1.1345 | 19000 | 0.0043          | 0.8037               | 0.8171            | 0.8103        | 0.9789              |
| 1.1644 | 19500 | 0.0042          | 0.8178               | 0.8076            | 0.8127        | 0.9796              |
| 1.1942 | 20000 | 0.0044          | 0.7803               | 0.8389            | 0.8085        | 0.9780              |
| 1.2241 | 20500 | 0.0043          | 0.8040               | 0.8210            | 0.8124        | 0.9790              |
| 1.2539 | 21000 | 0.0043          | 0.8038               | 0.8245            | 0.8141        | 0.9788              |
| 1.2838 | 21500 | 0.0041          | 0.8318               | 0.7973            | 0.8142        | 0.9794              |
| 1.3136 | 22000 | 0.0041          | 0.8106               | 0.8211            | 0.8158        | 0.9796              |
| 1.3435 | 22500 | 0.0041          | 0.8288               | 0.8046            | 0.8165        | 0.9796              |
| 1.3733 | 23000 | 0.0041          | 0.8218               | 0.8170            | 0.8194        | 0.9799              |
| 1.4032 | 23500 | 0.0042          | 0.8164               | 0.8171            | 0.8168        | 0.9799              |
| 1.4330 | 24000 | 0.0041          | 0.8105               | 0.8248            | 0.8176        | 0.9793              |
| 1.4629 | 24500 | 0.0042          | 0.8073               | 0.8196            | 0.8134        | 0.9791              |
| 1.4928 | 25000 | 0.0040          | 0.8211               | 0.8162            | 0.8187        | 0.9797              |
| 1.5226 | 25500 | 0.0040          | 0.8195               | 0.8225            | 0.8210        | 0.9800              |
| 1.5525 | 26000 | 0.0040          | 0.8372               | 0.8018            | 0.8191        | 0.9799              |
| 1.5823 | 26500 | 0.0040          | 0.8263               | 0.8161            | 0.8212        | 0.9802              |
| 1.6122 | 27000 | 0.0039          | 0.8275               | 0.8141            | 0.8208        | 0.9802              |
| 1.6420 | 27500 | 0.0040          | 0.8264               | 0.8198            | 0.8231        | 0.9804              |
| 1.6719 | 28000 | 0.0040          | 0.8218               | 0.8195            | 0.8206        | 0.9799              |
| 1.7017 | 28500 | 0.0039          | 0.8286               | 0.8195            | 0.8240        | 0.9803              |
| 1.7316 | 29000 | 0.0041          | 0.8004               | 0.8357            | 0.8177        | 0.9788              |
| 1.7615 | 29500 | 0.0040          | 0.8138               | 0.8304            | 0.8220        | 0.9801              |
| 1.7913 | 30000 | 0.0040          | 0.8160               | 0.8309            | 0.8234        | 0.9804              |
| 1.8212 | 30500 | 0.0039          | 0.8204               | 0.8262            | 0.8233        | 0.9802              |
| 1.8510 | 31000 | 0.0038          | 0.8292               | 0.8228            | 0.8260        | 0.9810              |
| 1.8809 | 31500 | 0.0039          | 0.8247               | 0.8246            | 0.8246        | 0.9806              |
| 1.9107 | 32000 | 0.0038          | 0.8267               | 0.8258            | 0.8262        | 0.9810              |
| 1.9406 | 32500 | 0.0039          | 0.8102               | 0.8398            | 0.8248        | 0.9805              |
| 1.9704 | 33000 | 0.0039          | 0.8321               | 0.8185            | 0.8253        | 0.9809              |
| 2.0003 | 33500 | 0.0038          | 0.8325               | 0.8261            | 0.8293        | 0.9814              |
| 2.0302 | 34000 | 0.0038          | 0.8352               | 0.8228            | 0.8289        | 0.9813              |
| 2.0600 | 34500 | 0.0041          | 0.8144               | 0.8369            | 0.8255        | 0.9809              |
| 2.0899 | 35000 | 0.0039          | 0.8274               | 0.8281            | 0.8277        | 0.9813              |
| 2.1197 | 35500 | 0.0039          | 0.8198               | 0.8353            | 0.8275        | 0.9812              |
| 2.1496 | 36000 | 0.0039          | 0.8211               | 0.8358            | 0.8284        | 0.9811              |
| 2.1794 | 36500 | 0.0039          | 0.8242               | 0.8300            | 0.8271        | 0.9809              |
| 2.2093 | 37000 | 0.0039          | 0.8194               | 0.8317            | 0.8255        | 0.9808              |
| 2.2391 | 37500 | 0.0039          | 0.8258               | 0.8344            | 0.8301        | 0.9814              |
| 2.2690 | 38000 | 0.0039          | 0.8292               | 0.8302            | 0.8297        | 0.9816              |
| 2.2989 | 38500 | 0.0039          | 0.8281               | 0.8315            | 0.8298        | 0.9813              |
| 2.3287 | 39000 | 0.0039          | 0.8174               | 0.8386            | 0.8279        | 0.9808              |
| 2.3586 | 39500 | 0.0039          | 0.8208               | 0.8364            | 0.8285        | 0.9810              |
| 2.3884 | 40000 | 0.0039          | 0.8230               | 0.8379            | 0.8304        | 0.9815              |
| 2.4183 | 40500 | 0.0038          | 0.8355               | 0.8273            | 0.8314        | 0.9816              |
| 2.4481 | 41000 | 0.0038          | 0.8290               | 0.8347            | 0.8319        | 0.9816              |
| 2.4780 | 41500 | 0.0038          | 0.8233               | 0.8403            | 0.8317        | 0.9815              |
| 2.5078 | 42000 | 0.0039          | 0.8186               | 0.8417            | 0.8300        | 0.9814              |
| 2.5377 | 42500 | 0.0038          | 0.8321               | 0.8343            | 0.8332        | 0.9818              |
| 2.5675 | 43000 | 0.0038          | 0.8239               | 0.8396            | 0.8317        | 0.9816              |
| 2.5974 | 43500 | 0.0038          | 0.8267               | 0.8378            | 0.8322        | 0.9816              |
| 2.6273 | 44000 | 0.0038          | 0.8325               | 0.8343            | 0.8334        | 0.9818              |
| 2.6571 | 44500 | 0.0038          | 0.8254               | 0.8399            | 0.8326        | 0.9817              |
| 2.6870 | 45000 | 0.0038          | 0.8339               | 0.8338            | 0.8339        | 0.9820              |
| 2.7168 | 45500 | 0.0038          | 0.8301               | 0.8381            | 0.8341        | 0.9819              |
| 2.7467 | 46000 | 0.0038          | 0.8309               | 0.8371            | 0.8340        | 0.9818              |
| 2.7765 | 46500 | 0.0038          | 0.8296               | 0.8377            | 0.8337        | 0.9817              |
| 2.8064 | 47000 | 0.0037          | 0.8337               | 0.8349            | 0.8343        | 0.9820              |
| 2.8362 | 47500 | 0.0037          | 0.8303               | 0.8387            | 0.8345        | 0.9820              |
| 2.8661 | 48000 | 0.0037          | 0.8289               | 0.8401            | 0.8344        | 0.9819              |
| 2.8960 | 48500 | 0.0037          | 0.8299               | 0.8400            | 0.8349        | 0.9820              |
| 2.9258 | 49000 | 0.0037          | 0.8289               | 0.8401            | 0.8344        | 0.9819              |
| 2.9557 | 49500 | 0.0037          | 0.8322               | 0.8380            | 0.8351        | 0.9821              |
| 2.9855 | 50000 | 0.0037          | 0.8312               | 0.8384            | 0.8348        | 0.9820              |

### Framework Versions
- Python: 3.11.7
- SpanMarker: 1.5.0
- Transformers: 4.42.1
- PyTorch: 2.1.1+cu121
- Datasets: 2.14.5
- Tokenizers: 0.19.1

## Citation

### BibTeX
```
@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->