File size: 1,295 Bytes
fb542a7 c3ae9fb fb542a7 c3ae9fb db23c20 c3ae9fb db23c20 c3ae9fb fb542a7 db23c20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
library_name: peft
license: bigscience-bloom-rail-1.0
datasets:
- timdettmers/openassistant-guanaco
language:
- en
pipeline_tag: text-generation
---
## Anacondia
Anacondia-70m is a Pythia-70m-deduped model fine-tuned with QLoRA on [timdettmers/openassistant-guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco)
## Usage
Anacondia is not intended for any real usage and was trained for educational purposes. Please consider more serious models for inference.
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.4.0
## Inference
```python
#import necessary modules
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "UncleanCode/anacondia-70m"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
input= tokenizer("This is a sentence ",return_tensors="pt")
output= model.generate(**input)
tokenizer.decode(output[0])
``` |