File size: 35,723 Bytes
f21658b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1658
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-l
widget:
- source_sentence: How are representatives of Member States designated in relation
to their contact responsibilities towards the Board and stakeholders?
sentences:
- "4.\nMember States shall ensure that their representatives on the Board:\n(a)\
\ have the relevant competences and powers in their Member State so as to contribute\
\ actively to the achievement of the \nBoard’s tasks referred to in Article 66;\n\
(b) are designated as a single contact point vis-à-vis the Board and, where appropriate,\
\ taking into account Member States’ \nneeds, as a single contact point for stakeholders;\n\
OJ L, 12.7.2024\nEN\nELI: http://data.europa.eu/eli/reg/2024/1689/oj\n95/144"
- "43/144\n(54)\nDirective (EU) 2019/1937 of the European Parliament and of the\
\ Council of 23 October 2019 on the protection of persons who \nreport breaches\
\ of Union law (OJ L 305, 26.11.2019, p. 17).\n(55)\nOJ L 123, 12.5.2016, p. 1.\n\
(56)\nRegulation (EU) No 182/2011 of the European Parliament and of the Council\
\ of 16 February 2011 laying down the rules and \ngeneral principles concerning\
\ mechanisms for control by Member States of the Commission’s exercise of implementing\
\ powers (OJ \nL 55, 28.2.2011, p. 13)."
- "Article 65\nEstablishment and structure of the European Artificial Intelligence\
\ Board\n1.\nA European Artificial Intelligence Board (the ‘Board’) is hereby\
\ established.\n2.\nThe Board shall be composed of one representative per Member\
\ State. The European Data Protection Supervisor shall \nparticipate as observer.\
\ The AI Office shall also attend the Board’s meetings, without taking part in\
\ the votes. Other national \nand Union authorities, bodies or experts may be\
\ invited to the meetings by the Board on a case by case basis, where the \nissues\
\ discussed are of relevance for them.\n3.\nEach representative shall be designated\
\ by their Member State for a period of three years, renewable once.\n4."
- source_sentence: What criteria should be used to define an 'AI system' in this Regulation?
sentences:
- "12.\nNotified bodies shall participate in coordination activities as referred\
\ to in Article 38. They shall also take part \ndirectly, or be represented in,\
\ European standardisation organisations, or ensure that they are aware and up\
\ to date in \nrespect of relevant standards.\nArticle 32\nPresumption of conformity\
\ with requirements relating to notified bodies\nWhere a conformity assessment\
\ body demonstrates its conformity with the criteria laid down in the relevant\
\ harmonised \nstandards or parts thereof, the references of which have been published\
\ in the Official Journal of the European Union, it shall \nbe presumed to comply\
\ with the requirements set out in Article 31 in so far as the applicable harmonised\
\ standards cover \nthose requirements.\nEN"
- "1.\nProviders of high-risk AI systems shall, upon a reasoned request by a competent\
\ authority, provide that authority all \nthe information and documentation necessary\
\ to demonstrate the conformity of the high-risk AI system with the \nrequirements\
\ set out in Section 2, in a language which can be easily understood by the authority\
\ in one of the official \nlanguages of the institutions of the Union as indicated\
\ by the Member State concerned.\n2.\nUpon a reasoned request by a competent authority,\
\ providers shall also give the requesting competent authority, as \napplicable,\
\ access to the automatically generated logs of the high-risk AI system referred\
\ to in Article 12(1), to the extent \nsuch logs are under their control.\n3."
- "(12)\nThe notion of ‘AI system’ in this Regulation should be clearly defined\
\ and should be closely aligned with the work of \ninternational organisations\
\ working on AI to ensure legal certainty, facilitate international convergence\
\ and wide \nacceptance, while providing the flexibility to accommodate the rapid\
\ technological developments in this field. \nMoreover, the definition should\
\ be based on key characteristics of AI systems that distinguish it from simpler\
\ \ntraditional software systems or programming approaches and should not cover\
\ systems that are based on the rules \ndefined solely by natural persons to automatically\
\ execute operations. A key characteristic of AI systems is their"
- source_sentence: What conditions must be met for the use of a 'real-time' remote
biometric identification system in publicly accessible spaces?
sentences:
- "the relevant law enforcement authority has completed a fundamental rights impact\
\ assessment and, unless provided \notherwise in this Regulation, has registered\
\ the system in the database as set out in this Regulation. The reference \ndatabase\
\ of persons should be appropriate for each use case in each of the situations\
\ mentioned above.\n(35)\nEach use of a ‘real-time’ remote biometric identification\
\ system in publicly accessible spaces for the purpose of law \nenforcement should\
\ be subject to an express and specific authorisation by a judicial authority\
\ or by an independent \nadministrative authority of a Member State whose decision\
\ is binding. Such authorisation should, in principle, be"
- "(i)\ncontribute to effective cooperation with the competent authorities of third\
\ countries and with international \norganisations;\n(j)\nassist national competent\
\ authorities and the Commission in developing the organisational and technical\
\ expertise \nrequired for the implementation of this Regulation, including by\
\ contributing to the assessment of training needs for \nstaff of Member States\
\ involved in implementing this Regulation;\n(k) assist the AI Office in supporting\
\ national competent authorities in the establishment and development of AI \n\
regulatory sandboxes, and facilitate cooperation and information-sharing among\
\ AI regulatory sandboxes;\n(l)\ncontribute to, and provide relevant advice on,\
\ the development of guidance documents;"
- "referred to in Article 35 of Regulation (EU) 2016/679 and in Article 39 of Regulation\
\ (EU) 2018/1725, may arise \nduring the sandbox experimentation, as well as response\
\ mechanisms to promptly mitigate those risks and, where \nnecessary, stop the\
\ processing;\n(d) any personal data to be processed in the context of the sandbox\
\ are in a functionally separate, isolated and protected \ndata processing environment\
\ under the control of the prospective provider and only authorised persons have\
\ access to \nthose data;\n(e) providers can further share the originally collected\
\ data only in accordance with Union data protection law; any \npersonal data\
\ created in the sandbox cannot be shared outside the sandbox;"
- source_sentence: What responsibilities does the AI Office have in monitoring general-purpose
AI models according to the Regulation?
sentences:
- 'of the tasks of the scientific panel under Article 68(2).
OJ L, 12.7.2024
EN
ELI: http://data.europa.eu/eli/reg/2024/1689/oj
111/144'
- "Commission. The AI Office should be able to carry out all necessary actions to\
\ monitor the effective implementation \nof this Regulation as regards general-purpose\
\ AI models. It should be able to investigate possible infringements of \nthe\
\ rules on providers of general-purpose AI models both on its own initiative,\
\ following the results of its \nmonitoring activities, or upon request from market\
\ surveillance authorities in line with the conditions set out in this \nRegulation.\
\ To support effective monitoring of the AI Office, it should provide for the\
\ possibility that downstream \nproviders lodge complaints about possible infringements\
\ of the rules on providers of general-purpose AI models and \nsystems.\n(163)"
- "representative and importers accordingly.\n2.\nWhere the high-risk AI system\
\ presents a risk within the meaning of Article 79(1) and the provider becomes\
\ aware of \nthat risk, it shall immediately investigate the causes, in collaboration\
\ with the reporting deployer, where applicable, and \ninform the market surveillance\
\ authorities competent for the high-risk AI system concerned and, where applicable,\
\ the \nnotified body that issued a certificate for that high-risk AI system in\
\ accordance with Article 44, in particular, of the nature \nof the non-compliance\
\ and of any relevant corrective action taken.\nArticle 21\nCooperation with competent\
\ authorities\n1."
- source_sentence: What is the role of the Commission in assessing a harmonised standard
proposed by a European standardisation organisation?
sentences:
- "biometric identification systems in publicly accessible spaces for purposes other\
\ than law enforcement, including by \ncompetent authorities, should not be covered\
\ by the specific framework regarding such use for the purpose of law \nenforcement\
\ set by this Regulation. Such use for purposes other than law enforcement should\
\ therefore not be \nsubject to the requirement of an authorisation under this\
\ Regulation and the applicable detailed rules of national law \nthat may give\
\ effect to that authorisation.\n(39)\nAny processing of biometric data and other\
\ personal data involved in the use of AI systems for biometric \nidentification,\
\ other than in connection to the use of real-time remote biometric identification\
\ systems in publicly"
- Member States relating to the making available on the market of measuring instruments
(OJ L 96, 29.3.2014, p. 149).
- "to in paragraph 1, or parts of those specifications, shall be presumed to be\
\ in conformity with the requirements set out in \nSection 2 of this Chapter or,\
\ as applicable, to comply with the obligations referred to in Sections 2 and\
\ 3 of Chapter V, to \nthe extent those common specifications cover those requirements\
\ or those obligations.\n4.\nWhere a harmonised standard is adopted by a European\
\ standardisation organisation and proposed to the \nCommission for the publication\
\ of its reference in the Official Journal of the European Union, the Commission\
\ shall assess the \nharmonised standard in accordance with Regulation (EU) No\
\ 1025/2012. When reference to a harmonised standard is"
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.81
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.93
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.95
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.81
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.30999999999999994
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18999999999999997
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.81
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.93
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.95
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9068999830894289
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8770119047619047
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8770119047619047
name: Cosine Map@100
---
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("KatGaw/eu-legal-ft-2")
# Run inference
sentences = [
'What is the role of the Commission in assessing a harmonised standard proposed by a European standardisation organisation?',
'to in paragraph 1, or parts of those specifications, shall be presumed to be in conformity with the requirements set out in \nSection 2 of this Chapter or, as applicable, to comply with the obligations referred to in Sections 2 and 3 of Chapter V, to \nthe extent those common specifications cover those requirements or those obligations.\n4.\nWhere a harmonised standard is adopted by a European standardisation organisation and proposed to the \nCommission for the publication of its reference in the Official Journal of the European Union, the Commission shall assess the \nharmonised standard in accordance with Regulation (EU) No 1025/2012. When reference to a harmonised standard is',
'Member States relating to the making available on the market of measuring instruments (OJ L 96, 29.3.2014, p. 149).',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.81 |
| cosine_accuracy@3 | 0.93 |
| cosine_accuracy@5 | 0.95 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.81 |
| cosine_precision@3 | 0.31 |
| cosine_precision@5 | 0.19 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.81 |
| cosine_recall@3 | 0.93 |
| cosine_recall@5 | 0.95 |
| cosine_recall@10 | 1.0 |
| **cosine_ndcg@10** | **0.9069** |
| cosine_mrr@10 | 0.877 |
| cosine_map@100 | 0.877 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 1,658 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 2 tokens</li><li>mean: 21.21 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 126.72 tokens</li><li>max: 217 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:-----------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What documentation must the provider prepare according to Article 11 and Annex IV?</code> | <code>(b) the provider has drawn up the technical documentation in accordance with Article 11 and Annex IV;<br>(c) the system bears the required CE marking and is accompanied by the EU declaration of conformity referred to in <br>Article 47 and instructions for use;<br>(d) the provider has appointed an authorised representative in accordance with Article 22(1).<br>OJ L, 12.7.2024<br>EN<br>ELI: http://data.europa.eu/eli/reg/2024/1689/oj<br>65/144</code> |
| <code>What must accompany the system alongside the CE marking as per the context provided?</code> | <code>(b) the provider has drawn up the technical documentation in accordance with Article 11 and Annex IV;<br>(c) the system bears the required CE marking and is accompanied by the EU declaration of conformity referred to in <br>Article 47 and instructions for use;<br>(d) the provider has appointed an authorised representative in accordance with Article 22(1).<br>OJ L, 12.7.2024<br>EN<br>ELI: http://data.europa.eu/eli/reg/2024/1689/oj<br>65/144</code> |
| <code>What actions will the Commission take if there are doubts about a notified body's competence?</code> | <code>1.<br>The Commission shall, where necessary, investigate all cases where there are reasons to doubt the competence of <br>a notified body or the continued fulfilment by a notified body of the requirements laid down in Article 31 and of its <br>applicable responsibilities.<br>2.<br>The notifying authority shall provide the Commission, on request, with all relevant information relating to the <br>notification or the maintenance of the competence of the notified body concerned.<br>3.<br>The Commission shall ensure that all sensitive information obtained in the course of its investigations pursuant to this <br>Article is treated confidentially in accordance with Article 78.<br>4.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `num_train_epochs`: 30
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 30
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | cosine_ndcg@10 |
|:-------:|:----:|:-------------:|:--------------:|
| 0.3012 | 50 | - | 0.8523 |
| 0.6024 | 100 | - | 0.8744 |
| 0.9036 | 150 | - | 0.8993 |
| 1.0 | 166 | - | 0.9049 |
| 1.2048 | 200 | - | 0.8871 |
| 1.5060 | 250 | - | 0.8737 |
| 1.8072 | 300 | - | 0.8864 |
| 2.0 | 332 | - | 0.8850 |
| 2.1084 | 350 | - | 0.8884 |
| 2.4096 | 400 | - | 0.8776 |
| 2.7108 | 450 | - | 0.8779 |
| 3.0 | 498 | - | 0.8864 |
| 3.0120 | 500 | 1.1103 | 0.8866 |
| 3.3133 | 550 | - | 0.8956 |
| 3.6145 | 600 | - | 0.9069 |
| 3.9157 | 650 | - | 0.9079 |
| 4.0 | 664 | - | 0.9055 |
| 4.2169 | 700 | - | 0.9000 |
| 4.5181 | 750 | - | 0.8907 |
| 4.8193 | 800 | - | 0.9033 |
| 5.0 | 830 | - | 0.9016 |
| 5.1205 | 850 | - | 0.8950 |
| 5.4217 | 900 | - | 0.9047 |
| 5.7229 | 950 | - | 0.9134 |
| 6.0 | 996 | - | 0.9048 |
| 6.0241 | 1000 | 0.1809 | 0.9092 |
| 6.3253 | 1050 | - | 0.8953 |
| 6.6265 | 1100 | - | 0.8866 |
| 6.9277 | 1150 | - | 0.9021 |
| 7.0 | 1162 | - | 0.9021 |
| 7.2289 | 1200 | - | 0.9003 |
| 7.5301 | 1250 | - | 0.8908 |
| 7.8313 | 1300 | - | 0.8979 |
| 8.0 | 1328 | - | 0.9024 |
| 8.1325 | 1350 | - | 0.9008 |
| 8.4337 | 1400 | - | 0.9061 |
| 8.7349 | 1450 | - | 0.9125 |
| 9.0 | 1494 | - | 0.9152 |
| 9.0361 | 1500 | 0.0889 | 0.9152 |
| 9.3373 | 1550 | - | 0.9097 |
| 9.6386 | 1600 | - | 0.8966 |
| 9.9398 | 1650 | - | 0.8991 |
| 10.0 | 1660 | - | 0.9014 |
| 10.2410 | 1700 | - | 0.9027 |
| 10.5422 | 1750 | - | 0.9052 |
| 10.8434 | 1800 | - | 0.8917 |
| 11.0 | 1826 | - | 0.8936 |
| 11.1446 | 1850 | - | 0.8941 |
| 11.4458 | 1900 | - | 0.9058 |
| 11.7470 | 1950 | - | 0.8983 |
| 12.0 | 1992 | - | 0.9083 |
| 12.0482 | 2000 | 0.0658 | 0.9044 |
| 12.3494 | 2050 | - | 0.9063 |
| 12.6506 | 2100 | - | 0.9047 |
| 12.9518 | 2150 | - | 0.9115 |
| 13.0 | 2158 | - | 0.9152 |
| 13.2530 | 2200 | - | 0.9111 |
| 13.5542 | 2250 | - | 0.9000 |
| 13.8554 | 2300 | - | 0.9049 |
| 14.0 | 2324 | - | 0.8991 |
| 14.1566 | 2350 | - | 0.8891 |
| 14.4578 | 2400 | - | 0.9017 |
| 14.7590 | 2450 | - | 0.9050 |
| 15.0 | 2490 | - | 0.9012 |
| 15.0602 | 2500 | 0.0517 | 0.9014 |
| 15.3614 | 2550 | - | 0.8998 |
| 15.6627 | 2600 | - | 0.8947 |
| 15.9639 | 2650 | - | 0.9002 |
| 16.0 | 2656 | - | 0.8965 |
| 16.2651 | 2700 | - | 0.9085 |
| 16.5663 | 2750 | - | 0.8940 |
| 16.8675 | 2800 | - | 0.8932 |
| 17.0 | 2822 | - | 0.9066 |
| 17.1687 | 2850 | - | 0.8960 |
| 17.4699 | 2900 | - | 0.8908 |
| 17.7711 | 2950 | - | 0.8991 |
| 18.0 | 2988 | - | 0.8983 |
| 18.0723 | 3000 | 0.0569 | 0.9005 |
| 18.3735 | 3050 | - | 0.8945 |
| 18.6747 | 3100 | - | 0.9003 |
| 18.9759 | 3150 | - | 0.8994 |
| 19.0 | 3154 | - | 0.9024 |
| 19.2771 | 3200 | - | 0.9032 |
| 19.5783 | 3250 | - | 0.8980 |
| 19.8795 | 3300 | - | 0.8989 |
| 20.0 | 3320 | - | 0.9020 |
| 20.1807 | 3350 | - | 0.9023 |
| 20.4819 | 3400 | - | 0.9033 |
| 20.7831 | 3450 | - | 0.8907 |
| 21.0 | 3486 | - | 0.9063 |
| 21.0843 | 3500 | 0.0318 | 0.9026 |
| 21.3855 | 3550 | - | 0.8989 |
| 21.6867 | 3600 | - | 0.8965 |
| 21.9880 | 3650 | - | 0.8976 |
| 22.0 | 3652 | - | 0.8976 |
| 22.2892 | 3700 | - | 0.8972 |
| 22.5904 | 3750 | - | 0.9030 |
| 22.8916 | 3800 | - | 0.8955 |
| 23.0 | 3818 | - | 0.9011 |
| 23.1928 | 3850 | - | 0.8968 |
| 23.4940 | 3900 | - | 0.8970 |
| 23.7952 | 3950 | - | 0.8978 |
| 24.0 | 3984 | - | 0.8964 |
| 24.0964 | 4000 | 0.047 | 0.8976 |
| 24.3976 | 4050 | - | 0.9005 |
| 24.6988 | 4100 | - | 0.9021 |
| 25.0 | 4150 | - | 0.8991 |
| 25.3012 | 4200 | - | 0.9021 |
| 25.6024 | 4250 | - | 0.8944 |
| 25.9036 | 4300 | - | 0.8984 |
| 26.0 | 4316 | - | 0.8995 |
| 26.2048 | 4350 | - | 0.8963 |
| 26.5060 | 4400 | - | 0.8973 |
| 26.8072 | 4450 | - | 0.9037 |
| 27.0 | 4482 | - | 0.9040 |
| 27.1084 | 4500 | 0.0325 | 0.8974 |
| 27.4096 | 4550 | - | 0.8966 |
| 27.7108 | 4600 | - | 0.8995 |
| 28.0 | 4648 | - | 0.9012 |
| 28.0120 | 4650 | - | 0.9012 |
| 28.3133 | 4700 | - | 0.9068 |
| 28.6145 | 4750 | - | 0.9069 |
| 28.9157 | 4800 | - | 0.9072 |
| 29.0 | 4814 | - | 0.9072 |
| 29.2169 | 4850 | - | 0.9069 |
| 29.5181 | 4900 | - | 0.9069 |
| 29.8193 | 4950 | - | 0.9069 |
| 30.0 | 4980 | - | 0.9069 |
</details>
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.1
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |