import logging from typing import Any, Dict import torch.cuda from peft import PeftConfig, PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig LOGGER = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) device = "cuda" if torch.cuda.is_available() else "cpu" class EndpointHandler(): def __init__(self, path=""): config = PeftConfig.from_pretrained(path) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, load_in_4bit=True, trust_remote_code=True, device_map="auto" ) self.tokenizer = AutoTokenizer.from_pretrained( config.base_model_name_or_path, trust_remote_code=True) self.tokenizer.pad_token = self.tokenizer.eos_token # Load the Lora model self.model = PeftModel.from_pretrained(model, path, torch_dtype=model.dtype) self.model.eos_token_id = self.tokenizer.eos_token_id def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: """ Args: data (Dict): The payload with the text prompt and generation parameters. """ LOGGER.info(f"Received data: {data}") # Get inputs prompt = data.pop("inputs", None) parameters = data.pop("parameters", None) if prompt is None: raise ValueError("Missing prompt.") # Preprocess input_ids = self.tokenizer( prompt, return_tensors="pt").input_ids.to(device) # Forward LOGGER.info(f"Start generation.") if parameters is not None: output = self.model.generate(input_ids=input_ids, **parameters) else: output = self.model.generate(input_ids=input_ids) # Postprocess prediction = self.tokenizer.decode(output[0]) LOGGER.info(f"Generated text: {prediction}") return {"generated_text": prediction}