--- license: apache-2.0 tags: - generated_from_trainer model-index: name: hausa-4-ha-wa2vec-data-aug-xls-r-300m --- # hausa-4-ha-wa2vec-data-aug-xls-r-300m This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3071 - Wer: 0.3304 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 60 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 14.9837 | 0.46 | 30 | 10.7164 | 1.0 | | 7.0027 | 0.92 | 60 | 3.9322 | 1.0 | | 3.668 | 1.38 | 90 | 3.0115 | 1.0 | | 2.9374 | 1.84 | 120 | 2.8464 | 1.0 | | 2.8864 | 2.31 | 150 | 2.8234 | 1.0 | | 2.8143 | 2.76 | 180 | 2.8158 | 1.0 | | 2.8412 | 3.23 | 210 | 2.7971 | 1.0 | | 2.7953 | 3.69 | 240 | 2.7910 | 1.0 | | 2.835 | 4.15 | 270 | 2.7845 | 1.0 | | 2.7802 | 4.61 | 300 | 2.7814 | 1.0 | | 2.8292 | 5.08 | 330 | 2.7621 | 1.0 | | 2.7618 | 5.53 | 360 | 2.7534 | 1.0 | | 2.753 | 5.99 | 390 | 2.7468 | 1.0 | | 2.7898 | 6.46 | 420 | 2.7431 | 1.0 | | 2.7279 | 6.92 | 450 | 2.7243 | 1.0 | | 2.7701 | 7.38 | 480 | 2.6845 | 1.0 | | 2.6309 | 7.84 | 510 | 2.4668 | 1.0 | | 2.3744 | 8.31 | 540 | 1.9042 | 1.0 | | 1.6864 | 8.76 | 570 | 1.1582 | 0.9979 | | 1.2278 | 9.23 | 600 | 0.8350 | 0.7765 | | 0.987 | 9.69 | 630 | 0.7210 | 0.7456 | | 0.8785 | 10.15 | 660 | 0.5951 | 0.6531 | | 0.7311 | 10.61 | 690 | 0.5486 | 0.6141 | | 0.7005 | 11.08 | 720 | 0.4986 | 0.5617 | | 0.6442 | 11.53 | 750 | 0.4720 | 0.5658 | | 0.5662 | 11.99 | 780 | 0.4476 | 0.5195 | | 0.5385 | 12.46 | 810 | 0.4283 | 0.4938 | | 0.5376 | 12.92 | 840 | 0.4029 | 0.4723 | | 0.48 | 13.38 | 870 | 0.4047 | 0.4599 | | 0.4786 | 13.84 | 900 | 0.3855 | 0.4378 | | 0.4734 | 14.31 | 930 | 0.3843 | 0.4594 | | 0.4572 | 14.76 | 960 | 0.3777 | 0.4188 | | 0.406 | 15.23 | 990 | 0.3564 | 0.4060 | | 0.4264 | 15.69 | 1020 | 0.3419 | 0.3983 | | 0.3785 | 16.15 | 1050 | 0.3583 | 0.4013 | | 0.3686 | 16.61 | 1080 | 0.3445 | 0.3844 | | 0.3797 | 17.08 | 1110 | 0.3318 | 0.3839 | | 0.3492 | 17.53 | 1140 | 0.3350 | 0.3808 | | 0.3472 | 17.99 | 1170 | 0.3305 | 0.3772 | | 0.3442 | 18.46 | 1200 | 0.3280 | 0.3684 | | 0.3283 | 18.92 | 1230 | 0.3414 | 0.3762 | | 0.3378 | 19.38 | 1260 | 0.3224 | 0.3607 | | 0.3296 | 19.84 | 1290 | 0.3127 | 0.3669 | | 0.3206 | 20.31 | 1320 | 0.3183 | 0.3546 | | 0.3157 | 20.76 | 1350 | 0.3223 | 0.3402 | | 0.3165 | 21.23 | 1380 | 0.3203 | 0.3371 | | 0.3062 | 21.69 | 1410 | 0.3198 | 0.3499 | | 0.2961 | 22.15 | 1440 | 0.3221 | 0.3438 | | 0.2895 | 22.61 | 1470 | 0.3238 | 0.3469 | | 0.2919 | 23.08 | 1500 | 0.3123 | 0.3397 | | 0.2719 | 23.53 | 1530 | 0.3172 | 0.3412 | | 0.2646 | 23.99 | 1560 | 0.3128 | 0.3345 | | 0.2857 | 24.46 | 1590 | 0.3113 | 0.3366 | | 0.2704 | 24.92 | 1620 | 0.3126 | 0.3433 | | 0.2868 | 25.38 | 1650 | 0.3126 | 0.3402 | | 0.2571 | 25.84 | 1680 | 0.3080 | 0.3397 | | 0.2682 | 26.31 | 1710 | 0.3076 | 0.3371 | | 0.2881 | 26.76 | 1740 | 0.3051 | 0.3330 | | 0.2847 | 27.23 | 1770 | 0.3025 | 0.3381 | | 0.2586 | 27.69 | 1800 | 0.3032 | 0.3350 | | 0.2494 | 28.15 | 1830 | 0.3092 | 0.3345 | | 0.2521 | 28.61 | 1860 | 0.3087 | 0.3340 | | 0.2605 | 29.08 | 1890 | 0.3077 | 0.3320 | | 0.2479 | 29.53 | 1920 | 0.3070 | 0.3304 | | 0.2398 | 29.99 | 1950 | 0.3071 | 0.3304 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3