Create handler.py
Browse files- handler.py +88 -0
handler.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import segmentation_models_pytorch as smp
|
3 |
+
from torchvision import transforms
|
4 |
+
from PIL import Image
|
5 |
+
import io
|
6 |
+
import json
|
7 |
+
import base64
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
# Define the number of output classes (update if needed)
|
11 |
+
NUM_CLASSES = 4
|
12 |
+
|
13 |
+
# Define preprocessing transforms (should match what was used during training)
|
14 |
+
preprocess = transforms.Compose([
|
15 |
+
transforms.Resize((256, 256)),
|
16 |
+
transforms.ToTensor(),
|
17 |
+
transforms.Normalize(mean=(0.485, 0.456, 0.406), # ImageNet means
|
18 |
+
std=(0.229, 0.224, 0.225))
|
19 |
+
])
|
20 |
+
|
21 |
+
# Define class-color mapping for segmentation mask visualization
|
22 |
+
COLOR_MAPPING = {
|
23 |
+
0: [0, 0, 0], # Background
|
24 |
+
1: [255, 0, 124], # Oil
|
25 |
+
2: [255, 204, 51], # Others
|
26 |
+
3: [51, 221, 255] # Water
|
27 |
+
}
|
28 |
+
|
29 |
+
def colorize_mask(mask):
|
30 |
+
"""Convert a 2D segmentation mask into an RGB image."""
|
31 |
+
h, w = mask.shape
|
32 |
+
color_mask = np.zeros((h, w, 3), dtype=np.uint8)
|
33 |
+
for cls, color in COLOR_MAPPING.items():
|
34 |
+
color_mask[mask == cls] = color
|
35 |
+
return color_mask
|
36 |
+
|
37 |
+
class OilSpillSegmentationHandler:
|
38 |
+
def __init__(self):
|
39 |
+
"""Load the model and set it to evaluation mode."""
|
40 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
41 |
+
self.model = smp.Unet(
|
42 |
+
encoder_name="resnet34", # Ensure this matches your training
|
43 |
+
encoder_weights=None, # Weights are loaded from state_dict
|
44 |
+
in_channels=3,
|
45 |
+
classes=NUM_CLASSES
|
46 |
+
)
|
47 |
+
self.model.load_state_dict(torch.load("model.pth", map_location=self.device))
|
48 |
+
self.model.to(self.device)
|
49 |
+
self.model.eval()
|
50 |
+
|
51 |
+
def preprocess(self, image_bytes):
|
52 |
+
"""Preprocess input image (convert to tensor)."""
|
53 |
+
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
54 |
+
image_tensor = preprocess(image).unsqueeze(0).to(self.device)
|
55 |
+
return image_tensor, image
|
56 |
+
|
57 |
+
def inference(self, image_tensor):
|
58 |
+
"""Run inference and return the segmentation mask."""
|
59 |
+
with torch.no_grad():
|
60 |
+
output = self.model(image_tensor)
|
61 |
+
pred_mask = torch.argmax(output, dim=1).squeeze(0).cpu().numpy().astype(np.uint8)
|
62 |
+
return pred_mask
|
63 |
+
|
64 |
+
def postprocess(self, pred_mask):
|
65 |
+
"""Convert segmentation mask to colorized image."""
|
66 |
+
colorized_mask = colorize_mask(pred_mask)
|
67 |
+
return Image.fromarray(colorized_mask)
|
68 |
+
|
69 |
+
def handle_request(self, request_body):
|
70 |
+
"""Handle API request: preprocess, infer, postprocess."""
|
71 |
+
try:
|
72 |
+
data = json.loads(request_body)
|
73 |
+
image_bytes = base64.b64decode(data["image"])
|
74 |
+
image_tensor, original_image = self.preprocess(image_bytes)
|
75 |
+
pred_mask = self.inference(image_tensor)
|
76 |
+
output_image = self.postprocess(pred_mask)
|
77 |
+
|
78 |
+
# Convert output image to base64
|
79 |
+
buffered = io.BytesIO()
|
80 |
+
output_image.save(buffered, format="PNG")
|
81 |
+
output_b64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
82 |
+
|
83 |
+
return json.dumps({"output_image": output_b64})
|
84 |
+
except Exception as e:
|
85 |
+
return json.dumps({"error": str(e)})
|
86 |
+
|
87 |
+
# Instantiate the handler
|
88 |
+
handler = OilSpillSegmentationHandler()
|