{ "ctfidf_model": { "bm25_weighting": false, "reduce_frequent_words": false }, "vectorizer_model": { "params": { "analyzer": "word", "binary": false, "decode_error": "strict", "encoding": "utf-8", "input": "content", "lowercase": true, "max_df": 1.0, "max_features": null, "min_df": 2, "ngram_range": [ 1, 5 ], "stop_words": "english", "strip_accents": null, "token_pattern": "(?u)\\b\\w\\w+\\b", "vocabulary": null }, "vocab": { "making": 19496, "bert": 3494, "neural": 22719, "machine": 19339, "translation": 33817, "gpt2": 12866, "demonstrate": 7432, "effectiveness": 8937, "using": 34720, "pretrained": 25625, "language": 16032, "models": 20917, "lms": 19066, "various": 35072, "natural": 22502, "processing": 26093, "tasks": 32225, "lm": 19054, "finetuning": 11366, "suffers": 31557, "catastrophic": 4212, "forgetting": 11730, "applied": 2185, "resourcerich": 28427, "work": 35662, "introduce": 15496, "training": 33437, "framework": 11823, "key": 15752, "integrate": 15319, "nmt": 22977, "proposed": 26587, "consists": 5761, "techniques": 32625, "distillation": 8334, "ensure": 9600, "model": 20330, "retain": 28716, "previous": 25864, "knowledge": 15808, "dynamic": 8756, "switching": 31798, "avoid": 3036, "strategy": 31113, "adjust": 1389, "learning": 17529, "according": 845, "scheduled": 29227, "policy": 25079, "experiments": 10415, "gains": 12069, "bleu": 3764, "score": 29264, "wmt14": 35630, "englishgerman": 9497, "pair": 23969, "surpasses": 31737, "stateoftheart": 30919, "pretraining": 25783, "aided": 1627, "14": 134, "large": 16926, "task": 32069, "40": 373, "millions": 20167, "base": 3113, "significantly": 30029, "improves": 14368, "transformer": 33701, "big": 3698, "code": 4720, "downloaded": 8670, "release": 27898, "strategies": 31100, "social": 30416, "impacts": 14146, "range": 27185, "beneficial": 3478, "uses": 34707, "assist": 2632, "prose": 26652, "poetry": 25061, "programming": 26198, "analyze": 1987, "dataset": 6932, "biases": 3671, "flexibility": 11615, "generative": 12644, "capabilities": 3999, "raise": 27162, "misuse": 20244, "concerns": 5540, "report": 28111, "discusses": 8297, "openais": 23437, "related": 27853, "allows": 1809, "time": 33107, "releases": 27929, "conduct": 5581, "risk": 28892, "benefit": 3479, "analyses": 1907, "sizes": 30292, "increased": 14608, "ongoing": 23355, "research": 28285, "provides": 26746, "recommendations": 27652, "better": 3586, "coordination": 6138, "responsible": 28519, "publication": 26845, "ai": 1593, "masked": 19609, "scoring": 29285, "mlms": 20302, "require": 28209, "nlp": 22918, "instead": 15119, "evaluate": 9816, "box": 3847, "scores": 29277, "computed": 5499, "masking": 19619, "tokens": 33215, "outperform": 23761, "autoregressive": 2935, "like": 17843, "variety": 35056, "rescoring": 28283, "asr": 2582, "hypotheses": 13962, "roberta": 28914, "reduces": 27731, "endtoend": 9432, "librispeech": 17813, "wer": 35534, "30": 305, "relative": 27876, "adds": 1376, "17": 169, "baselines": 3261, "lowresource": 19310, "pairs": 23974, "domain": 8550, "adaptation": 1173, "attribute": 2756, "success": 31507, "unsupervised": 34453, "expression": 10642, "linguistic": 18003, "acceptability": 810, "lefttoright": 17693, "bias": 3641, "greatly": 13271, "improving": 14402, "10": 24, "points": 25069, "effects": 8977, "licensing": 17817, "blimp": 3771, "finetune": 11280, "enabling": 9315, "computation": 5442, "single": 30195, "inference": 14758, "pass": 24371, "associated": 2642, "enable": 9283, "plugandplay": 25055, "use": 34512, "growing": 13310, "number": 23138, "crosslingual": 6412, "translations": 33858, "multiple": 22376, "languages": 16861, "library": 17812, "commongen": 5022, "constrained": 5779, "text": 32812, "generation": 12448, "challenge": 4307, "commonsense": 5034, "reasoning": 27367, "recently": 27585, "largescale": 17342, "demonstrated": 7514, "impressive": 14228, "performance": 24511, "benchmark": 3349, "datasets": 7058, "building": 3918, "machines": 19373, "compose": 5319, "plausible": 25014, "sentences": 29549, "remains": 27991, "challenging": 4378, "paper": 24001, "present": 25510, "explicitly": 10547, "test": 32756, "ability": 650, "given": 12740, "set": 29669, "common": 5002, "concepts": 5530, "dog": 8545, "catch": 4218, "throw": 33100, "generate": 12260, "coherent": 4890, "sentence": 29527, "describing": 7681, "everyday": 10054, "scenario": 29198, "inherently": 14953, "requires": 28244, "relational": 27867, "background": 3062, "compositional": 5326, "generalization": 12203, "unseen": 34432, "concept": 5526, "combinations": 4953, "constructed": 5805, "combination": 4948, "crowdsourced": 6431, "existing": 10260, "caption": 4133, "corpora": 6163, "descriptions": 7685, "unique": 34354, "gap": 12086, "t5": 31934, "human": 13789, "furthermore": 11984, "learned": 17518, "capability": 4086, "transferred": 33689, "improve": 14252, "downstream": 8671, "generating": 12407, "additional": 1249, "context": 5879, "entities": 9629, "understanding": 34205, "recent": 27486, "progress": 26206, "witnessed": 35624, "development": 7948, "gpt": 12840, "xlnet": 35878, "based": 3130, "et": 9788, "al": 1679, "2017": 220, "end": 9408, "achieved": 998, "results": 28565, "approaching": 2404, "demonstrates": 7555, "power": 25318, "selfattention": 29407, "architecture": 2435, "paired": 23972, "sufficient": 31559, "layers": 17436, "data": 6585, "complex": 5265, "cues": 6456, "2018": 221, "showed": 29855, "possible": 25211, "inject": 14978, "syntactic": 31813, "structure": 31212, "supervised": 31670, "conjecture": 5676, "similar": 30095, "injection": 14982, "semantic": 29445, "particular": 24334, "coreference": 6155, "information": 14852, "problems": 26022, "lambada": 16019, "2016": 219, "trained": 33382, "scratch": 29289, "auxiliary": 2959, "supervision": 31695, "outperforms": 23804, "largest": 17389, "setting": 29721, "new": 22772, "containing": 5833, "tiny": 33171, "fraction": 11815, "parameters": 24219, "compared": 5117, "thorough": 33070, "analysis": 1910, "different": 8042, "variants": 35041, "architectures": 2459, "configurations": 5656, "suggesting": 31582, "future": 12027, "directions": 8227, "applying": 2216, "gorilla": 12834, "camel": 3987, "plausibility": 25013, "modeling": 20885, "world": 35832, "used": 34582, "testbed": 32793, "exploring": 10614, "representations": 28156, "focused": 11660, "specifically": 30726, "physical": 24940, "shown": 29866, "distributional": 8399, "methods": 19998, "fail": 10898, "tested": 32794, "led": 17682, "improved": 14304, "fact": 10855, "effective": 8858, "difficult": 8168, "problem": 25985, "directly": 8232, "create": 6346, "extracting": 10756, "events": 10047, "corpus": 6173, "provide": 26681, "baseline": 3239, "selfsupervised": 29436, "manner": 19546, "testing": 32799, "believe": 3338, "injecting": 14981, "explicit": 10544, "bloom": 3781, "filter": 11170, "meets": 19784, "extend": 10646, "idea": 13984, "word": 35633, "pieces": 24950, "opaque": 23380, "ids": 14034, "hash": 13470, "functions": 11970, "map": 19576, "id": 13981, "smaller": 30373, "space": 30578, "similarly": 30133, "multilayer": 22292, "able": 740, "obtain": 23245, "high": 13548, "accuracy": 857, "size": 30240, "degree": 7386, "larger": 17314, "sampled": 29067, "softmax": 30451, "computational": 5452, "budget": 3901, "observation": 23217, "important": 14195, "remove": 28074, "ambiguity": 1873, "input": 15002, "alternative": 1848, "method": 19866, "solving": 30505, "vocabulary": 35381, "observed": 23235, "unstructured": 34450, "implicitly": 14178, "store": 31079, "retrieve": 28766, "queries": 27018, "short": 29809, "measure": 19732, "practical": 25359, "utility": 34951, "approach": 2224, "answer": 2039, "questions": 27095, "access": 815, "external": 10726, "scales": 29150, "performs": 24840, "competitively": 5232, "opendomain": 23449, "systems": 31886, "answers": 2082, "source": 30546, "answering": 2055, "facilitate": 10834, "reproducibility": 28202, "augmentation": 2795, "provided": 26736, "significant": 29949, "study": 31293, "types": 34057, "autoencoder": 2842, "seq2seq": 29588, "bart": 3106, "conditional": 5567, "prepending": 25500, "class": 4581, "labels": 15966, "sequences": 29612, "simple": 30139, "way": 35428, "condition": 5566, "additionally": 1268, "classification": 4590, "benchmarks": 3428, "explore": 10570, "differs": 8167, "diversity": 8476, "preserve": 25602, "cooking": 6131, "recipe": 27629, "evaluation": 9915, "interests": 15414, "automatic": 2875, "recipes": 27632, "past": 24387, "years": 35889, "thanks": 33043, "online": 23359, "novel": 23051, "modes": 22175, "generations": 12641, "instruction": 15141, "title": 33177, "ingredients": 14944, "ingredient": 14943, "instructions": 15241, "backend": 3061, "module": 22192, "comprises": 5431, "finetuned": 11303, "users": 34683, "quality": 26938, "generated": 12340, "contents": 5878, "reference": 27771, "accessed": 828, "trec": 33876, "cast": 4208, "2019": 222, "conversational": 6092, "assistance": 2634, "track": 33326, "overview": 23954, "seeking": 29359, "reusable": 28784, "collection": 4926, "search": 29306, "document": 8501, "passages": 24381, "retrieval": 28729, "car": 4157, "microsoft": 20157, "reading": 27304, "comprehension": 5340, "marco": 19581, "dialogues": 8023, "train": 33359, "50": 418, "average": 3007, "long": 19166, "relevance": 27932, "assessments": 2620, "topics": 33289, "20": 206, "year": 35888, "21": 249, "groups": 13303, "submitted": 31432, "total": 33297, "65": 474, "runs": 29015, "varying": 35167, "query": 27025, "ranking": 27229, "include": 14446, "traditional": 33341, "feature": 11020, "enhanced": 9531, "theme": 33045, "bertbased": 3540, "reranking": 28278, "leading": 17473, "employed": 9256, "expansion": 10344, "rewriting": 28867, "manually": 19561, "resolved": 28402, "utterances": 34979, "35": 339, "improvement": 14321, "manual": 19552, "rewrites": 28866, "best": 3553, "question": 27037, "reformulation": 27802, "sequencetosequence": 29618, "presents": 25572, "empirical": 9217, "plms": 25038, "leverage": 17742, "address": 1306, "strong": 31158, "independence": 14668, "assumption": 2663, "objective": 23201, "maximum": 19705, "likelihood": 17898, "estimation": 9786, "taskoriented": 32217, "dialogue": 8009, "indomain": 14723, "validate": 34991, "outdomain": 23739, "examining": 10107, "numbers": 23174, "texttotext": 33010, "transfer": 33667, "achieves": 1024, "fewer": 11084, "propose": 26489, "written": 35861, "situation": 30238, "real": 27309, "person": 24878, "currently": 6540, "facing": 10854, "helpful": 13516, "advice": 1528, "tests": 32807, "fundamental": 11971, "aspect": 2562, "resolve": 28401, "openended": 23456, "situations": 30239, "communicating": 5047, "todays": 33183, "struggle": 31235, "multibillion": 22269, "parameter": 24175, "examples": 10116, "writes": 35848, "humanwritten": 13936, "cases": 4197, "gpt3": 12979, "does": 8521, "worse": 35838, "low": 19265, "reveals": 28813, "errors": 9720, "hard": 13420, "spot": 30820, "outside": 23900, "showing": 29858, "room": 28966, "augmented": 2810, "relation": 27863, "extraction": 10761, "realworld": 27333, "deal": 7208, "limited": 17936, "imbalance": 14099, "issues": 15664, "augment": 2789, "properly": 26469, "specific": 30682, "gold": 12813, "classifier": 4623, "series": 29631, "advantages": 1503, "leads": 17488, "improvements": 14352, "11": 67, "f1": 10814, "state": 30902, "art": 2512, "widely": 35568, "biomedical": 3744, "surpassing": 31752, "47": 402, "geppetto": 12729, "italian": 15677, "available": 2964, "mainly": 19401, "english": 9474, "develop": 7907, "built": 3930, "means": 19729, "humanbased": 13889, "assessment": 2615, "calculating": 3964, "perplexity": 24872, "genres": 12722, "ii": 14041, "profiling": 26189, "writing": 35849, "characteristics": 4425, "production": 26170, "version": 35230, "shorter": 29825, "performed": 24826, "completion": 5258, "output": 23863, "judged": 15721, "closer": 4694, "original": 23698, "texts": 32988, "simpler": 30166, "datatotext": 7194, "pretrain": 25621, "indicate": 14686, "form": 11738, "enables": 9292, "pipelined": 24971, "tailored": 32015, "importantly": 14217, "evidenced": 10069, "outofdomain": 23750, "sets": 29717, "hope": 13753, "serves": 29653, "useful": 34638, "prevalent": 25856, "sense": 29505, "investigating": 15607, "adapterbased": 1203, "transformers": 33774, "following": 11685, "major": 19435, "structured": 31218, "resources": 28428, "hand": 13403, "joint": 15710, "adding": 1231, "objectives": 23209, "primary": 25914, "prohibitively": 26239, "computationally": 5484, "expensive": 10357, "posthoc": 25226, "lead": 17461, "investigate": 15570, "complementing": 5246, "conceptual": 5533, "conceptnet": 5529, "corresponding": 6224, "open": 23381, "mind": 20174, "respectively": 28454, "adapter": 1198, "overall": 23905, "glue": 12801, "picture": 24947, "deeper": 7347, "substantially": 31479, "type": 34052, "sourced": 30572, "team": 32598, "deep": 7316, "unifies": 34343, "attempt": 2702, "competition": 5216, "validation": 35004, "explanation": 10535, "discuss": 8289, "prepared": 25499, "labeled": 15954, "textual": 33021, "curated": 6468, "subtasks": 31497, "goal": 12805, "subtask": 31496, "distinguish": 8373, "statements": 30915, "make": 19450, "compare": 5103, "classifiers": 4627, "inspired": 15093, "questionanswering": 27081, "treat": 33871, "choice": 4550, "boost": 3814, "experimental": 10382, "second": 29319, "select": 29375, "reason": 27354, "statement": 30914, "stand": 30865, "teams": 32600, "937": 598, "27": 281, "participants": 24325, "competitive": 5217, "result": 28538, "nonsense": 23007, "shows": 29919, "potentials": 25317, "researches": 28381, "powerful": 25335, "fewshot": 11095, "aims": 1657, "reformulate": 27799, "concise": 5548, "fully": 11952, "specified": 30766, "effectively": 8908, "handled": 13411, "rules": 29009, "weak": 35455, "amounts": 1882, "ad": 1157, "hoc": 13732, "sessions": 29668, "rewrite": 28865, "weakly": 35460, "12": 87, "zeroshot": 35949, "gives": 12784, "comparable": 5072, "reveal": 28789, "syntax": 31831, "learns": 17677, "capture": 4143, "dependencies": 7616, "involve": 15624, "group": 13297, "references": 27773, "knowledgeaware": 15925, "hold": 13733, "adept": 1378, "semantics": 29487, "unclear": 34123, "grasp": 13243, "incorporate": 14568, "changing": 4413, "inserting": 15058, "storage": 31075, "simply": 30182, "signal": 29942, "existence": 10259, "tokenizer": 33211, "entity": 9643, "prediction": 25420, "solely": 30461, "signals": 29943, "packed": 23963, "observe": 23224, "factual": 10876, "correctness": 6205, "probing": 25979, "hidden": 13535, "edge": 8818, "serve": 29646, "dropin": 8741, "replacement": 28101, "taskrelated": 32223, "subword": 31501, "units": 34369, "morphologically": 22221, "rich": 28873, "proven": 26671, "particularly": 24345, "complexity": 5300, "makes": 19488, "apply": 2202, "studies": 31261, "considerable": 5703, "network": 22683, "ngrams": 22903, "general": 12154, "hungarian": 13948, "center": 4263, "transformergenerated": 33772, "works": 35809, "isolating": 15650, "causes": 4255, "explosion": 10624, "called": 3982, "subwordbased": 31503, "statistically": 31021, "derived": 7672, "bpe": 3848, "statistical": 31017, "tokenizers": 33212, "reducing": 27742, "memory": 19800, "requirements": 28235, "finally": 11187, "terms": 32736, "recognition": 27636, "words": 35655, "chess": 4532, "mastering": 19637, "play": 25016, "support": 31704, "generic": 12719, "strategic": 31097, "textarchived": 32968, "games": 12079, "addition": 1234, "skills": 30308, "abstract": 767, "meaningful": 19724, "moves": 22237, "gameplay": 12078, "28": 286, "million": 20162, "portable": 25149, "game": 12076, "notation": 23033, "steps": 31057, "optimizes": 23654, "weights": 35501, "generates": 12399, "displays": 8318, "formations": 11757, "identifiable": 13993, "classic": 4588, "exchange": 10181, "live": 18055, "interface": 15415, "correctly": 6202, "filters": 11174, "illegal": 14043, "anticipate": 2092, "build": 3907, "promise": 26273, "features": 11029, "underlying": 34152, "rule": 29006, "expressive": 10644, "player": 25022, "annotations": 2029, "navigating": 22594, "synthetic": 31845, "agents": 1566, "modern": 22155, "contain": 5825, "tremendous": 33881, "belief": 3336, "consistently": 5743, "accurately": 930, "reflect": 27788, "beliefs": 3337, "beings": 3334, "produced": 26156, "sociological": 30443, "tool": 33256, "ways": 35449, "distinct": 8362, "interviews": 15478, "surveys": 31779, "historical": 13725, "launch": 17417, "clusters": 4709, "strings": 31156, "orientation": 23695, "trajectories": 33658, "contained": 5831, "known": 15933, "ground": 13284, "truth": 33936, "board": 3801, "legality": 17699, "patterns": 24408, "piece": 24948, "creates": 6363, "accurate": 919, "latent": 17405, "representation": 28137, "plot": 25053, "legal": 17694, "compression": 5411, "survey": 31772, "fields": 11154, "ir": 15640, "recurrent": 27677, "networks": 22707, "rnns": 28912, "gated": 12124, "shortterm": 29828, "120": 92, "bidirectional": 3690, "encoder": 9345, "24": 262, "94": 599, "multitask": 22444, "73": 511, "134": 114, "95": 602, "98": 609, "gshard": 13324, "63": 468, "humongous": 13939, "applications": 2139, "demand": 7409, "small": 30335, "response": 28471, "times": 33156, "pruning": 26808, "quantization": 27003, "sharing": 29790, "tensor": 32721, "decomposition": 7289, "deployment": 7645, "industry": 14744, "critical": 6380, "need": 22616, "efficient": 9019, "published": 26870, "area": 2476, "plethora": 25035, "community": 5056, "story": 31086, "predictors": 25457, "page": 23964, "wellknown": 35525, "twofold": 34038, "firstly": 11564, "discriminate": 8282, "machinegenerated": 19368, "emerge": 9154, "detect": 7849, "content": 5848, "fast": 10990, "bootstrapping": 3831, "indicators": 14707, "secondly": 29333, "curious": 6478, "understand": 34186, "prevalence": 25855, "nature": 22588, "pages": 23966, "wild": 35607, "extensive": 10674, "qualitative": 26929, "quantitative": 26990, "500": 424, "web": 35471, "articles": 2523, "conducted": 5628, "topic": 33281, "comparative": 5095, "grading": 13199, "process": 26048, "student": 31252, "approaches": 2367, "desired": 7761, "implemented": 14167, "mapping": 19578, "facet": 10831, "conventional": 6071, "embeddings": 9137, "extracted": 10748, "elmo": 9112, "assess": 2586, "efficiency": 8995, "cosine": 6239, "similarity": 30126, "correlation": 6218, "measurements": 19740, "outperformed": 23791, "briefly": 3876, "conclude": 5550, "poor": 25101, "discriminator": 8288, "guided": 13352, "sequence": 29594, "imitate": 14106, "distribution": 8389, "realistic": 27315, "control": 6047, "regions": 27821, "especially": 9730, "problematic": 26020, "usually": 34944, "toxicity": 33315, "hate": 13471, "guide": 13342, "safer": 29039, "controllable": 6057, "guides": 13357, "step": 31036, "computing": 5511, "probabilities": 25968, "bayes": 3294, "normalizing": 23020, "distributions": 8402, "conditioned": 5575, "undesired": 34293, "stronger": 31196, "controllability": 6056, "achieving": 1079, "speeds": 30798, "faster": 10995, "just": 15733, "keyword": 15796, "unlocking": 34412, "lastly": 17398, "15b": 151, "toxic": 33307, "sacrificing": 29024, "far": 10986, "maintaining": 19418, "speed": 30794, "risks": 28894, "advanced": 1420, "expand": 10335, "potential": 25234, "abuse": 781, "assessing": 2608, "experimenting": 10414, "prompts": 26403, "representative": 28180, "narrative": 22491, "structures": 31230, "interaction": 15383, "ideologies": 14027, "predecessor": 25398, "gpt3s": 13048, "strength": 31138, "emulates": 9276, "interactive": 15393, "informational": 14927, "influential": 14846, "utilized": 34964, "individuals": 14722, "behaviors": 3325, "measures": 19741, "possibility": 25206, "technology": 32679, "represents": 28196, "absence": 758, "safeguards": 29037, "successful": 31531, "little": 18047, "experimentation": 10412, "likely": 17901, "stakeholders": 30862, "begin": 3305, "investing": 15617, "soon": 30522, "norms": 23023, "public": 26829, "educational": 8838, "initiatives": 14977, "influx": 14848, "disinformation": 8308, "propaganda": 26463, "mitigation": 20266, "government": 12839, "society": 30440, "current": 6479, "limitations": 17914, "classify": 4630, "tradeoff": 33334, "including": 14454, "extension": 10671, "batch": 3286, "length": 17703, "attention": 2711, "recurrence": 27676, "identify": 14002, "suffer": 31549, "example": 10108, "struggles": 31249, "loosely": 19224, "performing": 24833, "gpt23": 12971, "sim": 30094, "scaling": 29158, "efficiently": 9067, "argue": 2489, "reduce": 27698, "entire": 9622, "sample": 29063, "speculate": 30775, "modify": 22182, "perform": 24468, "causal": 4235, "retriever": 28777, "jointly": 15715, "extreme": 10790, "multilabel": 22290, "focus": 11644, "tail": 32013, "label": 15951, "insufficient": 15311, "mitigate": 20247, "takes": 32030, "advantage": 1497, "perturbations": 24910, "substantial": 31458, "contributions": 6039, "combine": 4956, "broad": 3883, "realtoxicityprompts": 27332, "evaluating": 9891, "degeneration": 7373, "prone": 26452, "racist": 27147, "sexist": 29756, "hinders": 13720, "safe": 29028, "extent": 10721, "prompted": 26366, "algorithms": 1717, "preventing": 25859, "100k": 50, "naturally": 22584, "occurring": 23277, "sentencelevel": 29548, "widelyused": 35578, "degenerate": 7372, "seemingly": 29362, "innocuous": 14990, "empirically": 9245, "adaptive": 1220, "nontoxic": 23012, "steering": 31028, "away": 3046, "solutions": 30483, "bad": 3072, "pinpoint": 24956, "cause": 4252, "persistent": 24876, "radford": 27149, "offensive": 23282, "factually": 10894, "unreliable": 34427, "bed": 3304, "selection": 29388, "processes": 26090, "capacities": 4123, "abilities": 622, "highquality": 13682, "discourse": 8263, "papers": 24147, "analyzed": 1999, "aspects": 2572, "encoded": 9338, "date": 7197, "intersentential": 15473, "quantitatively": 26996, "evaluates": 9887, "examine": 10098, "rhetoric": 28871, "encode": 9336, "theory": 33056, "revealing": 28809, "richer": 28876, "intermediate": 15423, "layer": 17423, "apparently": 2110, "suggest": 31566, "drawing": 8726, "avenue": 3004, "quantifying": 26988, "converting": 6114, "point": 25062, "view": 35273, "messages": 19854, "spoken": 30813, "virtual": 35283, "assistants": 2637, "quite": 27137, "literal": 18038, "user": 34644, "tell": 32684, "extract": 10743, "message": 19853, "contact": 5824, "named": 22480, "designed": 7718, "allow": 1800, "voice": 35385, "convert": 6112, "deliver": 7399, "target": 32045, "developed": 7922, "rulebased": 29007, "integrates": 15327, "linear": 17984, "partofspeech": 24365, "tagging": 32011, "parsing": 24319, "transformation": 33694, "investigated": 15601, "lstms": 19329, "copynet": 6146, "explored": 10607, "metrics": 20129, "gauge": 12130, "naturalness": 22587, "faithfulness": 10930, "automatically": 2901, "chose": 4561, "plus": 25059, "meteor": 19865, "separately": 29584, "slight": 30320, "830": 571, "159": 150, "37": 358, "publicly": 26848, "released": 27918, "composed": 5320, "samples": 29071, "incremental": 14655, "age": 1555, "encoders": 9377, "nlu": 22969, "humans": 13916, "incrementally": 14656, "assume": 2658, "processed": 26089, "behave": 3309, "interfaces": 15416, "partial": 24322, "seen": 29363, "certain": 4271, "happen": 13417, "mode": 20329, "retaining": 28718, "impacted": 14143, "alleviated": 1791, "adapting": 1206, "regime": 27815, "truncated": 33930, "procedure": 26044, "right": 28879, "incorporating": 14574, "hypothetical": 13971, "contexts": 5935, "semisupervised": 29504, "style": 31412, "indonesian": 14729, "informal": 14850, "formal": 11743, "iterative": 15687, "daily": 6577, "deviations": 7988, "standard": 30867, "spelling": 30804, "order": 23668, "typically": 34076, "parallel": 24165, "counterpart": 6301, "augmenting": 2822, "artificial": 2528, "dealing": 7209, "extremely": 10795, "transformerbased": 33745, "alternatively": 1857, "finedtuned": 11266, "equally": 9674, "costs": 6266, "resource": 28408, "findings": 11229, "promising": 26280, "leveraging": 17776, "ptlm": 26826, "nlg": 22909, "token": 33184, "bertstyle": 3551, "ptlms": 26827, "span": 30589, "infilling": 14834, "crucial": 6436, "contrastive": 6020, "taskspecific": 32559, "unify": 34346, "mutually": 22473, "reinforce": 27835, "calm": 3985, "relying": 27975, "graphs": 13238, "yielding": 35918, "relatively": 27884, "consistent": 5735, "margin": 19583, "suggests": 31590, "know": 15806, "calibration": 3976, "regarding": 27808, "facts": 10874, "perfect": 24466, "appropriate": 2405, "ask": 2551, "confidence": 5648, "property": 26479, "probabilistic": 25966, "predicted": 25413, "actually": 1156, "correlated": 6213, "qa": 26906, "calibrated": 3973, "finding": 11224, "calibrate": 3972, "correlate": 6211, "probability": 25970, "modification": 22178, "adjustment": 1393, "outputs": 23886, "inputs": 15040, "diverse": 8410, "strengths": 31141, "shedding": 29797, "light": 17826, "calibrating": 3974, "good": 12816, "successfully": 31535, "lag": 16013, "overcome": 23919, "dutch": 8755, "retraining": 28726, "lexical": 17798, "tuning": 33965, "aligned": 1736, "scale": 29128, "transforming": 33803, "medium": 19775, "embedding": 9127, "minimises": 20193, "prevents": 25863, "losing": 19239, "assessed": 2605, "par": 24149, "notoriously": 23047, "behavior": 3311, "recast": 27473, "controlling": 6067, "application": 2125, "apis": 2106, "programs": 26204, "altering": 1845, "hyperparameters": 13960, "paradigm": 24154, "specialized": 30664, "manipulating": 19542, "activations": 1142, "produce": 26137, "changes": 4409, "allowing": 1804, "contribute": 6027, "construction": 5810, "algorithm": 1699, "loss": 19240, "function": 11960, "efficacy": 8985, "noun": 23049, "aversion": 3032, "speech": 30779, "filtering": 11172, "largely": 17306, "controlled": 6062, "fluency": 11630, "deterministic": 7903, "settings": 29728, "uncertainty": 34115, "surprisal": 31761, "exploiting": 10558, "humor": 13940, "studied": 31259, "datadriven": 6925, "actual": 1155, "mechanism": 19748, "break": 3858, "components": 5310, "setup": 29748, "special": 30654, "relationship": 27872, "developing": 7939, "audience": 2773, "expectations": 10350, "increasingly": 14632, "feed": 11054, "calculate": 3961, "values": 35026, "conducting": 5644, "semeval": 29490, "2021": 228, "event": 10045, "schema": 29230, "temporal": 32693, "relationships": 27874, "addresses": 1361, "ordering": 23679, "sorting": 30529, "occurred": 23274, "predicting": 25416, "fit": 11571, "bartbased": 3111, "temporality": 32701, "cooccurrence": 6127, "meaning": 19718, "flexibly": 11618, "denoising": 7600, "shuffle": 29939, "delete": 7394, "recover": 27666, "inferences": 14825, "incomplete": 14537, "outperforming": 23795, "pairwise": 23986, "pointer": 25067, "temporally": 32702, "pile": 24952, "crossdomain": 6407, "825": 567, "targeted": 32062, "22": 250, "subsets": 31455, "newly": 22868, "derive": 7670, "academic": 784, "professional": 26174, "sources": 30574, "untuned": 34464, "conversely": 6111, "raw": 27281, "cc": 4260, "evaluations": 10026, "indepth": 14672, "exploratory": 10567, "potentially": 25309, "concerning": 5539, "lottery": 19262, "heavily": 13492, "enormous": 9585, "focusing": 11670, "requiring": 28267, "expense": 10355, "higher": 13593, "demands": 7413, "computer": 5502, "vision": 35291, "computationallyefficient": 5489, "applicable": 2124, "inside": 15062, "winning": 35616, "early": 8773, "stage": 30857, "comprehensive": 5350, "squad": 30841, "prefixtuning": 25485, "optimizing": 23655, "continuous": 5995, "facto": 10861, "modifies": 22181, "necessitates": 22612, "storing": 31085, "copy": 6144, "lightweight": 17836, "keeps": 15747, "frozen": 11935, "vector": 35193, "prefix": 25479, "draws": 8730, "inspiration": 15089, "prompting": 26371, "subsequent": 31445, "attend": 2710, "tabletotext": 31989, "summarization": 31608, "01": 2, "obtains": 23262, "lowdata": 19278, "switch": 31795, "trillion": 33902, "sparsity": 30628, "reuse": 28785, "mixture": 20279, "experts": 10518, "moe": 22195, "selects": 29401, "outrageous": 23899, "constant": 5769, "cost": 6242, "despite": 7767, "notable": 23024, "successes": 31530, "widespread": 35589, "adoption": 1407, "hindered": 13715, "communication": 5048, "instability": 15106, "simplify": 30180, "routing": 28994, "design": 7695, "intuitive": 15558, "reduced": 27728, "help": 13501, "instabilities": 15105, "sparse": 30609, "lower": 19282, "precision": 25391, "bfloat16": 3639, "formats": 11758, "t5base": 31969, "t5large": 31975, "7x": 550, "increases": 14613, "multilingual": 22294, "mt5base": 22258, "101": 53, "advance": 1416, "colossal": 4945, "clean": 4643, "crawled": 6345, "achieve": 941, "4x": 416, "speedup": 30800, "t5xxl": 31981, "impact": 14119, "phrase": 24936, "suggestions": 31586, "email": 9121, "composition": 5325, "behaviour": 3331, "native": 22498, "nonnative": 23003, "writers": 35847, "multiword": 22466, "suggestion": 31585, "choices": 4556, "compares": 5185, "vs": 35400, "ideation": 13990, "emerging": 9190, "literature": 18040, "editor": 8831, "prototype": 26664, "refined": 27780, "people": 24450, "emails": 9122, "conditions": 5578, "benefits": 3489, "phrases": 24938, "speakers": 30649, "insights": 15068, "implications": 14172, "supporting": 31715, "replacing": 28105, "active": 1144, "platform": 25008, "managed": 19528, "service": 29657, "utilizes": 34966, "business": 3944, "quickly": 27135, "easily": 8790, "deploy": 7629, "ready": 27308, "hosted": 13761, "environment": 9665, "involvement": 15626, "scientists": 29262, "leverages": 17765, "implementation": 14160, "workflow": 35801, "relies": 27965, "providing": 26769, "labeling": 15961, "experience": 10371, "reallife": 27324, "insurance": 15312, "ideal": 13986, "scripts": 29296, "vanilla": 35028, "adjustments": 1395, "targeting": 32066, "encountered": 9395, "practice": 25377, "list": 18033, "plan": 24993, "solve": 30487, "presented": 25565, "script": 29294, "planned": 24996, "examplebased": 10115, "prompt": 26307, "onthefly": 23373, "domains": 8610, "incredible": 14651, "outofdistribution": 23746, "underexplored": 34140, "unknown": 34378, "unlabeled": 34379, "respect": 28450, "unrestricted": 34429, "consisting": 5759, "characterize": 4429, "intuitively": 15560, "signature": 29945, "maps": 19580, "multisource": 22439, "scenarios": 29199, "semantically": 29482, "puzzles": 26898, "dominant": 8659, "advancing": 1491, "seek": 29357, "highly": 13656, "read": 27293, "fluent": 11632, "adversarially": 1520, "parts": 24369, "definition": 7368, "characterlevel": 4434, "manipulations": 19545, "expert": 10506, "creative": 6370, "intelligence": 15350, "combining": 4961, "main": 19386, "humanlike": 13906, "contribution": 6036, "curriculum": 6547, "split": 30810, "perturbing": 24913, "exhibits": 10242, "partially": 24323, "considerably": 5711, "bestperforming": 3582, "fails": 10913, "generalize": 12231, "remain": 27982, "unsolved": 34447, "innovation": 14991, "predict": 25404, "fall": 10947, "predetermined": 25401, "categories": 4221, "classifications": 4621, "utilize": 34958, "reported": 28126, "rarely": 27259, "occur": 23273, "created": 6358, "lines": 18000, "practitioners": 25381, "flipping": 11620, "images": 14082, "increase": 14591, "volume": 35386, "image": 14054, "convolutional": 6122, "purpose": 26882, "creating": 6364, "utilizing": 34968, "yelp": 35901, "restaurant": 28527, "reviews": 28832, "combined": 4958, "genuine": 12723, "extractive": 10777, "abstractive": 776, "explanations": 10540, "factchecking": 10858, "news": 22874, "claims": 4579, "assisting": 2639, "experiment": 10376, "biased": 3668, "graphbased": 13232, "misinformation": 20212, "political": 25093, "health": 13483, "plain": 24989, "outstanding": 23902, "mental": 19838, "states": 31010, "emotional": 9203, "variations": 35048, "extensions": 10673, "optimize": 23640, "leaderboard": 17471, "viable": 35241, "rewarding": 28862, "formality": 11747, "scarcity": 29188, "scarce": 29187, "preserving": 25608, "boosts": 3827, "preservation": 25601, "rewards": 28863, "core": 6149, "appealing": 2111, "rely": 27968, "popular": 25111, "solution": 30467, "candidate": 3990, "affected": 1540, "irrelevant": 15643, "factors": 10866, "frequencies": 11922, "distracting": 8380, "mislead": 20216, "choose": 4558, "wrong": 35865, "oversensitive": 23952, "correct": 6190, "considering": 5722, "devise": 7992, "sound": 30542, "formalism": 11746, "verify": 35216, "robustness": 28942, "attacked": 2689, "synonym": 31809, "drops": 8746, "indicating": 14701, "timedial": 33151, "dialog": 8003, "conversations": 6105, "turn": 34029, "massive": 19622, "dialogs": 8008, "introducing": 15549, "formulate": 11770, "multiplechoice": 22429, "cloze": 4705, "carefully": 4170, "23": 256, "absolute": 760, "shallow": 29773, "motivating": 22231, "robust": 28929, "contextual": 5948, "bottleneck": 3838, "intensive": 15370, "involved": 15625, "decoding": 7268, "accelerate": 790, "optimization": 23621, "cache": 3957, "detecting": 7854, "repeated": 28090, "asynchronous": 2677, "pipeline": 24962, "io": 15636, "optimizations": 23639, "gain": 12055, "easy": 8800, "oneline": 23342, "change": 4406, "costeffective": 6258, "grown": 13319, "leaps": 17504, "bounds": 3846, "limit": 17907, "utilization": 34952, "suite": 31598, "implement": 14156, "toolkit": 33265, "encoderdecoder": 9362, "bilingual": 3706, "billion": 3712, "198": 195, "mt5": 22254, "excellent": 10160, "having": 13472, "tens": 32715, "billions": 3726, "gpu": 13167, "ernie": 9705, "175": 171, "taskagnostic": 32212, "zeroshotfewshot": 35999, "kind": 15800, "unified": 34323, "fuses": 12019, "autoencoding": 2846, "graph": 13217, "54": 441, "chinese": 4540, "place": 24983, "superglue": 31641, "july": 15730, "08": 16, "spanish": 30593, "family": 10973, "includes": 14449, "robertabase": 28925, "robertalarge": 28926, "gpt2large": 12973, "arguably": 2488, "proficient": 26185, "deduplicated": 7312, "135": 116, "archive": 2475, "national": 22496, "ex": 10083, "novo": 23130, "picard": 24944, "fictional": 11130, "introduced": 15539, "star": 30893, "dictionary": 8029, "construct": 5793, "456": 395, "76": 518, "translating": 33816, "rethinking": 28723, "supplementary": 31702, "technique": 32614, "finetunes": 11364, "involving": 15634, "discover": 8266, "orthogonal": 23732, "discrimination": 8284, "synthesized": 31840, "role": 28952, "headlines": 13479, "causalities": 4248, "implicit": 14175, "relations": 27869, "5000": 425, "headline": 13478, "russian": 29019, "crowdsourcing": 6434, "vary": 35164, "totally": 33301, "unrelated": 34425, "belonging": 3346, "ones": 23344, "validity": 35008, "xlmroberta": 35877, "causality": 4249, "detection": 7861, "intent": 15371, "noisy": 22986, "enhance": 9500, "offtopic": 23333, "mining": 20202, "oneshot": 23350, "expanded": 10338, "teaching": 32590, "demonstration": 7594, "gptneo": 13155, "appropriately": 2409, "stepbystep": 31053, "demonstrations": 7596, "teach": 32578, "execute": 10190, "mathematical": 19677, "previously": 25896, "proved": 26668, "operations": 23568, "mathematics": 19686, "200": 216, "division": 8492, "reporting": 28127, "smallest": 30404, "80": 552, "constructing": 5808, "coax": 4717, "kinds": 15801, "multistep": 22441, "tremendously": 33885, "numerical": 23177, "required": 28228, "reasons": 27467, "learn": 17505, "predecessors": 25399, "consider": 5701, "magnitude": 19381, "minimum": 20201, "reasonably": 27363, "interpolation": 15452, "extrapolation": 10789, "autocompletion": 2841, "syntactically": 31829, "effort": 9077, "adapt": 1162, "medical": 19766, "encourages": 9400, "complete": 5248, "enriched": 9592, "eventually": 10049, "preliminary": 25487, "understood": 34280, "ambiguous": 1874, "ambiguities": 1872, "arise": 2495, "beginning": 3306, "compatible": 5203, "exhibit": 10210, "modulated": 22190, "probe": 25976, "stochastic": 31068, "completions": 5264, "estimate": 9780, "assigns": 2629, "interpretation": 15462, "parses": 24318, "unlike": 34392, "hypothesized": 13970, "researcher": 28369, "lstm": 19326, "materials": 19664, "simultaneously": 30194, "varies": 35052, "constructions": 5812, "occasional": 23267, "areas": 2484, "truthfulqa": 33943, "measuring": 19742, "mimic": 20169, "falsehoods": 10962, "truthful": 33937, "38": 359, "law": 17418, "finance": 11208, "politics": 25096, "crafted": 6340, "false": 10957, "misconception": 20210, "imitating": 14107, "t5based": 31972, "58": 452, "misconceptions": 20211, "deceive": 7222, "generally": 12239, "contrasts": 6026, "expected": 10351, "truthfulness": 33939, "imitation": 14109, "ner": 22676, "numerous": 23181, "sota": 30530, "relevant": 27935, "necessarily": 22605, "reports": 28128, "traded": 33332, "companies": 5068, "combines": 4960, "inferencing": 14828, "220m": 251, "rougel": 28982, "chatgpt": 4455, "highlighting": 13642, "difficulty": 8176, "49": 409, "surprise": 31763, "financespecific": 11215, "llm": 18259, "15": 140, "artifacts": 2527, "encourage": 9397, "direction": 8221, "sophisticated": 30524, "financial": 11216, "relating": 27862, "exposure": 10635, "focuses": 11665, "mentioned": 19843, "remedy": 28069, "verified": 35212, "holtzman": 13746, "2020": 227, "motivated": 22227, "relate": 27852, "qualitatively": 26936, "mistakes": 20226, "occurs": 23278, "significance": 29947, "inspecting": 15086, "partly": 24363, "caused": 4254, "explaining": 10533, "amplify": 1896, "sum": 31604, "concrete": 5558, "foundation": 11790, "investigation": 15612, "finegrained": 11267, "annotated": 2015, "fixed": 11577, "extending": 10662, "classes": 4587, "accommodate": 837, "coarsetofine": 4716, "grained": 13202, "asking": 2558, "opt": 23586, "surface": 31723, "names": 22490, "guidance": 13341, "formulation": 11776, "generators": 12718, "regularization": 27827, "constraints": 5787, "giving": 12785, "prior": 25934, "bootstraps": 3832, "refinement": 27781, "case": 4193, "superior": 31643, "kronecker": 15942, "attracted": 2751, "lot": 19259, "attributed": 2759, "huge": 13778, "100m": 52, "prohibitive": 26235, "deploying": 7638, "devices": 7990, "mitigated": 20260, "compressing": 5409, "compress": 5401, "mappings": 19579, "initialized": 14969, "decomposed": 7285, "undergone": 34147, "portion": 25150, "distilgpt2": 8332, "decoderbased": 7249, "wide": 35544, "increasing": 14616, "encoderbased": 9361, "tinybert": 33174, "distilbert": 8330, "distilroberta": 8360, "employ": 9253, "compressed": 5404, "truncation": 33931, "distillationbased": 8348, "cleaning": 4645, "emerged": 9155, "splits": 30811, "tuned": 33959, "t5xl": 31980, "ablation": 733, "minimization": 20194, "engineering": 9461, "efforts": 9083, "capacity": 4124, "comparatively": 5102, "sam": 29062, "convergence": 6083, "flatter": 11611, "minima": 20180, "overhead": 23935, "trivia": 33918, "tydiqa": 34051, "product": 26167, "ecommerce": 8808, "recognize": 27644, "amazon": 1868, "alexa": 1697, "items": 15680, "utterance": 34978, "perfectly": 24467, "ngram": 22900, "helps": 13522, "customers": 6559, "shopping": 29808, "central": 4266, "serving": 29663, "starting": 30899, "pain": 23968, "persist": 24875, "grow": 13309, "bigger": 3703, "175b": 175, "timeconsuming": 33147, "default": 7356, "sensible": 29511, "functionality": 11967, "deployed": 7632, "resourceconstrained": 28418, "environments": 9668, "parameterefficient": 24205, "weight": 35493, "updates": 34476, "final": 11175, "dubbed": 8751, "enforcing": 9451, "sparsityaware": 30636, "lowrank": 19299, "resourceefficient": 28423, "encouraging": 9401, "investigations": 15616, "backbones": 3057, "dozens": 8704, "instance": 15108, "saves": 29115, "25": 270, "flops": 11625, "05": 11, "trainable": 33379, "codes": 4848, "underpin": 34168, "introduction": 15554, "contributed": 6031, "advancements": 1459, "field": 11132, "come": 4965, "grows": 13320, "quadratically": 26928, "extends": 10668, "childrens": 4536, "book": 3809, "guiding": 13358, "enhancing": 9555, "tackling": 32005, "applicability": 2117, "specialised": 30658, "instances": 15111, "aim": 1636, "analyse": 1905, "seed": 29351, "gptgenerated": 13144, "consequently": 5695, "exploit": 10554, "hierarchical": 13541, "handful": 13404, "opens": 23477, "interesting": 15406, "avenues": 3005, "blockwise": 3780, "scalable": 29123, "enhancement": 9540, "residual": 28388, "scheme": 29232, "internal": 15436, "blocks": 3777, "sequentially": 29629, "scalability": 29122, "lets": 17726, "dynamically": 8766, "runtime": 29016, "depending": 7619, "modularize": 22188, "needs": 22651, "incurring": 14661, "minimal": 20181, "added": 1229, "degradation": 7374, "novelty": 23126, "copying": 6145, "generalizable": 12202, "abstractions": 775, "tease": 32601, "apart": 2100, "possibilities": 25204, "sequential": 29624, "transformerxl": 33801, "local": 19127, "individual": 14715, "modelgenerated": 20882, "humangenerated": 13899, "largerscale": 17340, "1000": 42, "gpt2s": 12976, "frequent": 11924, "selfcontradictory": 29415, "ideally": 13987, "challenges": 4332, "slow": 30331, "sparsifying": 30627, "searching": 29316, "mask": 19606, "discrete": 8279, "matrices": 19689, "insight": 15064, "superset": 31669, "products": 26172, "hardware": 13427, "block": 3776, "flat": 11610, "pattern": 24406, "sparsify": 30626, "mlp": 20303, "3x": 372, "favorable": 11010, "accuracyefficiency": 917, "tradeoffs": 33338, "imagenet": 14079, "wikitext103": 35606, "25x": 276, "dense": 7604, "drop": 8739, "shifting": 29806, "generalpurpose": 12245, "methodology": 19991, "meet": 19779, "hallucinations": 13386, "violations": 35281, "raises": 27166, "representing": 28194, "energybased": 9449, "approximating": 2417, "gradients": 13198, "unconditional": 34130, "proposing": 26631, "robustly": 28941, "meeting": 19782, "contrast": 6010, "databased": 6919, "curricula": 6546, "lots": 19261, "acquisition": 1126, "researchers": 28370, "sequencing": 29623, "taskbased": 32214, "sampling": 29090, "investigates": 15604, "random": 27174, "initialization": 14968, "monolingual": 22208, "exceedingly": 10150, "alleviate": 1788, "tokenization": 33209, "replaced": 28100, "static": 31012, "covering": 6322, "french": 11921, "german": 12730, "accessible": 832, "damaging": 6582, "remarkable": 28024, "driven": 8735, "heterogeneous": 13530, "transferring": 33690, "continuing": 5992, "overlapping": 23941, "represent": 28131, "tree": 33877, "node": 22981, "avoiding": 3039, "negative": 22658, "interference": 15418, "100": 32, "represented": 28190, "websites": 35489, "c4": 3956, "heldout": 13498, "averaging": 3031, "paths": 24400, "marginal": 19587, "latency": 17400, "adjusting": 1392, "desirable": 7757, "proposes": 26624, "adjusts": 1396, "adaptively": 1222, "phase": 24916, "detects": 7889, "elements": 9100, "eliminates": 9107, "acc": 789, "metric": 20118, "adjusted": 1391, "selections": 29397, "bertbase": 3538, "sentiment": 29565, "regression": 27822, "global": 12794, "mathematically": 19685, "experimentally": 10411, "48": 404, "075": 15, "passable": 24377, "suggested": 31580, "posits": 25200, "llms": 18397, "necessary": 22606, "assemble": 2583, "software": 30452, "requirement": 28234, "undergoing": 34146, "shift": 29804, "surpass": 31732, "specially": 30679, "customized": 6564, "trend": 33886, "reusing": 28787, "flexible": 11616, "codebert": 4836, "gaussian": 12131, "noise": 22984, "simulation": 30190, "schemes": 29234, "perspective": 24895, "comparing": 5187, "keyphrase": 15790, "dedicated": 7303, "paradigms": 24161, "simplicity": 30170, "commonly": 5023, "adapted": 1197, "exposing": 10634, "limits": 17979, "parity": 24312, "adversarial": 1513, "lack": 15973, "players": 25023, "rival": 28896, "extra": 10737, "engagement": 9454, "designer": 7749, "collected": 4919, "collect": 4911, "yesno": 35903, "11b": 84, "702": 500, "941": 601, "unifiedskg": 34342, "unifying": 34347, "multitasking": 22457, "grounding": 13291, "requests": 28208, "databases": 6920, "bases": 3277, "communities": 5055, "systematic": 31865, "limitation": 17909, "format": 11753, "aiming": 1655, "promote": 26300, "exclusive": 10186, "modifications": 22179, "facilitates": 10849, "t0": 31931, "codex": 4861, "encoding": 9381, "extensible": 10670, "opensourced": 23547, "fairness": 10926, "receiving": 27485, "effect": 8849, "reduction": 27761, "interpreted": 15465, "line": 17981, "describes": 7680, "discussion": 8299, "hints": 13724, "fairer": 10924, "books": 3810, "article": 2520, "explores": 10612, "technologies": 32676, "stated": 30912, "replace": 28099, "publications": 26846, "tools": 33267, "ideas": 13989, "stands": 30890, "precisely": 25390, "supported": 31714, "value": 35022, "discussed": 8296, "emphasizes": 9212, "artistic": 2545, "issue": 15652, "comes": 4969, "aigenerated": 1632, "introduces": 15541, "projects": 26255, "artist": 2544, "andor": 2009, "deeplearningbased": 7350, "selecting": 29384, "suitable": 31596, "essential": 9756, "ml": 20289, "strongly": 31206, "primarily": 25907, "cv": 6572, "error": 9707, "iii": 14042, "compute": 5492, "huggingface": 13786, "hundreds": 13942, "systematically": 31876, "51": 430, "families": 10964, "niche": 22904, "status": 31024, "heavytail": 13496, "exhibiting": 10240, "correlations": 6221, "formulations": 11778, "pl": 24982, "spectral": 30769, "exponential": 10627, "exp": 10334, "maximizing": 19704, "adam": 1160, "1bit": 200, "gradient": 13185, "drastic": 8720, "distributed": 8384, "sgd": 29770, "nonlinearity": 23002, "individually": 14721, "optimizer": 23649, "estimates": 9783, "adaptivity": 1223, "wallclock": 35412, "guarantee": 13329, "smooth": 30410, "nonconvex": 22989, "bertlarge": 3543, "128": 101, "gpus": 13178, "87": 580, "rounds": 28987, "2times": 302, "throughput": 33098, "enjoying": 9577, "variational": 35045, "seminal": 29496, "originally": 23726, "generalized": 12235, "glm": 12790, "procedures": 26046, "converge": 6082, "offer": 23286, "freezing": 11920, "gnn": 12804, "cnn": 4711, "descent": 7676, "mixtureofexperts": 20284, "keeping": 15745, "unchanged": 34121, "resulting": 28552, "load": 19126, "allocates": 1798, "topk": 33293, "regardless": 27812, "importance": 14185, "employing": 9257, "variable": 35032, "speedups": 30803, "top1": 33277, "top2": 33278, "gating": 12129, "2x": 303, "selected": 29381, "activation": 1138, "super": 31636, "swift": 31791, "capable": 4105, "great": 13247, "incur": 14657, "separate": 29582, "fixedsize": 11581, "lose": 19237, "heavy": 13495, "decision": 7232, "routes": 28992, "energy": 9446, "agnostic": 1587, "blackbox": 3753, "architectural": 2433, "modules": 22194, "encoderonly": 9374, "wmt": 35629, "computations": 5491, "33times": 334, "29times": 293, "demo": 7419, "promptbased": 26358, "prompttuning": 26451, "hypernetworks": 13957, "learnable": 17516, "hypernetwork": 13955, "memories": 19791, "performances": 24819, "extended": 10659, "adopt": 1400, "matrix": 19692, "operator": 23575, "physics": 24942, "reconstruct": 27658, "specificity": 30764, "tensors": 32725, "illustrated": 14048, "memorize": 19794, "reproduce": 28198, "paraphrased": 24302, "contextually": 5968, "plagiarism": 24987, "verbatim": 35205, "paraphrase": 24300, "comparison": 5193, "domainspecific": 8645, "extensively": 10716, "exist": 10257, "memorization": 19793, "degrees": 7391, "majority": 19445, "scraped": 29287, "informing": 14936, "owners": 23959, "ethical": 9802, "exacerbate": 10084, "raising": 27171, "indiscriminately": 14710, "pursuing": 26887, "personal": 24880, "sensitive": 29513, "practicality": 25375, "urge": 34492, "discussions": 8302, "phenomena": 24921, "relied": 27963, "elaborate": 9093, "rnn": 28911, "dependency": 7617, "dependent": 7618, "nexttoken": 22893, "mixing": 20272, "modular": 22185, "responses": 28484, "modularity": 22187, "zhou": 36002, "internet": 15447, "applies": 2201, "blenderbot": 3761, "chen": 4528, "knowledgegrounded": 15927, "consistency": 5730, "engagingness": 9457, "topical": 33287, "brown": 3896, "factuality": 10890, "topicality": 33288, "vastly": 35191, "inducing": 14734, "anomalies": 2035, "deliberate": 7396, "dl": 8493, "delivered": 7400, "discriminating": 8283, "cognitively": 4882, "healthy": 13488, "alzheimers": 1862, "disease": 8303, "fitting": 11574, "artificially": 2541, "degraded": 7381, "ratio": 27274, "impaired": 14149, "theft": 33044, "description": 7682, "established": 9772, "alternatives": 1858, "generalizes": 12236, "spontaneous": 30818, "demonstrating": 7579, "induction": 14735, "inner": 14987, "workings": 35805, "dementia": 7418, "continually": 5981, "unfamiliar": 34307, "innovative": 14994, "employs": 9262, "initially": 14972, "subsequently": 31448, "evaluated": 9871, "29": 292, "outpaced": 23760, "enriches": 9593, "marks": 19604, "feedforward": 11075, "predictions": 25440, "promoting": 26303, "unveiling": 34468, "reverseengineering": 28825, "operation": 23565, "ffn": 11127, "additive": 1305, "update": 34473, "vectors": 35197, "humaninterpretable": 13900, "exit": 10331, "saving": 29116, "networkbased": 22705, "complicated": 5306, "distribute": 8383, "supercomputer": 31639, "tpus": 33322, "prevent": 25858, "bottlenecks": 3841, "reproducible": 28203, "libraries": 17811, "ease": 8787, "simplifies": 30179, "api": 2101, "creation": 6369, "pipelines": 24972, "opensource": 23482, "terabytes": 32728, "gptlike": 13153, "decoderonly": 7251, "excel": 10153, "fourier": 11811, "transform": 33693, "unfavorable": 34308, "tractable": 33330, "approximate": 2411, "hardwareefficient": 13435, "parameterized": 24218, "transforms": 33805, "surprisingly": 31766, "analytical": 1982, "optimal": 23611, "properties": 26470, "unlock": 34409, "vit": 35368, "reconstruction": 27660, "reverse": 28822, "sparsification": 30625, "openwebtext": 23559, "brings": 3879, "optimized": 23644, "nvidia": 23190, "mlperf": 20305, "record": 27662, "proofofconcept": 26461, "approximation": 2418, "17x": 182, "infused": 14940, "recalling": 27470, "tend": 32703, "counterfactual": 6294, "hallucinatory": 13399, "knowledgeintensive": 15929, "remedies": 28068, "modifying": 22183, "normally": 23021, "costly": 6263, "maintain": 19413, "interacting": 15382, "continuously": 6001, "constraint": 5784, "reinforcement": 27837, "armed": 2507, "seven": 29751, "confirms": 5663, "alleviates": 1792, "stable": 30848, "longer": 19194, "restoration": 28529, "abstraction": 774, "working": 35803, "simulates": 30188, "omitted": 23336, "identifies": 14001, "soft": 30447, "annotation": 2024, "generator": 12716, "gptneox20b": 13162, "freely": 11914, "openly": 23472, "permissive": 24862, "license": 17814, "submission": 31430, "languageunderstanding": 16924, "knowledgebased": 15926, "reasoner": 27365, "fiveshot": 11575, "sized": 30291, "learners": 17525, "zero": 35935, "13": 106, "60": 458, "wikipedia": 35602, "deepspeed": 7354, "megatron": 19786, "frameworks": 11907, "xglm": 35869, "facebook": 10825, "countries": 6305, "motivation": 22233, "thoroughly": 33074, "preparation": 25497, "versions": 35234, "covered": 6320, "xl": 35873, "supernaturalinstructions": 31665, "declarative": 7242, "expertwritten": 10522, "covers": 6330, "rigorous": 28883, "benchmarking": 3421, "crosstask": 6426, "follow": 11675, "subset": 31449, "remaining": 27990, "tkinstruct": 33180, "incontext": 14542, "definitions": 7369, "kshot": 15943, "instructionfollowing": 15221, "instructgpt": 15136, "simulator": 30191, "session": 29667, "automated": 2854, "inline": 14985, "multiturn": 22460, "interactions": 15387, "asks": 2560, "simulated": 30185, "studying": 31410, "gpt2based": 12972, "singleturn": 30235, "mixed": 20269, "codeswitching": 4858, "conversation": 6089, "phenomenon": 24922, "prominent": 26264, "media": 19758, "platforms": 25010, "codemixed": 4843, "gaining": 12067, "popularity": 25140, "codemixing": 4845, "roman": 28965, "twitter": 34037, "modelling": 20913, "pos": 25154, "tweets": 34035, "capturing": 4155, "outlined": 23743, "returns": 28783, "dictionaries": 8028, "patients": 24405, "provider": 26744, "indian": 14682, "tackle": 31994, "faced": 10826, "berts": 3545, "mlm": 20301, "inspection": 15088, "intervention": 15476, "spurred": 30837, "interpreting": 15467, "executing": 10196, "behavioral": 3324, "analyzing": 2001, "salience": 29059, "backbone": 3052, "interprets": 15469, "debugging": 7217, "disambiguation": 8252, "identifying": 14019, "interventions": 15477, "tailor": 32014, "refers": 27777, "satisfy": 29110, "attributes": 2762, "emotions": 9207, "resort": 28405, "plm": 25036, "concatenated": 5520, "decrease": 7296, "position": 25180, "sensitivity": 29520, "bridge": 3863, "concatenating": 5522, "connector": 5688, "attributespecific": 2765, "styles": 31416, "davinci": 7199, "yields": 35920, "moderate": 22150, "textdavinci002": 32979, "grounded": 13287, "flawed": 11613, "cooccur": 6126, "observations": 23221, "reliability": 27947, "idioms": 14030, "figurative": 11159, "cultures": 6462, "pose": 25156, "mt": 22250, "idiomatic": 14029, "macro": 19376, "dialogpt": 8006, "idiom": 14028, "hub": 13776, "knows": 15938, "resolution": 28400, "annotate": 2014, "qabased": 26919, "discern": 8256, "return": 28781, "valid": 34988, "mentions": 19845, "inconsistent": 14540, "polish": 25092, "initializing": 14970, "plbart": 25034, "prove": 26667, "equivalent": 9687, "revisiting": 28839, "arabic": 2425, "body": 3803, "addressing": 1368, "wellexplored": 35524, "methodical": 19987, "revisit": 28838, "perspectives": 24899, "discriminative": 8285, "shortly": 29826, "life": 17821, "overlooking": 23948, "variability": 35031, "psycholinguistic": 26820, "albert": 1695, "fashion": 10989, "skill": 30307, "decisions": 7240, "predictive": 25447, "framed": 11821, "recognizing": 27646, "entailment": 9615, "aka": 1676, "nli": 22911, "classical": 4589, "spurious": 30834, "exists": 10330, "harder": 13425, "expressions": 10643, "spanning": 30596, "simile": 30138, "modelintheloop": 20912, "crowd": 6429, "workers": 35800, "annotators": 2034, "conjunction": 5678, "aid": 1626, "bring": 3877, "typing": 34083, "emotion": 9201, "cardinality": 4163, "informative": 14931, "orders": 23680, "combinatorial": 4954, "taking": 32035, "gets": 12733, "days": 7202, "seconds": 29337, "exams": 10145, "exam": 10094, "institution": 15127, "mit": 20246, "harvard": 13468, "cornell": 6160, "write": 35845, "students": 31258, "hours": 13766, "finals": 11207, "level": 17729, "program": 26193, "synthesis": 31835, "stem": 31033, "differ": 8033, "broader": 3890, "curate": 6466, "course": 6310, "notes": 23036, "checkers": 4516, "numeric": 23176, "chainofthought": 4295, "highlight": 13626, "transformative": 33696, "streamline": 31134, "workload": 35807, "mere": 19846, "harness": 13452, "completeness": 5255, "originality": 23725, "thinking": 33067, "availability": 2962, "nonautoregressive": 22988, "dominated": 8662, "yield": 35907, "decoder": 7246, "inefficient": 14750, "singlestep": 30233, "inferior": 14830, "variables": 35037, "interdependence": 15401, "termed": 32732, "predictor": 25456, "glancing": 12786, "sampler": 29070, "decoders": 7266, "rate": 27260, "aishell1": 1675, "20000": 218, "hour": 13764, "attain": 2695, "10x": 65, "allinone": 1797, "taskindependent": 32216, "heuristic": 13531, "trivial": 33919, "lowquality": 19298, "combat": 4947, "condense": 5562, "inherent": 14945, "reformulates": 27801, "granularity": 13216, "deberta": 7213, "conll03": 5680, "transfers": 33692, "try": 33945, "decipher": 7230, "connection": 5684, "decades": 7219, "essence": 9755, "viewed": 35274, "accessing": 835, "principle": 25931, "consist": 5729, "valuable": 35010, "overcoming": 23927, "competitors": 5236, "college": 4939, "entrance": 9658, "examination": 10096, "authoritative": 2836, "china": 4539, "116": 80, "mark": 19591, "150": 145, "gaokao": 12085, "2022": 229, "happened": 13418, "ago": 1588, "108": 62, "showcase": 29834, "77": 520, "stimulate": 31062, "generality": 12199, "93": 597, "flant5": 11591, "character": 4421, "cultural": 6458, "entertainment": 9621, "occasionally": 23268, "supplemented": 31703, "pronunciation": 26458, "simplified": 30177, "characters": 4436, "produces": 26159, "filtered": 11171, "retrievalbased": 28765, "chatglm": 4454, "stored": 31081, "carried": 4186, "presenting": 25570, "acquired": 1120, "stages": 30860, "levels": 17738, "morphology": 22223, "inconsistently": 14541, "perceived": 24456, "induced": 14732, "endeavors": 9424, "sector": 29341, "clear": 4646, "earlier": 8770, "maintained": 19417, "infer": 14757, "albeit": 1693, "inductive": 14737, "compositionality": 5329, "encodes": 9380, "symbols": 31804, "correspond": 6222, "nodes": 22982, "infers": 14833, "posterior": 25225, "uncover": 34134, "groundtruth": 13293, "inferred": 14831, "sentiments": 29573, "symbolic": 31800, "walk": 35409, "described": 7677, "corpusbased": 6189, "dilemma": 8193, "free": 11909, "dependence": 7615, "aforementioned": 1551, "detailed": 7830, "lemmatization": 17701, "grouping": 13301, "forms": 11766, "analysed": 1906, "item": 15679, "identified": 13998, "linguistics": 18026, "algorithmic": 1716, "determining": 7902, "intended": 15367, "stemming": 31034, "depends": 7622, "surrounding": 31770, "google": 12825, "run": 29012, "lengths": 17714, "bank": 3093, "remember": 28071, "regards": 27813, "keyvalue": 15793, "knowledgeable": 15924, "slots": 30330, "interpretable": 15460, "salient": 29060, "fix": 11576, "sure": 31722, "influenced": 14843, "mounting": 22234, "closedbook": 4682, "degrade": 7378, "interpretability": 15456, "keys": 15791, "humanreadable": 13915, "influence": 14837, "cognitive": 4873, "powered": 25331, "pervasive": 24914, "day": 7201, "decisionmaking": 7235, "engaging": 9456, "shed": 29793, "recruited": 27673, "amateur": 1867, "positively": 25198, "negatively": 22664, "opinions": 23579, "align": 1724, "interact": 15379, "incorporated": 14570, "criteria": 6376, "usual": 34943, "plans": 25004, "lens": 17718, "theoretical": 33047, "movie": 22238, "review": 28827, "followed": 11682, "speak": 30647, "initiation": 14975, "initiate": 14973, "turns": 34031, "period": 24859, "realtime": 27330, "feedback": 11056, "flow": 11627, "respond": 28466, "prosodic": 26653, "operating": 23564, "audio": 2774, "transcriptions": 33665, "wrt": 35866, "true": 33923, "switchboard": 31797, "waiting": 35407, "momentum": 22205, "optimizers": 23652, "chosen": 4562, "trials": 33893, "acceleration": 803, "avoids": 3040, "adopts": 1414, "secondorder": 29335, "moments": 22204, "finds": 11262, "firstorder": 11567, "stationary": 31016, "matching": 19658, "bound": 3842, "rl": 28898, "sotas": 30540, "resnet": 28398, "convnext": 6120, "swin": 31794, "mae": 19379, "half": 13365, "epochs": 9672, "tolerance": 33253, "1k": 202, "32k": 325, "phishing": 24931, "psychological": 26822, "trait": 33656, "traits": 33657, "legitimate": 17700, "urgency": 34494, "fear": 11015, "desire": 7760, "nuances": 23134, "concatenate": 5519, "imbalanced": 14103, "strongest": 31204, "cue": 6455, "sparql": 30607, "triples": 33914, "express": 10637, "aggregation": 1580, "urgently": 34497, "forward": 11781, "handle": 13406, "rephrase": 28096, "nl": 22905, "smoothing": 30411, "factoid": 10862, "collaborative": 4906, "bloom176b": 3791, "opt175b": 23605, "download": 8669, "highend": 13592, "unavailable": 34112, "offloading": 23324, "innate": 14986, "logits": 19162, "collaboratively": 4908, "parties": 24358, "running": 29014, "consumer": 5817, "approx": 2410, "natively": 22501, "exposes": 10633, "served": 29651, "share": 29780, "custom": 6556, "triplets": 33917, "shared": 29783, "submissions": 31431, "identification": 13996, "casual": 4211, "spans": 30601, "iteratively": 15689, "conditioning": 5577, "triplet": 33916, "component": 5308, "160": 158, "placed": 24984, "assuming": 2662, "readability": 27294, "ensembles": 9598, "reliable": 27953, "ranging": 27216, "reliably": 27956, "ensemble": 9596, "germeval": 12732, "outofsample": 23756, "root": 28969, "mean": 19717, "gradientbased": 13192, "trends": 33889, "everlarger": 10053, "hyperparameter": 13958, "offers": 23305, "tune": 33955, "bayesian": 3295, "schedules": 29228, "concurrently": 5561, "schedule": 29226, "explainable": 10530, "greedy": 13280, "multidomain": 22279, "attempts": 2708, "summary": 31632, "project": 26243, "python": 26902, "gptstyle": 13165, "eval": 9815, "dfx": 7997, "lowlatency": 19296, "accelerating": 798, "services": 29659, "datacenters": 6921, "degrades": 7382, "characteristic": 4424, "executes": 10195, "parallelism": 24173, "dataflow": 6929, "simultaneous": 30193, "execution": 10197, "cores": 6159, "operate": 23561, "xilinx": 35870, "alveo": 1860, "u280": 34087, "fpgas": 11814, "channels": 4419, "bandwidth": 3088, "hbm": 13476, "v100": 34981, "workloads": 35808, "cloud": 4702, "array": 2509, "proliferation": 26257, "highstakes": 13711, "medicine": 19771, "burgeoning": 3943, "transparency": 33861, "greater": 13266, "1000x": 47, "instantiations": 15118, "naturallanguage": 22583, "augments": 2829, "decoupled": 7293, "expansions": 10346, "counterparts": 6302, "6billion": 490, "gptj": 13145, "transparent": 33863, "fmri": 11640, "interpretations": 15464, "scientific": 29247, "reproducing": 28204, "github": 12738, "evidence": 10059, "judgments": 15727, "typical": 34075, "direct": 8209, "unusual": 34465, "naively": 22479, "memorise": 19792, "statistics": 31023, "repeatedly": 28091, "continue": 5985, "scaled": 29149, "palm": 23988, "objects": 23214, "closely": 4692, "overfitting": 23932, "characterized": 4430, "cooccurrences": 6129, "intrinsic": 15489, "extrinsic": 10809, "science": 29240, "metadata": 19860, "abstracts": 778, "compiled": 5239, "obtained": 23255, "sparsely": 30622, "keywords": 15797, "labelling": 15965, "stories": 31084, "transcripts": 33666, "outofthebox": 23757, "brittle": 3882, "designing": 7751, "producing": 26164, "imperfect": 14154, "aggregating": 1579, "motivate": 22226, "ama": 1865, "went": 35533, "restrict": 28530, "recursively": 27688, "votes": 35391, "accuracies": 856, "lift": 17824, "102": 55, "gptj6b": 13152, "match": 19639, "exceed": 10146, "gpt3175b": 13011, "averaged": 3027, "html": 13772, "exceptional": 10166, "webpage": 35483, "automation": 2925, "webbased": 35480, "autonomous": 2928, "navigation": 22596, "remarkably": 28065, "exclusively": 10187, "miniwob": 20203, "distilled": 8349, "decaying": 7221, "pertoken": 24907, "kernelbased": 15750, "retains": 28720, "99": 610, "attentions": 2750, "substitutes": 31491, "sports": 30819, "disambiguate": 8251, "fusion": 12021, "amenable": 1877, "solved": 30501, "offtheshelf": 23326, "optional": 23661, "possibly": 25219, "fuse": 12017, "paragraph": 24162, "dart": 6584, "old": 23334, "feasibility": 11016, "failures": 10920, "failure": 10916, "action": 1130, "feasible": 11019, "binary": 3731, "multichoice": 22271, "mcq": 19715, "19": 191, "62": 464, "64": 472, "instructionfinetuned": 15217, "phrased": 24937, "dramatically": 8717, "upalm": 34471, "setups": 29750, "cot": 6279, "mmlu": 20312, "bbh": 3296, "mgsm": 20153, "flanpalm": 11589, "540b": 443, "18k": 190, "checkpoints": 4521, "62b": 467, "usability": 34499, "mandarin": 19533, "grouped": 13298, "highlevel": 13622, "lost": 19258, "assign": 2622, "acceptable": 811, "contains": 5838, "transformations": 33695, "90": 589, "severe": 29752, "18": 183, "xlm": 35874, "highest": 13618, "gender": 12148, "communicate": 5046, "completely": 5254, "refer": 27770, "independently": 14671, "conclusion": 5556, "matches": 19649, "indistribution": 14713, "13b": 117, "crawl": 6344, "removing": 28076, "barriers": 3103, "emergence": 9166, "100b": 48, "notably": 23028, "emergent": 9181, "sheer": 29801, "openaccess": 23428, "billionparameter": 3723, "practices": 25379, "englishonly": 9499, "shape": 29775, "semiparametric": 29498, "fullyparametric": 11959, "zerofewshot": 35947, "evolving": 10080, "empowers": 9272, "parametric": 24296, "retrieves": 28779, "fed": 11047, "interestingly": 15412, "selector": 29400, "plays": 25025, "determine": 7896, "assignment": 2627, "inspires": 15102, "770m": 521, "gained": 12059, "stems": 31035, "overwhelming": 23957, "term": 32729, "semiconductor": 29494, "rouge": 28977, "exactly": 10092, "judgment": 15726, "estimating": 9784, "carbon": 4158, "footprint": 11712, "176b": 178, "quantify": 26986, "cycle": 6574, "blooms": 3793, "approximately": 2413, "247": 264, "consumption": 5823, "account": 850, "equipment": 9679, "manufacturing": 19573, "operational": 23566, "emissions": 9199, "endpoint": 9429, "multihop": 22286, "decompose": 7284, "decomposer": 7286, "conciseness": 5549, "overlooked": 23946, "define": 7362, "simplification": 30171, "2000": 217, "organizations": 23691, "frequently": 11925, "kept": 15748, "democratizing": 7426, "collaboration": 4904, "comprising": 5433, "46": 397, "59": 453, "breakthroughs": 3862, "owing": 23958, "internalize": 15444, "interacts": 15397, "taskrelevant": 32224, "conflicts": 5666, "memorized": 19795, "ignore": 14037, "undertake": 34284, "aware": 3041, "strengthen": 31139, "showcases": 29845, "look": 19219, "ood": 23378, "evolves": 10079, "codegen": 4838, "scan": 29183, "exemplars": 10204, "decreasing": 7302, "galactica": 12075, "overload": 23943, "obstacle": 23243, "explosive": 10625, "growth": 13321, "mass": 19621, "today": 33182, "engines": 9473, "unable": 34100, "organize": 23692, "material": 19662, "technical": 32604, "probes": 25978, "equations": 9677, "latest": 17416, "682": 486, "versus": 35238, "357": 350, "math": 19666, "204": 242, "88": 581, "pubmedqa": 26875, "medmcqa": 19778, "dev": 7906, "bigbench": 3700, "links": 18031, "transition": 33808, "f1score": 10819, "conll": 5679, "41": 383, "743": 513, "53": 439, "f1scores": 10820, "backpropagation": 3067, "prefixes": 25483, "lora": 19225, "modified": 22180, "trains": 33653, "mtf": 22262, "landscape": 16022, "leaderboards": 17472, "variant": 35040, "analogies": 1902, "examines": 10106, "analogy": 1904, "analogical": 1901, "holds": 13740, "dissimilar": 8325, "posed": 25163, "largelanguage": 17303, "llama2": 18158, "mpt": 22245, "falcon": 10937, "attentionhead": 2749, "visualization": 35360, "impossible": 14225, "unlikely": 34408, "surprising": 31764, "understudied": 34282, "acquire": 1114, "minimally": 20192, "implausible": 14155, "possess": 25201, "teacher": 32581, "laptop": 16925, "preferences": 25471, "followup": 11708, "passive": 24386, "synonymous": 31811, "mirror": 20207, "iv": 15694, "organizing": 23694, "dimension": 8196, "documents": 8516, "dominate": 8661, "directed": 8219, "fine": 11263, "hotpotqa": 13763, "chunks": 4564, "chunk": 4563, "mbert": 19710, "xlmr": 35875, "mbart": 19709, "highresource": 13705, "unannotated": 34106, "appears": 2115, "connections": 5686, "modeled": 20881, "interpret": 15453, "favorably": 11011, "logarithmic": 19153, "planning": 24999, "obtaining": 23261, "automata": 2849, "glms": 12793, "formally": 11751, "constructs": 5813, "finite": 11561, "automaton": 2926, "brief": 3875, "builds": 3928, "textbased": 32971, "fills": 11168, "userdefined": 34678, "specifications": 30763, "accordingly": 848, "refine": 27779, "outcomes": 23735, "verification": 35209, "crossing": 6410, "highlyspecialized": 13672, "secure": 29344, "multiparty": 22374, "finnish": 11562, "journalists": 15717, "house": 13768, "advances": 1477, "price": 25905, "formidable": 11763, "proportional": 26483, "rapidly": 27254, "realize": 27320, "convenient": 6070, "layerwise": 17450, "dropping": 8745, "125x": 99, "smallscale": 30405, "pronouns": 26457, "subject": 31423, "object": 23198, "corresponds": 6233, "verb": 35202, "frequency": 11923, "verbs": 35207, "raters": 27269, "explain": 10523, "easier": 8788, "literacy": 18037, "involves": 15627, "rephrasing": 28098, "purely": 26881, "sari": 29101, "mechanical": 19745, "turk": 34027, "bigscience": 3705, "workshop": 35831, "initiative": 14976, "interdisciplinary": 15403, "collaborations": 4905, "ethics": 9808, "governance": 12837, "participant": 24324, "carry": 4190, "lessons": 17722, "did": 8030, "goes": 12811, "basis": 3284, "inception": 14443, "reused": 28786, "activated": 1135, "decouple": 7292, "attractive": 2754, "datahungry": 6931, "checkpoint": 4518, "initial": 14958, "judgements": 15723, "unacceptable": 34102, "contextfree": 5932, "contextualized": 5960, "mismatch": 20220, "stability": 30846, "grammaticality": 13210, "randomly": 27180, "unstable": 34449, "worsen": 35839, "violated": 35278, "amplified": 1894, "overlap": 23940, "explained": 10531, "66": 479, "hypothesis": 13963, "uniformly": 34345, "spread": 30827, "opt66b": 23609, "heads": 13480, "removed": 28075, "decline": 7243, "unimportant": 34350, "primitive": 25928, "reinforcing": 27848, "arguments": 2494, "head": 13477, "quantities": 27000, "cater": 4232, "casting": 4209, "eliminating": 9109, "unnatural": 34416, "labor": 15970, "inferencetime": 14826, "vast": 35180, "virtually": 35285, "eliciting": 9105, "fourth": 11813, "fair": 10922, "rivals": 28897, "diversification": 8473, "personality": 24884, "psychology": 26823, "diagnose": 7998, "exhibited": 10233, "asked": 2555, "party": 24370, "diagnostic": 8001, "markers": 19597, "illustrates": 14049, "manipulated": 19540, "predictable": 25412, "frames": 11822, "personas": 24892, "subjects": 31427, "collated": 4910, "reddit": 27692, "interleaving": 15420, "promptingbased": 26400, "uptodate": 34489, "onestep": 23354, "retrieveandread": 28770, "depend": 7613, "retrieved": 28771, "interleaves": 15419, "musique": 22470, "flant5large": 11603, "hallucination": 13372, "safety": 29041, "unbiased": 34113, "inventory": 15566, "scored": 29275, "gpt35": 13012, "gpt4": 13049, "llama2chat7b": 18222, "preference": 25466, "recommended": 27654, "projection": 26249, "readily": 27300, "formulated": 11773, "pertaining": 24904, "decomposes": 7287, "candidates": 3994, "ranked": 27226, "african": 1554, "sparsegpt": 30621, "pruned": 26803, "gptfamily": 13142, "45": 393, "reach": 27286, "negligible": 22670, "ignored": 14038, "semistructured": 29502, "diffusion": 8179, "concretely": 5559, "revolutionizing": 28853, "sectors": 29342, "job": 15707, "positions": 25190, "transformed": 33698, "dalle2": 6581, "3d": 368, "flamingo": 11585, "video": 35262, "taxonomy": 32574, "discoveries": 8271, "provable": 26665, "maximal": 19699, "regularizer": 27828, "mmr": 20316, "multihead": 22284, "self": 29403, "corroborate": 6234, "infusion": 14942, "adopting": 1406, "usercentric": 34677, "chatbots": 4451, "volumes": 35388, "limiting": 17975, "stylistic": 31417, "memorability": 19790, "empathy": 9208, "infusing": 14941, "comparisons": 5201, "bootstrap": 3830, "infuse": 14939, "balancing": 3086, "compelling": 5207, "stylized": 31418, "realm": 27327, "contributes": 6032, "affect": 1536, "nm": 22976, "masks": 19620, "innovations": 14992, "a100": 613, "nontrivial": 23013, "attentionbased": 2746, "origins": 23730, "poorly": 25106, "estimated": 9782, "moment": 22203, "variance": 35038, "phases": 24919, "calculates": 3963, "trajectory": 33660, "concentration": 5525, "mitigates": 20261, "aggressive": 1581, "ratios": 27280, "tabular": 31991, "independent": 14670, "parent": 24308, "table": 31983, "tables": 31986, "captures": 4154, "needing": 22648, "retrievers": 28778, "plugin": 25057, "option": 23660, "instantiate": 15115, "included": 14448, "beir": 3335, "necessity": 22614, "procedural": 26042, "straightforward": 31091, "reflects": 27798, "intentions": 15377, "incredibly": 14652, "textprompted": 32985, "dynamics": 8768, "discovery": 8274, "varieties": 35055, "weaknesses": 35464, "revealed": 28808, "said": 29057, "connect": 5681, "expect": 10348, "polysemy": 25098, "spaces": 30586, "street": 31137, "premises": 25494, "conclusions": 5557, "enabled": 9290, "chat": 4439, "lists": 18035, "lamda": 16021, "aspectbased": 2569, "positive": 25192, "neutral": 22771, "16": 156, "ate": 2678, "337": 331, "experiences": 10374, "misleading": 20218, "hybrid": 13954, "cqa": 6338, "cps": 6334, "want": 35419, "freedom": 11911, "mix": 20268, "climate": 4654, "protection": 26657, "explainability": 10525, "versatile": 35223, "allowed": 1803, "nonspecialists": 23009, "start": 30897, "edited": 8824, "helm": 13500, "strict": 31145, "multimodal": 22336, "neurosymbolic": 22770, "directional": 8226, "stimulus": 31065, "act": 1128, "nuanced": 23132, "sidesteps": 29940, "offline": 23320, "multiwoz": 22467, "enhances": 9545, "chatgpts": 4506, "humancrafted": 13894, "lags": 16016, "weighted": 35499, "rwkv": 29022, "45m": 396, "rendering": 28080, "quadratic": 26926, "20x": 248, "democratize": 7424, "locate": 19144, "cuttingedge": 6570, "attribution": 2768, "drive": 8734, "llama": 18058, "7b": 524, "65b": 476, "trillions": 33909, "resorting": 28406, "proprietary": 26634, "inaccessible": 14431, "llama13b": 18156, "llama65b": 18228, "palm540b": 23997, "accompanied": 838, "commensurate": 4979, "continuation": 5983, "engine": 9458, "offering": 23296, "fuzzy": 12053, "exact": 10087, "hugging": 13783, "face": 10821, "functional": 11964, "neglecting": 22668, "longstanding": 19213, "considered": 5716, "illustrative": 14053, "summarize": 31628, "translate": 33811, "matter": 19695, "dont": 8663, "humanlevel": 13903, "generalizability": 12200, "push": 26892, "collections": 4935, "varied": 35050, "british": 3881, "american": 1878, "conventions": 6081, "establish": 9765, "appear": 2112, "correcting": 6197, "debiased": 7214, "somewhat": 30520, "composite": 5324, "pressing": 25615, "international": 15446, "formed": 11762, "undertaking": 34286, "putting": 26897, "harm": 13437, "curation": 6474, "undertaken": 34285, "thereof": 33062, "empower": 9265, "lossless": 19254, "expectation": 10349, "prunes": 26807, "segmentation": 29370, "imagenet1k": 14080, "save": 29113, "248": 265, "illustrating": 14050, "concern": 5538, "societies": 30439, "completing": 5257, "130": 110, "co2e": 4714, "doing": 8546, "substitute": 31490, "activities": 1151, "kbqa": 15743, "supports": 31717, "follows": 11707, "kbbased": 15742, "commonalities": 5021, "resemble": 28383, "vicuna": 35246, "comprehending": 5337, "black": 3751, "devised": 7993, "comprehend": 5334, "sounds": 30544, "iterations": 15682, "meanings": 19728, "continued": 5989, "identity": 14026, "corrupted": 6236, "reasonable": 27359, "fallacies": 10952, "preferred": 25476, "convey": 6116, "lesser": 17720, "targets": 32068, "cameras": 3989, "opinion": 23577, "generationbased": 12640, "extractor": 10781, "modelname": 20916, "assistant": 2636, "ubiquitous": 34088, "revisions": 28837, "pronounced": 26456, "bangla": 3092, "grammatical": 13204, "symbol": 31799, "postprocessing": 25228, "distance": 8326, "detected": 7853, "grammar": 13203, "replicate": 28108, "instructiontuning": 15301, "factor": 10863, "merely": 19847, "curve": 6553, "koala": 15939, "index": 14680, "overlaps": 23942, "suffix": 31565, "proportion": 26482, "forensic": 11726, "visual": 35325, "revolutionized": 28843, "unfortunately": 34312, "incorrect": 14581, "renders": 28081, "subfields": 31421, "integers": 15317, "judging": 15725, "integer": 15316, "divided": 8489, "prime": 25924, "computers": 5509, "classifying": 4632, "critically": 6398, "automl": 2927, "failed": 10909, "engineered": 9460, "era": 9691, "chatdoctor": 4453, "alpaca": 1821, "peft": 24434, "easytouse": 8803, "adapters": 1204, "placement": 24985, "locations": 19149, "fourteen": 11812, "arithmetic": 2499, "smallerscale": 30402, "chef": 4525, "imagery": 14081, "intelligent": 15362, "familiar": 10963, "captioning": 4135, "monolithic": 22211, "cards": 4164, "dietary": 8032, "restrictions": 28535, "concludes": 5554, "struggled": 31248, "repetitive": 28094, "cook": 6130, "pragmatic": 25383, "featuring": 11046, "parrot": 24313, "processingnlp": 26135, "accomplished": 843, "restricted": 28531, "regulate": 27830, "wmt22": 35631, "details": 7844, "cerebrasgpt": 4270, "computeoptimal": 5501, "cluster": 4706, "111m": 76, "powerlaw": 25355, "learnings": 17676, "parameterization": 24217, "predictability": 25411, "aiding": 1628, "expressed": 10639, "norm": 23015, "structureaware": 31217, "universally": 34373, "uie": 34091, "linearized": 17998, "unleashing": 34390, "induce": 14730, "structural": 31209, "posttraining": 25232, "compact": 5064, "trees": 33880, "highorder": 13673, "helping": 13521, "endtasks": 9431, "taskadaptive": 32211, "resolves": 28403, "longrange": 19211, "boundary": 3844, "education": 8834, "teachers": 32587, "alike": 1787, "judge": 15720, "sufficiently": 31563, "classroom": 4633, "unhelpful": 34317, "usefulness": 34643, "taxonomies": 32573, "ts": 33949, "word2vec": 35652, "userfriendly": 34679, "44": 392, "lowcost": 19277, "akin": 1677, "fostering": 11787, "quantity": 27001, "encompassing": 9389, "supplement": 31701, "advancement": 1446, "closest": 4699, "secondary": 29330, "34b": 338, "fullparameter": 11948, "lorabased": 19236, "foundational": 11801, "reproduction": 28205, "mitigating": 20262, "educators": 8848, "evolutionary": 10076, "taught": 32572, "university": 34376, "south": 30577, "strides": 31147, "agi": 1583, "nonetheless": 22994, "obstacles": 23244, "predominantly": 25461, "llamas": 18241, "markedly": 19596, "proficiency": 26178, "ceval": 4286, "dataefficient": 6927, "evergrowing": 10050, "equipped": 9680, "budgets": 3902, "homogeneous": 13751, "pretrains": 25853, "threestep": 33095, "kmeans": 15803, "suitability": 31595, "longform": 19204, "alignment": 1751, "cheaper": 4510, "instructiontuned": 15283, "things": 33064, "premise": 25493, "basic": 3282, "functioning": 11969, "urgent": 34495, "representational": 28153, "articulate": 2526, "pertains": 24905, "exercise": 10207, "broadly": 3893, "ordinary": 23685, "demystifying": 7599, "mystery": 22476, "informed": 14935, "consensus": 5693, "expansive": 10347, "whos": 35543, "mls": 20308, "incoherent": 14534, "grade": 13183, "longterm": 19216, "immediately": 14112, "automate": 2850, "shots": 29833, "reside": 28387, "recursive": 27687, "faces": 10827, "questionanswer": 27078, "display": 8314, "stanford": 30891, "massively": 19634, "27b": 284, "67b": 484, "performant": 24824, "usd": 34511, "slot": 30328, "filling": 11166, "participation": 24333, "2023": 232, "mt0": 22252, "intentionally": 15375, "humanlabeled": 13902, "llmaugmented": 18383, "navigate": 22592, "timeintensive": 33152, "acquiring": 1123, "annotating": 2023, "guidelines": 13356, "synthetically": 31863, "proves": 26679, "rare": 27258, "multiclass": 22272, "moderately": 22151, "exponentially": 10628, "percentage": 24459, "uniform": 34344, "choosing": 4560, "contrary": 6007, "slower": 30333, "posit": 25179, "selectively": 29399, "distilling": 8356, "reaction": 27291, "llmgenerated": 18393, "needed": 22646, "extracts": 10782, "rationales": 27278, "tracking": 33327, "prerequisite": 25506, "trainingevaluation": 33648, "taken": 32022, "conformal": 5668, "nucleus": 23135, "successively": 31546, "chooses": 4559, "cumulative": 6465, "exceeds": 10151, "entropy": 9661, "overconfident": 23930, "inverse": 15567, "authors": 2837, "suddenly": 31548, "expertise": 10513, "myriad": 22474, "evolve": 10077, "probably": 25975, "rapid": 27237, "ushering": 34719, "profound": 26191, "govern": 12836, "wisely": 35622, "poses": 25165, "industries": 14743, "maximize": 19702, "minimize": 20195, "reparameterization": 28088, "constitute": 5775, "reaches": 27287, "hurting": 13952, "inferring": 14832, "tag": 32009, "treated": 33872, "lieu": 17820, "near": 22598, "roughly": 28985, "supervising": 31694, "bits": 3750, "clustering": 4708, "8bit": 583, "threefold": 33093, "71": 507, "32gb": 324, "sts": 31251, "witnessing": 35625, "pushing": 26895, "imperative": 14153, "inevitably": 14753, "detrimental": 7904, "environmental": 9666, "scant": 29186, "paid": 23967, "submodular": 31435, "biobert": 3738, "providers": 26745, "thousands": 33085, "coldstart": 4900, "puts": 26896, "tfew": 33042, "logic": 19154, "tl": 33181, "rigorously": 28886, "specify": 30767, "specification": 30762, "publish": 26869, "28k": 291, "lifted": 17825, "atomic": 2680, "ap": 2096, "originates": 23728, "usage": 34501, "characterizes": 4431, "logical": 19155, "richness": 28878, "ui": 34090, "pivotal": 24976, "digital": 8188, "facilitating": 10851, "encapsulating": 9335, "graphical": 13233, "guis": 13362, "gui": 13340, "mobile": 20318, "apps": 2423, "extensibility": 10669, "adaptability": 1170, "wikihow": 35601, "app": 2108, "agentlm": 1565, "mechanisms": 19753, "faithful": 10928, "uncovered": 34135, "alignments": 1785, "bruteforce": 3900, "boundless": 3845, "solves": 30504, "implementing": 14169, "boolean": 3812, "faithfully": 10929, "begun": 3308, "revolutionize": 28842, "sciences": 29246, "methodological": 19988, "personalize": 24887, "periods": 24860, "1972": 194, "alpaca7b": 1835, "missing": 20223, "entirely": 9628, "changed": 4408, "rising": 28891, "sociodemographic": 30441, "privacy": 25950, "broaden": 3888, "revolutionary": 28841, "drastically": 8721, "deficiency": 7361, "evident": 10070, "demanding": 7412, "sustained": 31787, "counseling": 6288, "synthesizing": 31843, "anthropomorphic": 2091, "incorporates": 14571, "updating": 34477, "permits": 24867, "forget": 11729, "closedsource": 4686, "exemplify": 10206, "llmbased": 18384, "chatbot": 4448, "acts": 1154, "recall": 27468, "querying": 27035, "600": 459, "043": 9, "tau": 32571, "compromises": 5438, "intents": 15378, "json": 15719, "dbpedia": 7205, "lima": 17906, "trip": 33911, "history": 13729, "tends": 32713, "strictly": 31146, "43": 388, "bard": 3095, "davinci003": 7200, "pseudocode": 26819, "harnessing": 13458, "132": 112, "aggregate": 1576, "comments": 4981, "docstrings": 8500, "assumptions": 2664, "breaks": 3860, "flan": 11586, "fairly": 10925, "adopted": 1404, "redundant": 27767, "nowadays": 23131, "simplifying": 30181, "wordbyword": 35653, "rerankers": 28277, "proposals": 26488, "t5small": 31978, "xsum": 35881, "mauve": 19697, "booksum": 3811, "paragraphlevel": 24163, "alms": 1819, "paraphrases": 24305, "traditionally": 33354, "falcon40b": 10945, "perception": 24461, "scheduling": 29229, "llmempowered": 18392, "unprecedented": 34418, "harnesses": 13456, "begins": 3307, "perceive": 24455, "microbatches": 20156, "llamabased": 18236, "86": 577, "compromising": 5439, "toolkits": 33266, "flashattention": 11609, "garnered": 12119, "handling": 13413, "reframe": 27803, "consumed": 5816, "reflected": 27793, "slu": 30334, "close": 4671, "oracle": 23663, "note": 23034, "polyglot": 25097, "encyclopedic": 9406, "associations": 2656, "counterfactuals": 6298, "metas": 19862, "difficulties": 8175, "location": 19148, "exploits": 10562, "monte": 22214, "carlo": 4183, "policies": 25078, "multiplication": 22433, "travel": 33868, "modelbased": 20879, "inadequate": 14437, "computes": 5510, "biographies": 3740, "commercial": 4982, "retrievalaugmented": 28760, "llmpowered": 18396, "utilise": 34949, "dollyv2": 8549, "stablevicuna": 30852, "synthesised": 31838, "translated": 33812, "coherence": 4886, "tamil": 32041, "falls": 10955, "personalized": 24888, "defects": 7358, "traversal": 33869, "enrich": 9591, "cover": 6314, "entries": 9660, "counteract": 6293, "enlarged": 9581, "add": 1227, "l1": 15949, "precomputed": 25396, "link": 18027, "coverage": 6318, "boosting": 3819, "expands": 10342, "globally": 12798, "western": 35535, "culture": 6461, "unfairness": 34305, "suited": 31602, "hindi": 13721, "112": 77, "nonenglish": 22990, "showcasing": 29847, "narratives": 22492, "claimed": 4578, "originating": 23729, "indices": 14708, "predicate": 25403, "conform": 5667, "controls": 6068, "hallucinate": 13367, "contextaware": 5930, "pay": 24424, "unfaithful": 34306, "amplifies": 1895, "difference": 8034, "143": 137, "overriding": 23951, "contradicts": 6006, "resolving": 28404, "conflict": 5664, "window": 35611, "segments": 29373, "plaintext": 24992, "precomputing": 25397, "passage": 24378, "inexpensive": 14754, "openworld": 23560, "profiles": 26188, "considers": 5727, "predefined": 25400, "ontology": 23377, "displaying": 8317, "emerges": 9186, "gpt35turbo": 13041, "bloomz": 3796, "whisper": 35538, "33": 329, "61": 462, "texttospeech": 33008, "tts": 33952, "resulted": 28551, "overarching": 23918, "exceptions": 10177, "gaps": 12116, "cornerstone": 6162, "motion": 22225, "subjectivity": 31426, "spearman": 30651, "nearly": 22602, "19k": 196, "grounds": 13292, "inhouse": 14957, "llama7b": 18230, "trustworthy": 33935, "entails": 9616, "checking": 4517, "pushed": 26894, "frontier": 11931, "ats": 2682, "exciting": 10183, "simplifications": 30176, "cheaply": 4511, "weaker": 35458, "selfinstruct": 29423, "canonical": 3998, "discrepancies": 8277, "mimicking": 20171, "closed": 4674, "shortcut": 29823, "paraphrasing": 24307, "distills": 8359, "extremescale": 10804, "hypothesize": 13966, "proximity": 26798, "occupy": 23272, "proximal": 26793, "subspace": 31456, "subspaces": 31457, "unconstrained": 34133, "fidelity": 11131, "assumed": 2660, "whitebox": 35541, "incompatible": 14536, "blackboxes": 3758, "opt30b": 23608, "observing": 23242, "23x": 261, "primed": 25925, "pronoun": 26455, "referential": 27774, "stimuli": 31064, "replicating": 28109, "johnson": 15709, "icl": 13973, "adapts": 1224, "flanul2": 11607, "contemporary": 5841, "verifiers": 35214, "violates": 35279, "actions": 1132, "verifier": 35213, "invalid": 15561, "check": 4513, "presence": 25507, "prune": 26802, "temperature": 32686, "curse": 6550, "descriptive": 7693, "astonishing": 2667, "ecosystem": 8814, "irreversible": 15647, "tails": 32021, "disappear": 8253, "collapse": 4909, "autoencoders": 2845, "intuition": 15557, "seriously": 29645, "sustain": 31784, "wealth": 35467, "referred": 27775, "selfknowledge": 29426, "paramount": 24298, "unanswerable": 34107, "selfaware": 29410, "discovering": 8272, "distinguishable": 8374, "sampleefficient": 29069, "templates": 32691, "aligning": 1744, "logit": 19161, "testtime": 32811, "nearest": 22600, "neighbors": 22675, "succeed": 31505, "linearly": 17999, "retrieving": 28780, "iteration": 15681, "establishes": 9775, "reflective": 27797, "categorizing": 4230, "typology": 34086, "conceptualize": 5536, "restricts": 28537, "macrof1": 19378, "pilot": 24954, "dolly": 8548, "openassistant": 23447, "stablelm": 30851, "deliberately": 7398, "inserted": 15057, "verifying": 35220, "respective": 28453, "sections": 29340, "neurips": 22764, "119": 83, "866": 579, "clearly": 4649, "distinctions": 8371, "think": 33065, "meaningfully": 19726, "vocabularies": 35380, "incomparable": 14535, "playing": 25024, "modelagnostic": 20878, "similarities": 30123, "differences": 8036, "believed": 3343, "customize": 6563, "backward": 3070, "stores": 31083, "tensorized": 32724, "orca": 23665, "progressive": 26232, "traces": 33324, "thought": 33078, "tap": 32044, "judicious": 15729, "vicuna13b": 35258, "42": 386, "agieval": 1584, "pts": 26828, "examinations": 10097, "sat": 29103, "lsat": 19324, "gre": 13246, "indicates": 14699, "modelsllms": 22146, "followers": 11684, "forbidden": 11715, "lowdimensional": 19280, "converted": 6113, "children": 4533, "categorize": 4228, "lexicon": 17805, "master": 19636, "principles": 25933, "aged": 1556, "months": 22216, "96": 605, "triggering": 33900, "memorizing": 19799, "chain": 4289, "upper": 34481, "byproduct": 3952, "sql": 30838, "lambda": 16020, "calculus": 3971, "impeding": 14152, "164": 161, "alongside": 1820, "generaldomain": 12190, "55b": 447, "protocol": 26662, "gather": 12126, "equip": 9678, "naive": 22477, "llmasajudge": 18382, "mtbench": 22259, "arena": 2487, "inadequacy": 14436, "judges": 15724, "verbosity": 35206, "agreement": 1590, "battle": 3293, "complement": 5243, "30k": 314, "specialists": 30661, "englishcentric": 9495, "transferability": 33685, "welltrained": 35531, "bea": 3298, "teacherstudent": 32589, "participated": 24329, "codalab": 4719, "experimented": 10413, "opt27b": 23607, "bertscore": 3550, "dialogrpt": 8007, "pedagogical": 24431, "achievements": 1023, "participating": 24330, "ais": 1674, "googles": 12831, "mediate": 19764, "moderation": 22154, "worlds": 35836, "7000": 499, "attempted": 2706, "accounts": 853, "policymakers": 25091, "telecom": 32682, "frontiers": 11934, "automating": 2924, "evolution": 10074, "realizing": 27323, "3rd": 370, "partnership": 24364, "pertinent": 24906, "846": 574, "83": 568, "corroborates": 6235, "stepping": 31056, "wireless": 35620, "paves": 24418, "revolution": 28840, "private": 25957, "harmful": 13439, "unauthorized": 34110, "inclusion": 14532, "copyrighted": 6147, "repositories": 28129, "gpts": 13163, "truly": 33928, "apache": 2097, "licenses": 17816, "entry": 9663, "hurdles": 13950, "openness": 23475, "thoughts": 33082, "formalized": 11749, "openai": 23432, "leaking": 17500, "distant": 8328, "compiling": 5242, "problemsolving": 26037, "formalizing": 11750, "received": 27476, "lowlevel": 19297, "bridging": 3873, "prowess": 26790, "vital": 35370, "languagespecific": 16923, "instructing": 15138, "89": 582, "multitude": 22459, "homepage": 13750, "section": 29339, "belongs": 3347, "titles": 33179, "layout": 17454, "paraphraser": 24304, "substitutions": 31494, "arxiv": 2547, "peer": 24432, "reviewed": 28831, "mse": 22249, "scibert": 29239, "alterations": 1843, "regularizes": 27829, "gradual": 13200, "rank": 27221, "arbitrary": 2428, "ranks": 27236, "fullrank": 11950, "36": 353, "analyzes": 2000, "polarity": 25077, "reversed": 28824, "integrated": 15323, "calculated": 3962, "textbooks": 32977, "phi1": 24927, "competing": 5215, "a100s": 620, "textbook": 32976, "6b": 489, "exercises": 10208, "1b": 197, "attains": 2698, "pass1": 24372, "humaneval": 13896, "mbpp": 19714, "coding": 4864, "350m": 343, "savings": 29117, "illustrate": 14045, "accelerates": 796, "empowering": 9268, "untapped": 34459, "uncovers": 34138, "expressing": 10641, "overconfidence": 23929, "narrow": 22493, "auroc": 2831, "scope": 29263, "composing": 5323, "prevailing": 25854, "integrating": 15330, "negation": 22657, "operators": 23576, "unlearning": 34387, "alpacalora": 1839, "authoring": 2835, "practically": 25376, "oriented": 23696, "opportunities": 23580, "cheating": 4512, "measurable": 19731, "consuming": 5822, "127": 100, "practitioner": 25380, "sophistication": 30528, "leveraged": 17764, "designers": 7750, "cfg": 4287, "texttoimage": 33005, "pure": 26879, "pythia": 26899, "llamafamily": 18240, "twice": 34036, "stack": 30854, "selfconsistency": 29413, "75": 515, "gpt4all": 13128, "tensortrain": 32726, "highdimensional": 13591, "subtle": 31498, "dimensionality": 8197, "lies": 17819, "susceptibility": 31780, "trust": 33932, "quantification": 26984, "hurdle": 13949, "roadblock": 28913, "representativeness": 28188, "redundancy": 27766, "suffice": 31558, "lengthy": 17716, "regrettably": 27824, "methodologies": 19989, "equal": 9673, "disregarding": 8319, "inequalities": 14751, "receive": 27475, "excessive": 10178, "weighting": 35500, "rectify": 27674, "wizardlm": 35626, "llama2chat": 18215, "33b": 332, "freeform": 11912, "came": 3986, "overheads": 23939, "memoryefficient": 19837, "penalty": 24448, "goals": 12810, "32768": 323, "hinder": 13714, "accessibility": 831, "ls": 19323, "sharedtask": 29787, "portuguese": 25152, "nextword": 22898, "excelled": 10159, "suboptimal": 31438, "delivering": 7401, "answerability": 2053, "355m": 348, "em": 9118, "geometry": 12728, "spatial": 30637, "llmsgenerated": 19052, "geometric": 12725, "spatially": 30644, "highlights": 13649, "complexities": 5299, "organized": 23693, "simulating": 30189, "measured": 19738, "contributing": 6034, "matched": 19648, "misleadingly": 20219, "recognized": 27645, "superposition": 31668, "contextdependent": 5931, "opposed": 23584, "affordance": 1550, "differing": 8166, "implied": 14181, "smoothness": 30412, "outline": 23742, "website": 35487, "developments": 7978, "options": 23662, "positional": 25185, "moderatesized": 22153, "debiasing": 7215, "exploration": 10563, "decide": 7227, "gsm8k": 13325, "suffered": 31555, "llmdriven": 18391, "agent": 1558, "ahead": 1592, "decomposing": 7288, "snippets": 30414, "htmlt5": 13773, "mind2web": 20175, "graphtotext": 13240, "agenda": 1557, "webnlg": 35482, "transportation": 33865, "chatgptgenerated": 4504, "instructionoutput": 15237, "sft": 29757, "rlhf": 28906, "hindering": 13716, "instructiontune": 15282, "left": 17691, "raised": 27164, "26": 278, "learningbased": 17673, "aimed": 1650, "harms": 13451, "moral": 22218, "expertlevel": 10517, "gemini": 12138, "pro": 25961, "anthropics": 2089, "claude": 4635, "70b": 503, "shifts": 29807, "tendency": 32711, "recommends": 27657, "caution": 4257, "distinctive": 8372, "slightly": 30322, "bot": 3835, "sparkdesk": 30603, "chatgpt35": 4500, "aids": 1630, "convincing": 6119, "calculations": 3967, "chart": 4437, "vqa": 35394, "nonsynthetic": 23011, "charts": 4438, "palm2": 23993, "openvocabulary": 23558, "textonly": 32984, "mentioning": 19844, "rating": 27272, "0shot": 23, "mllm": 20292, "llava": 18242, "mplugowl": 22243, "blip2": 3775, "openflamingos": 23465, "llava13b": 18250, "cider": 4565, "serialized": 29630, "llavas": 18256, "015": 3, "reaching": 27288, "026": 7, "coupled": 6309, "speculative": 30777, "ondevice": 23338, "intensity": 15369, "rationale": 27276, "explanatory": 10543, "utilising": 34950, "strategyqa": 31131, "617": 463, "636": 471, "727": 510, "316": 316, "255": 273, "extrapolating": 10788, "laws": 17420, "allocation": 1799, "xquad": 35880, "flores101": 11626, "encouragingly": 9405, "middle": 20158, "defined": 7364, "benefiting": 3488, "standalone": 30866, "categorical": 4220, "crossentropy": 6409, "oneatatime": 23341, "leaving": 17681, "synonyms": 31812, "streamlines": 31136, "spatiotemporal": 30645, "coordinates": 6137, "encapsulate": 9332, "interval": 15474, "deception": 7225, "claim": 4576, "editing": 8825, "ultimately": 34097, "deceptive": 7226, "risen": 28889, "precise": 25388, "088": 19, "85": 575, "pegasus": 24444, "82": 565, "57": 449, "liar": 17810, "alter": 1842, "preserves": 25604, "probed": 25977, "embarks": 9124, "pioneering": 24959, "commonlyused": 5032, "detectors": 7888, "scrutinizing": 29297, "unveil": 34466, "detector": 7887, "intriguing": 15487, "isotropic": 15651, "anisotropic": 2012, "succinct": 31547, "gptbased": 13139, "humanauthored": 13887, "closing": 4700, "foreign": 11724, "purposes": 26885, "ensuring": 9609, "inefficiency": 14749, "ineffective": 14747, "affordable": 1549, "transformerlike": 33773, "openllama": 23470, "3b": 364, "ensembling": 9599, "fundamentally": 11983, "foundations": 11810, "realized": 27321, "reality": 27319, "unravel": 34422, "cooperation": 6133, "knowledgeguided": 15928, "discovered": 8269, "variation": 35044, "concatenation": 5523, "mainstream": 19408, "069": 13, "048": 10, "comet": 4976, "enhancements": 9543, "blue": 3798, "leakage": 17498, "lacks": 16012, "subjective": 31424, "dimensions": 8199, "advent": 1508, "kb": 15741, "llama213bchat": 18200, "005": 1, "fetched": 11082, "dpr": 8709, "held": 13497, "recommendation": 27648, "60k": 461, "glove": 12799, "passed": 24382, "collaborate": 4902, "fedllm": 11052, "federated": 11048, "fl": 11583, "addressed": 1360, "integration": 15339, "bpfree": 3849, "perturbed": 24912, "delivers": 7402, "centers": 4265, "designs": 7755, "striking": 31152, "careful": 4167, "balance": 3077, "uniquely": 34365, "cots": 6287, "unattained": 34109, "necessitating": 22613, "compilers": 5241, "compiler": 5240, "passes": 24383, "passing": 24384, "133": 113, "count": 6289, "104": 58, "food": 11709, "autonomously": 2933, "blip": 3774, "customization": 6562, "underscoring": 34184, "bringing": 3878, "centered": 4264, "encompass": 9385, "phonetics": 24935, "631": 469, "llama270bchat": 18203, "android": 2010, "smartphones": 30409, "developers": 7937, "endusers": 9445, "bridges": 3871, "multigranularity": 22283, "158": 149, "909": 594, "713": 508, "gpt4powered": 13131, "364": 354, "397": 362, "suites": 31603, "marked": 19592, "preprocessing": 25505, "analytics": 1985, "delve": 7406, "imputation": 14428, "contextualization": 5959, "immense": 14113, "underscores": 34179, "dnns": 8498, "depth": 7666, "width": 35600, "submodels": 31434, "nested": 22682, "submodel": 31433, "accumulation": 855, "versatility": 35229, "validated": 34998, "mobilenet": 20320, "superiority": 31661, "awareness": 3044, "unexpectedly": 34298, "llama1": 18153, "pytorch": 26905, "prioritizing": 25948, "communitys": 5063, "implementations": 14164, "codebase": 4831, "highperforming": 13680, "confined": 5658, "xgen": 35868, "8k": 584, "instructional": 15211, "dollars": 8547, "consolidate": 5767, "glm130b": 12792, "contrasting": 6019, "deviates": 7986, "later": 17413, "localized": 19140, "justify": 15736, "definitive": 7370, "incorrectly": 14590, "hampers": 13401, "trustworthiness": 33934, "answered": 2054, "vietnamese": 35271, "consideration": 5714, "helpfulness": 13518, "2030": 241, "fake": 10933, "peftlora": 24439, "analysing": 1908, "manipulation": 19543, "neurons": 22768, "dead": 7207, "125m": 97, "66b": 481, "neuron": 22765, "70": 494, "activate": 1133, "stream": 31132, "acting": 1129, "phi15": 24928, "initiated": 14974, "5x": 457, "seeing": 29356, "vertical": 35239, "interested": 15405, "subdomains": 31420, "deeply": 7351, "driving": 8737, "tendencies": 32710, "favoring": 11013, "lives": 18056, "disparities": 8312, "lean": 17502, "elucidate": 9114, "circuit": 4567, "breaking": 3859, "undesirable": 34290, "pathways": 24404, "intention": 15374, "disabling": 8247, "behaves": 3310, "ablate": 732, "edges": 8821, "characterizing": 4433, "figures": 11161, "characterization": 4428, "argument": 2492, "astronomy": 2671, "scholarly": 29236, "7billionparameter": 545, "insightful": 15067, "stateofthearts": 31009, "spur": 30831, "equivalence": 9686, "ontologies": 23376, "flant5xxl": 11606, "selfassessment": 29406, "tried": 33896, "measurement": 19739, "administering": 1397, "template": 32689, "draft": 8710, "twostage": 34043, "drafting": 8713, "skipping": 30318, "ensures": 9608, "identical": 13991, "opened": 23453, "trial": 33892, "connecting": 5683, "borrows": 3834, "starts": 30901, "population": 25147, "31": 315, "synergies": 31807, "inspire": 15090, "costefficient": 6260, "expanding": 10339, "really": 27326, "gptneox": 13159, "20b": 246, "formatting": 11760, "adherence": 1385, "excelling": 10163, "integral": 15318, "minimizing": 20199, "triviaqa": 33921, "earlyexit": 8783, "trainingfree": 33649, "li": 17807, "searches": 29314, "2l": 298, "hellaswag": 13499, "highlyefficient": 13671, "highperformance": 13674, "restrictive": 28536, "multiplications": 22434, "underutilized": 34288, "onchip": 23337, "kernel": 15749, "15x": 155, "36x": 357, "fastertransformer": 11004, "baichuan": 3075, "cmmlu": 4710, "excels": 10164, "observational": 23220, "activates": 1136, "denoted": 7603, "gpt4generated": 13130, "confident": 5652, "rates": 27270, "tied": 33104, "argued": 2491, "imply": 14183, "matters": 19696, "implies": 14182, "care": 4165, "economic": 8810, "unpredictable": 34421, "impactful": 14144, "credible": 6374, "promotes": 26302, "craft": 6339, "scaffold": 29121, "feeding": 11078, "llama213b": 18197, "path": 24397, "slimpajama": 30324, "627b": 465, "weve": 35536, "deduplication": 7314, "proportions": 26486, "alibi": 1723, "swiglu": 31793, "configuration": 5654, "bf16": 3638, "specializing": 30678, "700": 498, "rephrased": 28097, "drawbacks": 8725, "t53b": 31968, "stateofart": 30916, "exposed": 10632, "senses": 29510, "nllb": 22914, "localizing": 19142, "devoted": 7996, "imbued": 14104, "inadequately": 14438, "rlaif": 28904, "reward": 28857, "attuned": 2770, "valuealigned": 35025, "applicationspecific": 2184, "alpacaeval": 1837, "turbo": 34023, "quantized": 27012, "brazilian": 3856, "school": 29238, "home": 13749, "database": 6918, "took": 33255, "amd": 1876, "processor": 26136, "stateful": 30913, "mock": 20321, "roles": 28964, "triggers": 33901, "monologue": 22212, "assesses": 2607, "necessitate": 22611, "calculation": 3965, "deemed": 7315, "calculationintensive": 3966, "reversal": 28819, "expose": 10631, "deduction": 7308, "composer": 5321, "melodies": 19788, "lee": 17690, "79": 523, "card": 4162, "rise": 28887, "documenting": 8514, "pitfalls": 24974, "bengali": 3493, "modest": 22177, "regard": 27806, "claude2": 4638, "calls": 3984, "tablebased": 31985, "flant5base": 11602, "defining": 7366, "psychometric": 26824, "dilemmas": 8194, "considerations": 5715, "pointing": 25068, "splitting": 30812, "differentiable": 8161, "kernels": 15751, "floating": 11621, "upto": 34488, "starcoder": 30894, "16b": 164, "minutes": 20206, "nearlossless": 22601, "spqr": 30826, "qlora": 26922, "32": 318, "manipulate": 19539, "persons": 24894, "equals": 9675, "unless": 34391, "irrespective": 15645, "extractable": 10747, "adequate": 1381, "instruct": 15128, "promptlearning": 26402, "prominence": 26263, "slms": 30327, "customizability": 6560, "costeffectiveness": 6259, "retail": 28715, "slm": 30326, "underscore": 34172, "exceeding": 10149, "leap": 17503, "emphasizing": 9215, "dearth": 7210, "collegelevel": 4942, "universitys": 34377, "gpt354": 13040, "shortcomings": 29821, "affecting": 1541, "pace": 23961, "underinvestigated": 34150, "parse": 24315, "embodying": 9151, "commercially": 4999, "workflows": 35802, "apparent": 2109, "weakness": 35463, "adhering": 1386, "textrelated": 32986, "encounter": 9391, "argumentative": 2493, "essays": 9753, "boasting": 3802, "cohen": 4884, "kappa": 15739, "spectrum": 30771, "meticulously": 20113, "ratings": 27273, "evaluator": 10042, "referencefree": 27772, "universal": 34370, "existed": 10258, "standardized": 30886, "duration": 8753, "trail": 33358, "timesensitive": 33167, "predominant": 25460, "engage": 9452, "forecasting": 11722, "occurrence": 23275, "actionable": 1131, "bag": 3074, "transcribed": 33664, "aggregated": 1577, "visualized": 35363, "academia": 782, "worth": 35842, "underperform": 34165, "unveiled": 34467, "llama27b": 18204, "intricate": 15483, "portrayal": 25151, "showcased": 29843, "clinical": 4656, "consultation": 5814, "distinction": 8370, "manifestation": 19536, "personalities": 24883, "thirteen": 33069, "classifies": 4629, "textdavinci003": 32980, "jailbreak": 15695, "bypass": 3947, "protocols": 26663, "surrogate": 31769, "llmss": 19053, "deduce": 7306, "generalizing": 12237, "intelligently": 15365, "circumstances": 4570, "september": 29586, "78": 522, "responds": 28470, "inconsistency": 14539, "validating": 35003, "delves": 7407, "multiagent": 22265, "embodied": 9150, "sparked": 30604, "debate": 7211, "superficial": 31640, "2d": 296, "bertlike": 3544, "nuggets": 23137, "exploded": 10552, "meta": 19856, "multinode": 22372, "multigpu": 22281, "sharding": 29779, "subnetworks": 31437, "disentangling": 8307, "multiobjective": 22373, "adverse": 1523, "uncovering": 34136, "maintains": 19431, "socratic": 30444, "hampered": 13400, "buggy": 3905, "instructionbased": 15214, "planners": 24998, "formulating": 11775, "stacking": 30856, "hardcoded": 13424, "invoked": 15622, "collecting": 4924, "compositions": 5330, "loops": 19223, "546": 445, "chains": 4306, "decade": 7218, "surge": 31724, "genai": 12147, "prospects": 26654, "earlystage": 8784, "foster": 11785, "whats": 35537, "magic": 19380, "formalize": 11748, "dynamical": 8764, "steers": 31031, "singular": 30236, "complementary": 5244, "falcon7b": 10946, "wikitext": 35605, "97": 606, "intriguingly": 15488, "suppression": 31721, "comprehensively": 5396, "107": 61, "explains": 10534, "favored": 11012, "selfrepair": 29433, "suppress": 31720, "39": 361, "indonesia": 14728, "manages": 19531, "distantlysupervised": 8329, "arises": 2497, "impair": 14148, "penalizes": 24446, "entityrelation": 9657, "coarsegrained": 4715, "dictated": 8027, "disciplines": 8259, "impede": 14150, "technological": 32675, "terminologies": 32734, "aiassisted": 1624, "spotlight": 30821, "v1": 34980, "categorized": 4229, "hierarchies": 13546, "equity": 9685, "assignments": 2628, "underrepresented": 34169, "proposal": 26487, "neftune": 22653, "rises": 28890, "evolinstruct": 10073, "sharegpt": 29788, "satellite": 29104, "embed": 9125, "geographic": 12724, "density": 7612, "pearsons": 24430, "crucially": 6452, "agriculture": 1591, "healthcare": 13487, "certification": 4283, "rag": 27154, "india": 14681, "gpt4s": 13132, "earn": 8785, "certifications": 4284, "admission": 1399, "management": 19529, "professionals": 26177, "trace": 33323, "continual": 5973, "tasksolving": 32558, "effortless": 9081, "declines": 7244, "288": 289, "losses": 19253, "recovery": 27671, "executed": 10194, "cpu": 6335, "runtimes": 29018, "memorybound": 19836, "recovering": 27669, "validates": 35002, "replication": 28110, "customizing": 6566, "highvolume": 13713, "untargeted": 34460, "selfrefinement": 29429, "devoid": 7995, "strikingly": 31153, "footprints": 11714, "vicuna7b": 35260, "ended": 9425, "domainagnostic": 8608, "string": 31154, "digits": 8192, "frame": 11820, "extrapolate": 10787, "purposebuilt": 26884, "tokenizing": 33213, "repetition": 28093, "daytoday": 7203, "personalization": 24886, "surpassed": 31736, "backed": 3060, "specialize": 30663, "proactively": 25965, "competence": 5211, "lacking": 16011, "rubric": 29004, "20k": 247, "evaluators": 10043, "bench": 3348, "bolstering": 3808, "hhh": 13534, "honeybee": 13752, "loop": 19222, "progressively": 26233, "outperformance": 23790, "queried": 27017, "gametheoretic": 12084, "casts": 4210, "seeks": 29360, "progression": 26231, "detailing": 7843, "rigor": 28882, "306": 312, "literary": 18039, "correlates": 6215, "arbitrarily": 2427, "binding": 3736, "mcqa": 19716, "formulas": 11769, "chemistry": 4527, "biology": 3743, "typed": 34056, "llama270b": 18201, "deriving": 7675, "firstofitskind": 11565, "24k": 267, "wave": 35427, "enterprise": 9619, "societal": 30436, "mirroring": 20208, "opacity": 23379, "reversing": 28826, "upstream": 34486, "standardize": 30885, "developer": 7936, "market": 19598, "standards": 30888, "regulatory": 27833, "h2o": 13363, "studio": 31292, "inherit": 14954, "rankings": 27235, "url": 34498, "httpsgithubcommicrosoftlmops": 13774, "selfimprove": 29421, "revise": 28834, "absent": 759, "selfimprovement": 29422, "replay": 28107, "reordering": 28085, "wordorder": 35654, "tags": 32012, "clause": 4641, "clauses": 4642, "intact": 15315, "embedded": 9126, "confirming": 5662, "implying": 14184, "discerning": 8257, "traintest": 33655, "wang": 35414, "draw": 8723, "categorization": 4227, "higherquality": 13616, "margins": 19590, "exception": 10165, "square": 30843, "beat": 3302, "adequately": 1382, "169": 163, "establishing": 9778, "mistral": 20227, "neglect": 22666, "advocate": 1530, "intricacies": 15482, "strengthening": 31140, "association": 2655, "axis": 3048, "connects": 5689, "merits": 19852, "anchor": 2004, "1100": 75, "newlyconstructed": 22873, "tuples": 34022, "snippet": 30413, "elaborating": 9094, "multifaceted": 22280, "satisfying": 29111, "inability": 14429, "branch": 3853, "merge": 19848, "humanllm": 13913, "satisfaction": 29105, "compresses": 5408, "db": 7204, "women": 35632, "pregnancy": 25486, "03": 8, "disagree": 8250, "causing": 4256, "mechanistic": 19755, "determinants": 7894, "capital": 4129, "london": 19165, "country": 6306, "city": 4574, "localize": 19139, "proof": 26459, "ada": 1159, "diluting": 8195, "balances": 3085, "occupational": 23270, "inclusive": 14533, "relates": 27861, "occupations": 23271, "request": 28206, "hierarchically": 13545, "occupation": 23269, "responsibility": 28518, "inquiries": 15054, "balanced": 3082, "tulu": 33953, "win": 35609, "864": 578, "groundbreaking": 13286, "wellestablished": 35523, "yielded": 35914, "seamlessly": 29303, "beats": 3303, "annealing": 2013, "trade": 33331, "modality": 20327, "amidst": 1881, "persists": 24877, "infeasible": 14755, "computationefficient": 5490, "scorer": 29276, "bind": 3735, "green": 13282, "shapes": 29777, "colors": 4944, "attaching": 2684, "distances": 8327, "expandable": 10337, "develops": 7984, "sizeable": 30290, "captured": 4152, "suggestive": 31589, "going": 12812, "sketch": 30305, "seeds": 29355, "swap": 31789, "pandalm": 23999, "5k": 455, "broadening": 3889, "selfcorrection": 29416, "inaccurately": 14435, "emulate": 9274, "aligns": 1786, "openllm": 23471, "demographic": 7428, "infrastructure": 14937, "astronomical": 2670, "identifiers": 14000, "maintenance": 19434, "identifier": 13999, "knowing": 15807, "nonfactual": 23000, "impedes": 14151, "diversify": 8475, "referring": 27776, "infinite": 14835, "approximations": 2422, "logistic": 19159, "marginally": 19589, "dnn": 8496, "burden": 3941, "likewise": 17905, "brought": 3894, "pushdown": 26893, "longtail": 19215, "tracks": 33329, "depths": 7667, "autoregressively": 2958, "softly": 30450, "modulate": 22189, "skip": 30317, "constituents": 5774, "silver": 30093, "35x": 352, "perplexities": 24871, "gpt2medium": 12975, "advantageous": 1502, "industrial": 14740, "parsers": 24317, "fulltraining": 11951, "backgrounds": 3063, "dissatisfaction": 8323, "posts": 25230, "divergent": 8407, "everincreasing": 10052, "divergence": 8406, "ip": 15639, "int8": 15314, "outlier": 23740, "deteriorated": 7890, "readers": 27299, "userspecified": 34705, "motivates": 22230, "emphasis": 9209, "reweighting": 28864, "directing": 8220, "meant": 19730, "posing": 25177, "coderelated": 4846, "codellama": 4841, "qwen": 27138, "744": 514, "67": 482, "customer": 6557, "unexpected": 34297, "correspondingly": 6232, "responding": 28469, "dpo": 8707, "introductory": 15556, "10000": 46, "customizable": 6561, "lunch": 19330, "assimilating": 2631, "delta": 7404, "disparity": 8313, "zeros": 35948, "fusing": 12020, "ranges": 27215, "effortlessly": 9082, "eliminate": 9106, "amalgamation": 1866, "wizardmath": 35628, "merged": 19849, "datacentric": 6922, "records": 27665, "pursue": 26886, "enlarging": 9582, "organization": 23690, "welldefined": 35520, "contamination": 5840, "overfit": 23931, "818": 563, "unintentional": 34352, "actively": 1150, "fresh": 11929, "labelled": 15963, "compounds": 5333, "organisms": 23689, "resourceintensive": 28426, "framing": 11908, "biogptlarge": 3739, "emulated": 9275, "predicts": 25458, "unexplored": 34299, "pubmed": 26873, "adhere": 1384, "authenticity": 2833, "emphasize": 9210, "refining": 27785, "optiml": 23659, "unfeasible": 34309, "severely": 29754, "promptsource": 26449, "cooperate": 6132, "adaptations": 1196, "causally": 4251, "negated": 22654, "selfpaced": 29427, "modalities": 20322, "81": 560, "llavav15": 18257, "vice": 35243, "versa": 35222, "facilitated": 10848, "encounters": 9396, "deterioration": 7893, "nles": 22908, "zephyr": 35931, "heuristics": 13533, "identically": 13992, "ought": 23733, "worst": 35840, "timeline": 33153, "reflecting": 27794, "unlabelled": 34385, "mixtures": 20288, "decode": 7245, "sequentiality": 29628, "altogether": 1859, "knearest": 15804, "knn": 15805, "elusive": 9116, "117m": 82, "functionalities": 11966, "educationally": 8847, "originate": 23727, "promptengineered": 26370, "qag": 26920, "ics": 13980, "flant5xl": 11605, "mistral7b": 20237, "sheds": 29799, "diagnosing": 7999, "unfiltered": 34310, "inadvertently": 14439, "reproduced": 28201, "interchangeably": 15398, "humanai": 13882, "receives": 27484, "prepare": 25498, "variablelength": 35036, "microbatch": 20155, "325x": 321, "proportionally": 26485, "aggressively": 1582, "regular": 27825, "invoke": 15621, "comprised": 5430, "alpaca52k": 1834, "double": 8667, "tokenlevel": 33214, "smallersized": 30403, "mixtureofexpert": 20283, "gradientfree": 13196, "repository": 28130, "bit": 3749, "unigram": 34348, "twostep": 34048, "competitiveness": 5234, "attaining": 2697, "contend": 5847, "thesis": 33063, "catered": 4234, "hpc": 13770, "concentrate": 5524, "managing": 19532, "race": 27141, "pave": 24416, "resilient": 28395, "merging": 19851, "bge": 3640, "mteb": 22261, "inversion": 15569, "preceding": 25385, "reconstructs": 27661, "recovers": 27670, "innovatively": 15001, "selfchat": 29411, "undergo": 34145, "resultant": 28549, "mastery": 19638, "disruptive": 8320, "integrity": 15346, "moss": 22224, "gptzero": 13166, "characterbased": 4423, "peoples": 24452, "desires": 7766, "identities": 14025, "viewpoints": 35276, "langauge": 16029, "40b": 379, "180b": 185, "assembled": 2584, "falcon180b": 10944, "documented": 8512, "dive": 8404, "tooling": 33264, "4096": 378, "cognition": 4872, "grasping": 13245, "aspire": 2581, "aviation": 3034, "abundance": 779, "jargon": 15701, "terminology": 32735, "opportunity": 23583, "nas": 22495, "separated": 29583, "door": 8666, "quest": 27036, "vehicles": 35199, "responsiveness": 28525, "visionlanguage": 35312, "openflamingo": 23464, "consolidated": 5768, "holistic": 13743, "instant": 15114, "reflection": 27795, "asia": 2548, "favors": 11014, "regional": 27819, "asian": 2549, "sea": 29300, "customs": 6567, "overlook": 23944, "encompasses": 9387, "storytelling": 31089, "humanannotated": 13884, "documentgrounded": 8513, "curvature": 6552, "underscored": 34178, "substitution": 31493, "molecules": 22202, "textattributed": 32969, "aligner": 1743, "disadvantages": 8249, "succeeded": 31506, "highlighter": 13641, "multimodality": 22369, "heavier": 13491, "reliance": 27959, "interactively": 15396, "highlighted": 13639, "vlms": 35377, "confirm": 5659, "707": 502, "mmbench": 20309, "degrading": 7384, "forcing": 11719, "advocates": 1533, "amber": 1871, "committed": 5000, "boundaries": 3843, "coefficient": 4870, "promotional": 26306, "sales": 29058, "chatgpt4": 4503, "bing": 3737, "promotion": 26305, "consumergrade": 5819, "pooling": 25100, "idle": 14033, "volunteers": 35390, "device": 7989, "disconnect": 8262, "abruptly": 757, "partition": 24359, "decentralized": 7224, "180": 184, "releasing": 27930, "ppo": 25357, "sustainability": 31785, "wideranging": 35588, "sustainable": 31786, "816": 562, "demos": 7598, "steady": 31026, "dialoguebased": 8022, "lowest": 19295, "placing": 24986, "5th": 456, "2nd": 299, "aibased": 1625, "stress": 31144, "confusion": 5675, "agitation": 1586, "multidimensional": 22275, "gathered": 12127, "shaping": 29778, "conducive": 5580, "comprehensible": 5339, "visually": 35366, "manuscript": 19574, "company": 5070, "readable": 27296, "55": 446, "longcontext": 19192, "4k": 414, "theoretically": 33052, "noticed": 23041, "multidocument": 22276, "kgs": 15799, "kg": 15798, "intermediary": 15422, "adaptable": 1172, "assimilate": 2630, "528": 437, "locating": 19147, "log": 19150, "odia": 23281, "unavailability": 34111, "indic": 14684, "citizens": 4573, "mixtral8x7b": 20276, "preprocess": 25502, "marking": 19600, "breakthrough": 3861, "assisted": 2638, "forensics": 11727, "positioning": 25189, "unresolved": 34428, "corrections": 6201, "solar": 30459, "upscaling": 34485, "depthwise": 7668, "mixtral8x7binstruct": 20277, "harvesting": 13469, "grapple": 13242, "crafting": 6342, "outliers": 23741, "establishment": 9779, "elucidates": 9115, "minimizes": 20198, "principled": 25932, "questioning": 27093, "llama12": 18155, "mutual": 22471, "hinting": 13723, "criticism": 6401, "nonlinear": 23001, "compensation": 5209, "definitely": 7367, "famous": 10985, "afford": 1548, "prices": 25906, "ablations": 739, "languagebased": 16856, "safely": 29038, "selfdriving": 29418, "planner": 24997, "navigates": 22593, "primer": 25926, "operated": 23562, "zephyr7bbeta": 35934, "interdiscipline": 15404, "earth": 8786, "34": 335, "diversified": 8474, "entailed": 9614, "synthesize": 31839, "subcategories": 31419, "veracity": 35201, "inaccuracies": 14432, "singlehop": 30232, "trigger": 33898, "exemplified": 10205, "englishdominant": 9496, "informativeness": 14934, "harmlessness": 13449, "plant": 25005, "evolved": 10078, "plants": 25006, "engineers": 9472, "7bparameter": 546, "culminating": 6457, "upcoming": 34472, "iot": 15637, "sensing": 29512, "networking": 22706, "smart": 30407, "household": 13769, "robots": 28928, "dalle": 6580, "views": 35277, "security": 29348, "tinyllama": 33175, "opposite": 23585, "laying": 17451, "solid": 30465, "deepseek": 7353, "mixtral": 20273, "8x7b": 588, "timestep": 33169, "claude21": 4640, "susceptible": 31782, "suspected": 31783, "dropped": 8744, "associative": 2657, "mllms": 20294, "economics": 8812, "economy": 8813, "traffic": 33357, "burdens": 3942, "adults": 1415, "disorder": 8310, "credibility": 6373, "prefer": 25465, "truthfully": 33938, "suffering": 31556, "rooted": 28972, "assigned": 2624, "nouns": 23050, "proper": 26468, "adjectives": 1388, "elicit": 9103, "hallucinated": 13369, "webscale": 35485, "textitie": 32983, "repeating": 28092, "ngrambased": 22902, "ultimate": 34096, "specialization": 30662, "acquires": 1122, "principal": 25930, "finely": 11278, "segmenting": 29371, "activating": 1137, "285": 288, "maybe": 19708, "182": 188, "notion": 23045, "deciphering": 7231, "curved": 6554, "studys": 31411, "infrequent": 14938, "querydocument": 27034, "phi": 24926, "ragbased": 27161, "apibased": 2105, "fetch": 11081, "rlbased": 28905, "threshold": 33096, "getting": 12734, "accomplish": 840, "generalist": 12197, "specialist": 30660, "decreases": 7301, "equitable": 9684, "quantisation": 26989, "hit": 13731, "contributor": 6045, "incurs": 14663, "161": 160, "socalled": 30415, "checks": 4524, "redaction": 27691, "trusted": 33933, "selfreflective": 29431, "deficiencies": 7360, "proofs": 26462, "487": 406, "wider": 35583, "pdfs": 24428, "penetration": 24449, "72": 509, "paving": 24420, "proxy": 26799, "operates": 23563, "tunes": 33964, "proxies": 26792, "3times": 371, "replaces": 28104, "constants": 5772, "roleplaying": 28963, "emotionally": 9206, "realism": 27314, "meticulous": 20112, "authentic": 2832, "immersive": 14117, "300b": 310, "cascaded": 4192, "comparably": 5094, "saw": 29118, "selfrewarding": 29434, "superhuman": 31642, "bottlenecked": 3840, "axes": 3047, "summaries": 31605, "gpt4based": 13129, "potent": 25233, "blending": 3762, "impractical": 14226, "collective": 4936, "elevating": 9102, "fragment": 11819, "unicode": 34318, "expedite": 10353, "discovers": 8273, "looking": 19221, "fscore": 11942, "apt": 2424, "discarding": 8255, "remained": 27989, "8x": 587, "japanese": 15699, "korean": 15941, "streamlined": 31135, "semiautoregressive": 29493, "treebased": 33879, "delving": 7408, "corruption": 6237, "encapsulated": 9333, "sc": 29120, "transitions": 33810, "aigc": 1631, "tampered": 32043, "eye": 10810, "documentlevel": 8515, "laborintensive": 15971, "longtext": 19218, "inspiring": 15103, "proceed": 26047, "picking": 24946, "orchestration": 23667, "mixtrals": 20278, "pool": 25099, "synergy": 31808, "modelsmllms": 22148, "continues": 5991, "imposes": 14222, "comprehensiveness": 5400, "fillintheblank": 11167, "randomness": 27184, "gpt4v": 13135, "geminipro": 12144, "qwenvlplus": 27140, "turkish": 34028, "wellresourced": 35528, "ul2": 34094, "competes": 5214, "deleting": 7395, "rows": 28997, "columns": 4946, "phi2": 24929, "24gb": 266, "40gb": 380, "autoregression": 2934, "languagemodel": 16860, "equipping": 9682, "propagation": 26465, "offload": 23323, "solver": 30502, "internally": 15445, "adeptness": 1380, "linked": 18029, "gradually": 13201, "imagetext": 14092, "inevitable": 14752, "adaption": 1218, "route": 28988, "llava15": 18251, "micro": 20154, "imposing": 14223, "pet": 24915, "fever": 11083, "permutations": 24869, "decompositions": 7291, "gpt2small": 12977, "124": 94, "lutbased": 19331, "256": 274, "anticipatory": 2095, "anticipating": 2094, "normative": 23022, "mistral7binstruct": 20240, "seldom": 29374, "threads": 33088, "surged": 31730, "undisclosed": 34295, "cutoff": 6569, "reflections": 27796, "ownership": 23960, "distill": 8333, "therapeutic": 33061, "wish": 35623, "listening": 18034, "client": 4652, "guess": 13338, "holdout": 13737, "figure": 11160, "outcome": 23734, "accepted": 814, "diminishing": 8207, "userprovided": 34682, "outofvocabulary": 23759, "e2e": 8769, "messaging": 19855, "moebased": 22199, "determined": 7900, "simulate": 30184, "humancomputer": 13892, "voting": 35392, "cautious": 4258, "democratic": 7422, "marginalized": 19588, "turning": 34030, "questiongeneration": 27092, "lays": 17456, "discussing": 8298, "lighter": 17834, "systemlevel": 31885, "guardrails": 13334, "safeguarding": 29036, "guard": 13333, "embrace": 9152, "equivalently": 9688, "cached": 3959, "enriching": 9594, "certified": 4285, "ticket": 33102, "guaranteed": 13330, "malaysian": 19520, "recallk": 27472, "malay": 19519, "humanmachine": 13914, "ev": 9812, "compile": 5238, "deductive": 7309, "satisfactory": 29107, "supportive": 31716, "incorporation": 14580, "inaccurate": 14434, "412": 384, "instantiation": 15117, "amplifying": 1897, "drawn": 8729, "november": 23128, "aya": 3049, "ift": 14035, "worked": 35799, "513": 432, "114": 78, "toolaugmented": 33262, "selfevaluation": 29419, "affects": 1544, "pink": 24955, "elephant": 9101, "critiques": 6402, "reshape": 28386, "threats": 33091, "malicious": 19522, "actors": 1153, "surveyed": 31777, "round": 28986, "bots": 3837, "persona": 24879, "amharic": 1880, "sought": 30541, "examined": 10105, "newer": 22867, "minor": 20204, "contingent": 5972, "viewpoint": 35275, "treats": 33875, "arm": 2506, "incurred": 14660, "triple": 33913, "embeddingbased": 9136, "welladopted": 35519, "internetscale": 15448, "quantizes": 27016, "highprecision": 13681, "deltas": 7405, "soup": 30545, "leaves": 17680, "verbalizers": 35204, "toy": 33320, "mimics": 20173, "pivot": 24975, "region": 27818, "consequences": 5694, "tasked": 32215, "intrinsically": 15495, "modelspecific": 22149, "variances": 35039, "opening": 23466, "11m": 86, "haystack": 13475, "miss": 20221, "augmentations": 2809, "106": 60, "achievement": 1022, "longest": 19203, "crisis": 6375, "emergency": 9180, "911": 595, "notify": 23043, "incident": 14444, "overwhelmed": 23956, "hardwarefriendly": 13436, "silicon": 30091, "codesign": 4857, "normalization": 23017, "parallelization": 24174, "anchored": 2005, "president": 25613, "outdated": 23737, "updated": 34475, "rerunning": 28282, "roleoriented": 28961, "secret": 29338, "geared": 12135, "usecases": 34581, "chapters": 4420, "llemma": 18258, "finishing": 11560, "executor": 10202, "codebased": 4834, "10k": 63, "lifelong": 17822, "openbook": 23448, "retention": 28722, "sensory": 29526, "chance": 4405, "solvable": 30486, "6000": 460, "llama2chat70b": 18221, "singletask": 30234, "anchors": 2007, "02": 4, "judgement": 15722, "gpt4turbo": 13134, "selfdistillation": 29417, "ignoring": 14040, "forgotten": 11737, "wellunderstood": 35532, "edits": 8833, "xxl": 35887, "analogous": 1903, "v2": 34984, "needle": 22649, "hardwareaware": 13434, "speculation": 30776, "temperatures": 32688, "maximizes": 19703, "vicuna33b": 35259, "56": 448, "behavioural": 3332, "illuminate": 14044, "strands": 31095, "semeval2024": 29491, "relatedness": 27860, "official": 23319, "1st": 204, "collaborating": 4903, "topperforming": 33296, "arabiccentric": 2426, "relu": 27967, "gelu": 12136, "substituting": 31492, "curves": 6555, "granting": 13214, "trick": 33894, "beam": 3299, "hoping": 13760, "likert": 17903, "profile": 26187, "questionnaire": 27094, "populations": 25148, "instructed": 15134, "diminishes": 8202, "coherently": 4897, "da": 6576, "prolific": 26262, "spending": 30805, "negates": 22655, "concluding": 5555, "echo": 8805, "repeat": 28089, "maximally": 19700, "07": 14, "drafts": 8714, "peerreview": 24433, "manuscripts": 19575, "onerous": 23343, "summarizing": 31631, "mezo": 20152, "zerothorder": 36000, "zo": 36005, "llama30b": 18224, "chimera": 4537, "shortrange": 29827, "languagecentric": 16858, "exhaustive": 10209, "equips": 9683, "guarantees": 13332, "highconfidence": 13590, "tight": 33105, "rest": 28526, "competencies": 5212, "structurally": 31211, "cumbersome": 6464, "videos": 35268, "intellectual": 15347, "patent": 24396, "noticeable": 23039, "situated": 30237, "steer": 31027, "deactivating": 7206, "clock": 4670, "unaligned": 34104, "hint": 13722, "gisting": 12736, "economical": 8811, "continuations": 5984, "ece": 8804, "advise": 1529, "newton": 22890, "participate": 24328, "disentangle": 8305, "attributevalue": 2766, "adversely": 1526, "deviate": 7985, "publishing": 26872, "insert": 15056, "formation": 11756, "enrichment": 9595, "ontological": 23375, "locates": 19146, "finetuningbased": 11558, "ct": 6453, "linking": 18030, "crossencoder": 6408, "accelerated": 795, "pt": 26825, "multiquery": 22435, "querybased": 27033, "stays": 31025, "endpoints": 9430, "premature": 25492, "flows": 11629, "patching": 24395, "circuits": 4569, "counts": 6307, "instructionresponse": 15239, "24times": 268, "anchoring": 2006, "timelines": 33154, "nextstep": 22892, "codetocode": 4860, "twophase": 34041, "warmup": 35422, "unveils": 34469, "lay": 17422, "groundwork": 13295, "monotonic": 22213, "meaningless": 19727, "punctuation": 26878, "visualizations": 35361, "conveying": 6118, "indispensable": 14711, "programbased": 26196, "termination": 32733, "roleplay": 28962, "nonreproducible": 23005, "rtx": 28999, "4090": 377, "curating": 6473, "conjectures": 5677, "5200": 434, "postedit": 25223, "winrate": 35619, "elementary": 9099, "typologically": 34084, "warrant": 35423, "folds": 11674, "lagging": 16015, "divideandconquer": 8487, "manageable": 19527, "aggregates": 1578, "counting": 6304, "viability": 35240, "conducts": 5646, "spite": 30809, "evoking": 10072, "progresses": 26230, "chatbased": 4447, "correction": 6198, "2based": 294, "f05": 10813, "invoking": 15623, "analyst": 1980, "kv": 15947, "row": 28996, "deduplicating": 7313, "vllm": 35374, "essay": 9752, "aes": 1534, "extraordinary": 10785, "holistically": 13744, "tactics": 32008, "blueprint": 3799, "divide": 8486, "unverified": 34470, "flagging": 11584, "caregivers": 4181, "fms": 11641, "fm": 11639, "gathering": 12128, "returning": 28782, "carefullydesigned": 4180, "recitation": 27634, "selective": 29398, "manage": 19526, "permutation": 24868, "tokenized": 33210, "complemented": 5245, "mp": 22242, "jetson": 15705, "interlinear": 15421, "ultra": 34098, "documentation": 8510, "gemma": 12145, "stateofthe": 30917, "webcrawled": 35481, "lowerresourced": 19293, "european": 9810, "confronts": 5672, "diverging": 8409, "refines": 27784, "negating": 22656, "wizardlms": 35627, "aidriven": 1629, "opt67b": 23610, "rogue": 28951, "offset": 23325, "creativity": 6372, "devising": 7994, "512": 431, "576": 451, "weather": 35469, "emulating": 9277, "aging": 1585, "brain": 3850, "disorders": 8311, "loses": 19238, "tech": 32603, "lessresourced": 17724, "lrls": 19321, "lrl": 19320, "skew": 30306, "sociolinguistic": 30442, "fullmodel": 11947, "justintime": 15737, "compilation": 5237, "12x": 105, "vram": 35398, "streaming": 31133, "15k": 153, "resorts": 28407, "fiction": 11129, "solvers": 30503, "specializes": 30677, "confidencebased": 5651, "corrects": 6210, "directives": 8231, "grid": 13283, "unidirectional": 34319, "longbench": 19191, "builtin": 3939, "13000": 111, "stars": 30896, "twoparty": 34040, "audit": 2784, "debates": 7212, "reevaluate": 27768, "llmsbased": 19051, "exploited": 10557, "essentially": 9764, "unlikelihood": 34407, "averagely": 3029, "sacrebleu": 29023, "bleurt": 3770, "react": 27289, "selftraining": 29443, "accumulated": 854, "mistral7binstructv02": 20241, "alfworld": 1698, "1shot": 203, "webshop": 35486, "deviation": 7987, "counter": 6290, "randomized": 27179, "compromise": 5436, "adamw": 1161, "345": 336, "345m": 337, "326": 322, "526": 436, "sst2": 30845, "specifying": 30768, "summarized": 31630, "imdb": 14105, "umls": 34099, "28b": 290, "sentencet5": 29563, "confirmed": 5661, "noteworthy": 23037, "300": 309, "763": 519, "iti": 15693, "constitutes": 5776, "shifted": 29805, "multitoken": 22458, "testsets": 32810, "invasive": 15565, "kullbackleibler": 15945, "stance": 30864, "ukraine": 34092, "war": 35420, "segment": 29369, "mtl": 22263, "avg": 3033, "vulnerability": 35404, "quantifies": 26985, "adeptly": 1379, "rewritten": 28870, "gai": 12054, "acceptance": 812, "individualized": 14720, "extant": 10645, "efficacious": 8984, "englishlanguage": 9498, "administrative": 1398, "mlps": 20307, "erases": 9704, "neural machine": 22731, "machine translation": 19355, "gpt2 bert": 12875, "demonstrate effectiveness": 7445, "effectiveness using": 8970, "using pretrained": 34878, "pretrained language": 25653, "language models": 16231, "models lms": 21668, "lms various": 19122, "various natural": 35124, "natural language": 22507, "language processing": 16774, "processing tasks": 26126, "catastrophic forgetting": 4213, "tasks work": 32553, "work introduce": 35723, "training framework": 33523, "pretrained lms": 25708, "translation nmt": 33839, "nmt model": 22978, "previous pretrained": 25872, "pretrained knowledge": 25652, "bleu score": 3768, "language pair": 16766, "surpasses previous": 31749, "previous stateoftheart": 25881, "score large": 29272, "base model": 3126, "model significantly": 20783, "significantly improves": 30060, "improves stateoftheart": 14394, "stateoftheart transformer": 31003, "model bleu": 20402, "code model": 4779, "models large": 21420, "large language": 16959, "models range": 21885, "dataset biases": 6944, "generative capabilities": 12658, "release gpt2": 27908, "gpt2 language": 12908, "language model": 16114, "time model": 33136, "model sizes": 20796, "research provides": 28352, "masked language": 19610, "models mlms": 21734, "require finetuning": 28217, "nlp tasks": 22948, "tasks instead": 32377, "autoregressive language": 2942, "models like": 21447, "like gpt2": 17867, "gpt2 variety": 12966, "variety tasks": 35071, "rescoring asr": 28284, "stateoftheart baselines": 30924, "lowresource translation": 19318, "translation pairs": 33841, "domain adaptation": 8552, "linguistic acceptability": 18004, "scores gpt2": 29278, "10 points": 30, "single inference": 30207, "use growing": 34535, "growing number": 13316, "number pretrained": 23158, "use single": 34569, "crosslingual model": 6416, "multiple languages": 22397, "constrained text": 5781, "text generation": 32865, "generation challenge": 12469, "generative commonsense": 12659, "commonsense reasoning": 5039, "reasoning recently": 27447, "recently largescale": 27610, "largescale pretrained": 17373, "models demonstrated": 21134, "demonstrated impressive": 7526, "impressive performance": 14241, "benchmark datasets": 3373, "remains challenging": 27993, "challenging paper": 4390, "paper present": 24085, "generation task": 12611, "benchmark dataset": 3371, "ability generative": 678, "reasoning given": 27410, "task generate": 32130, "generate coherent": 12267, "using concepts": 34755, "task challenging": 32092, "commonsense knowledge": 5036, "compositional generalization": 5327, "generalization ability": 12205, "dataset constructed": 6961, "experiments large": 10456, "large gap": 16949, "stateoftheart text": 30998, "generation models": 12552, "models t5": 22041, "human performance": 13851, "performance furthermore": 24604, "furthermore demonstrate": 11992, "demonstrate learned": 7470, "reasoning capability": 27390, "improve downstream": 14262, "downstream tasks": 8687, "additional context": 1253, "better text": 3631, "text understanding": 32959, "understanding recent": 34266, "recent progress": 27541, "progress nlp": 26222, "nlp witnessed": 22968, "models gpt": 21323, "bert xlnet": 3537, "based transformer": 3232, "et al": 9789, "end tasks": 9419, "tasks models": 32421, "models achieved": 20947, "achieved stateoftheart": 1017, "stateoftheart results": 30983, "sufficient number": 31562, "number layers": 23150, "large pretraining": 17271, "pretraining data": 25791, "data tasks": 6889, "tasks require": 32482, "gap pretrained": 12104, "pretrained models": 25716, "models human": 21362, "al 2018": 1681, "syntactic structure": 31825, "structure model": 31215, "model supervised": 20814, "semantic knowledge": 29459, "coreference information": 6157, "information existing": 14865, "existing model": 10298, "model improve": 20571, "improve performance": 14282, "performance complex": 24555, "complex problems": 5283, "al 2016": 1680, "task model": 32159, "model trained": 20834, "trained scratch": 33423, "auxiliary supervision": 2960, "outperforms largest": 23828, "largest gpt2": 17393, "gpt2 model": 12916, "setting new": 29724, "new stateoftheart": 22848, "tiny fraction": 33172, "fraction parameters": 11818, "parameters compared": 24232, "compared gpt2": 5135, "conduct thorough": 5625, "thorough analysis": 33071, "analysis different": 1918, "different variants": 8157, "model architectures": 20376, "future directions": 12031, "similar techniques": 30119, "learning semantic": 17652, "text modeling": 32911, "requires commonsense": 28248, "knowledge world": 15923, "exploring various": 10623, "various knowledge": 35103, "representations previous": 28172, "previous work": 25891, "work focused": 35712, "methods fail": 20034, "supervised setting": 31689, "large pretrained": 17259, "models led": 21443, "improved results": 14318, "results natural": 28649, "language understanding": 16838, "understanding tasks": 34274, "difficult problem": 8172, "learning model": 17607, "text create": 32839, "create training": 6356, "training set": 33609, "events large": 10048, "large corpus": 16938, "extend idea": 10652, "models machine": 21695, "machine learning": 19343, "learning tasks": 17661, "multilayer transformer": 22293, "models high": 21353, "high accuracy": 13549, "outperform models": 23780, "models similar": 21977, "similar size": 30118, "degree models": 7389, "models larger": 21431, "larger size": 17337, "size trained": 30287, "trained using": 33433, "computational budget": 5454, "key observation": 15780, "alternative method": 1854, "solving problems": 30516, "large vocabulary": 17300, "parameters language": 24258, "model recently": 20745, "neural language": 22724, "models trained": 22065, "unstructured text": 34451, "retrieve knowledge": 28768, "knowledge using": 15919, "using natural": 34849, "language queries": 16809, "short paper": 29813, "practical utility": 25374, "approach finetuning": 2283, "finetuning pretrained": 11486, "models answer": 20980, "answer questions": 2051, "access external": 816, "context knowledge": 5894, "knowledge approach": 15813, "model size": 20788, "performs competitively": 24848, "external knowledge": 10728, "knowledge source": 15908, "answering questions": 2071, "facilitate reproducibility": 10842, "future work": 12052, "release code": 27901, "code trained": 4824, "trained models": 33413, "data augmentation": 6605, "augmentation using": 2808, "pretrained transformer": 25756, "transformer models": 33731, "models language": 21415, "model based": 20386, "based pretrained": 3208, "models bert": 21015, "significant gains": 29982, "gains different": 12071, "different nlp": 8112, "tasks paper": 32440, "paper study": 24137, "study different": 31318, "different types": 8154, "transformer based": 33706, "models autoregressive": 21000, "autoregressive models": 2953, "models gpt2": 21324, "autoencoder models": 2843, "seq2seq models": 29592, "models bart": 21005, "class labels": 4585, "labels text": 15968, "text sequences": 32938, "simple effective": 30143, "effective way": 8906, "models data": 21121, "classification benchmarks": 4593, "pretrained seq2seq": 25746, "seq2seq model": 29591, "model outperforms": 20670, "augmentation methods": 2804, "lowresource setting": 19316, "explore different": 10581, "different pretrained": 8123, "pretrained model": 25711, "based data": 3149, "data diversity": 6683, "generative pretraining": 12701, "generation evaluation": 12494, "automatic generation": 2882, "past years": 24392, "instruction generation": 15169, "generation given": 12512, "generation module": 12557, "generative pretrained": 12685, "model gpt2": 20554, "gpt2 finetuned": 12891, "finetuned large": 11324, "allows users": 1818, "quality generated": 26962, "accessed online": 829, "information seeking": 14911, "reading comprehension": 27305, "marco datasets": 19582, "20 test": 213, "ranking methods": 27232, "methods include": 20048, "traditional retrieval": 33351, "retrieval based": 28738, "neural models": 22737, "models knowledge": 21410, "knowledge enhanced": 15843, "bertbased neural": 3542, "reranking methods": 28281, "methods employed": 20025, "query expansion": 27026, "expansion generative": 10345, "generative language": 12661, "models conversational": 21111, "gpt2 results": 12947, "automatic systems": 2898, "systems using": 31924, "relative improvement": 27880, "conversational question": 6102, "architectures pretrained": 2470, "models paper": 21790, "paper presents": 24095, "presents empirical": 25582, "empirical study": 9240, "study conversational": 31312, "models plms": 21819, "independence assumption": 14669, "maximum likelihood": 19706, "likelihood estimation": 17899, "benchmarks taskoriented": 3473, "taskoriented dialogue": 32221, "dialogue systems": 8020, "systems evaluate": 31896, "models using": 22101, "using data": 34762, "different numbers": 8115, "numbers parameters": 23175, "parameters demonstrate": 24237, "demonstrate recent": 7486, "texttotext transfer": 33016, "transfer transformer": 33683, "transformer t5": 33741, "achieves best": 1031, "best results": 3577, "fewer parameters": 11089, "transformer architectures": 33703, "dynamic evaluation": 8758, "evaluation language": 9963, "language use": 16851, "new challenge": 22785, "challenge task": 4330, "task dataset": 32102, "understanding models": 34253, "models given": 21318, "model generate": 20543, "generate helpful": 12281, "language evaluation": 16070, "evaluation framework": 9948, "fundamental aspect": 11972, "aspect human": 2564, "human language": 13837, "understanding ability": 34207, "ability use": 726, "use language": 34540, "empirical results": 9232, "models struggle": 22016, "multibillion parameter": 22270, "parameter models": 24191, "models finetuned": 21274, "indomain training": 14726, "training examples": 33516, "best model": 3563, "model finetuned": 20524, "finetuned t5": 11355, "cases larger": 4203, "gpt3 model": 13002, "model does": 20472, "low performance": 19270, "generative setting": 12704, "data augmented": 6615, "relation extraction": 27864, "realworld relation": 27344, "extraction tasks": 10774, "tasks challenging": 32260, "limited training": 17970, "training data": 33466, "class imbalance": 4584, "imbalance issues": 14100, "issues work": 15676, "work present": 35747, "present data": 25522, "simple method": 30157, "method augment": 19882, "augment training": 2793, "finetuning gpt2": 11411, "gpt2 generate": 12893, "types generated": 34062, "data used": 6901, "dataset train": 7046, "series experiments": 29635, "method leads": 19941, "improvements 11": 14353, "11 f1": 70, "f1 score": 10817, "score points": 29274, "strong baseline": 31162, "achieves new": 1052, "new state": 22846, "state art": 30903, "widely used": 35576, "used biomedical": 34588, "datasets surpassing": 7177, "surpassing previous": 31759, "previous best": 25867, "f1 points": 10815, "points average": 25070, "italian language": 15678, "years pretrained": 35895, "pretrained neural": 25738, "neural architectures": 22721, "improvements nlp": 14361, "tasks generative": 32348, "models available": 21001, "built using": 3937, "using gpt2": 34789, "gpt2 architecture": 12870, "provide thorough": 26731, "humanbased evaluation": 13890, "evaluation automatic": 9922, "human evaluation": 13805, "evaluation performed": 9986, "sentence completion": 29529, "original human": 23707, "human texts": 13871, "simpler language": 30167, "tasks study": 32516, "pretrain finetune": 25622, "tasks experiments": 32323, "experiments indicate": 10450, "based models": 3197, "models outperform": 21782, "datatotext generation": 7195, "based pretraining": 3210, "bert gpt2": 3509, "t5 pretraining": 31961, "leads better": 17489, "better generalization": 3605, "generalization evidenced": 12214, "large improvements": 16955, "improvements outofdomain": 14363, "outofdomain test": 23754, "test sets": 32788, "hope work": 13757, "work serves": 35778, "baseline future": 3245, "future research": 12040, "transfer learning": 33676, "tasks common": 32267, "common sense": 5012, "world knowledge": 35834, "knowledge injection": 15865, "pretrained transformers": 25771, "success neural": 31521, "lms bert": 19072, "variety language": 35062, "tasks recent": 32474, "recent work": 27567, "structured knowledge": 31222, "knowledge external": 15851, "external resources": 10733, "resources models": 28440, "models hand": 21346, "pretraining training": 25848, "training scratch": 33606, "knowledge primary": 15891, "computationally expensive": 5486, "knowledge work": 15920, "work investigate": 35727, "investigate models": 15589, "knowledge bert": 15821, "respectively using": 28465, "overall results": 23913, "glue benchmark": 12802, "analysis reveals": 1959, "models substantially": 22022, "substantially outperform": 31484, "inference tasks": 14814, "knowledge explicitly": 15850, "code experiments": 4749, "open sourced": 23427, "evaluation stateoftheart": 10013, "stateoftheart nlp": 30966, "deep learning": 7323, "learning architectures": 17540, "reasoning task": 27455, "task paper": 32171, "paper investigate": 24066, "investigate commonsense": 15579, "inference task": 14813, "task competition": 32095, "stateoftheart deep": 30929, "manually curated": 19568, "language inference": 16094, "make sense": 19482, "sense make": 29507, "compare performance": 5111, "performance language": 24640, "propose method": 26528, "method inspired": 19935, "questionanswering tasks": 27089, "classification problem": 4604, "multiple choice": 22382, "choice question": 4552, "boost performance": 3817, "performance experimental": 24591, "experimental results": 10389, "significantly better": 30035, "better baseline": 3594, "does make": 8533, "competitive results": 5229, "results result": 28671, "future researches": 12050, "powerful generative": 25338, "generative model": 12672, "model language": 20600, "language gpt2": 16092, "fewshot generative": 11105, "rewriting aims": 28868, "existing information": 10275, "information retrieval": 14908, "retrieval systems": 28756, "systems paper": 31911, "presents fewshot": 25584, "generative approach": 12649, "develop methods": 7917, "methods based": 20009, "based rules": 3219, "selfsupervised learning": 29437, "learning generate": 17572, "weak supervision": 35456, "supervision data": 31696, "data using": 6906, "using large": 34807, "large amounts": 16927, "ad hoc": 1158, "finetune gpt2": 11283, "weakly supervised": 35461, "stateoftheart ranking": 30981, "accuracy 12": 858, "using limited": 34818, "zeroshot learning": 35983, "learning setting": 17653, "stateoftheart systems": 30995, "capture context": 4147, "model pretraining": 20723, "pretraining knowledge": 25804, "knowledge pretrained": 15887, "recent research": 27549, "grasp human": 13244, "human knowledge": 13835, "transformer architecture": 33702, "explicit knowledge": 10546, "external storage": 10735, "semantic information": 29458, "input transformer": 15036, "prediction task": 25437, "task experiments": 32119, "pretraining significantly": 25839, "transformer parameters": 33738, "observe improved": 23229, "language modeling": 16214, "factual correctness": 10880, "knowledge probing": 15892, "probing tasks": 25984, "hidden representations": 13537, "dropin replacement": 8742, "gpt2 models": 12925, "models significantly": 21974, "significantly improving": 30063, "improving downstream": 14407, "tasks like": 32399, "training deep": 33498, "subword units": 31502, "morphologically rich": 22222, "recently deep": 27587, "models proven": 21871, "particularly powerful": 24352, "powerful language": 25340, "modeling tasks": 20908, "high complexity": 13555, "complexity makes": 5304, "makes difficult": 19490, "single pass": 30219, "recent studies": 27552, "knowledge neural": 15884, "neural network": 22738, "network language": 22692, "models lm": 21667, "using neural": 34853, "neural text": 22760, "generation based": 12462, "pretrain gpt2": 25623, "gpt2 transformer": 12960, "general text": 12188, "text corpus": 32836, "task data": 32101, "language propose": 16808, "propose new": 26536, "new method": 22820, "method called": 19887, "text augmentation": 32818, "generated text": 12392, "methods significantly": 20094, "significantly improve": 30055, "greatly reducing": 13277, "size memory": 30263, "memory requirements": 19826, "finally demonstrate": 11190, "using generative": 34785, "models work": 22133, "work demonstrates": 35692, "language transformers": 16836, "learning natural": 17619, "language skills": 16822, "generate meaningful": 12301, "finetuning transformer": 11551, "game notation": 12077, "training steps": 33623, "openais generative": 23438, "transformer gpt2": 33720, "million parameters": 20165, "parameters finetuned": 24245, "plausible strategies": 25015, "novel model": 23100, "model demonstrates": 20457, "provides novel": 26760, "novel method": 23095, "work build": 35674, "models synthetic": 22037, "models shown": 21969, "shown accurately": 29869, "accurately reflect": 939, "human beings": 13798, "used train": 34631, "train models": 33368, "models models": 21736, "traditional methods": 33348, "model using": 20852, "using text": 34928, "text generated": 32861, "ground truth": 13285, "using model": 34843, "model substantially": 20811, "similar human": 30105, "latent representation": 17408, "learning models": 17608, "models text": 22057, "recent years": 27575, "fields natural": 11157, "processing nlp": 26114, "retrieval ir": 28742, "recurrent neural": 27681, "neural networks": 22752, "networks rnns": 22715, "gated recurrent": 12125, "long shortterm": 19182, "shortterm memory": 29829, "bidirectional encoder": 3692, "encoder representations": 9354, "representations transformers": 28175, "transformers bert": 33777, "deep neural": 7337, "world applications": 35833, "small model": 30358, "size low": 30262, "response times": 28482, "low computational": 19266, "computational power": 5475, "pruning quantization": 26815, "knowledge distillation": 15830, "parameter sharing": 24197, "models enable": 21195, "critical need": 6391, "efficient small": 9058, "small models": 30359, "recently published": 27616, "published work": 26871, "work deep": 35686, "nlp community": 22926, "coherent story": 4895, "generative models": 12677, "models unsupervised": 22097, "study large": 31352, "large generative": 16950, "ability generate": 674, "generate text": 12331, "tasks finetuning": 32336, "finetuning work": 11555, "classifiers trained": 4628, "human machinegenerated": 13845, "machinegenerated text": 19371, "quality able": 26939, "able detect": 743, "low quality": 19271, "quality content": 26948, "training enables": 33509, "conduct extensive": 5605, "qualitative quantitative": 26934, "quantitative analysis": 26991, "articles making": 2524, "study conducted": 31309, "evaluation pretrained": 9992, "models automatic": 20998, "given question": 12764, "desired answer": 7762, "previous works": 25895, "word embeddings": 35637, "semantic features": 29456, "features extracted": 11032, "features manually": 11035, "datasets use": 7185, "use pretrained": 34560, "pretrained embeddings": 25639, "models elmo": 21186, "elmo bert": 9113, "bert gpt": 3506, "gpt gpt2": 12848, "gpt2 assess": 12871, "task train": 32201, "train single": 33374, "cosine similarity": 6241, "models compare": 21071, "models previous": 21850, "dataset work": 7056, "outperformed models": 23794, "models conclude": 21086, "conclude possible": 5552, "sequence generation": 29595, "generation largescale": 12538, "largescale language": 17358, "lms able": 19068, "language generate": 16081, "generate realistic": 12316, "realistic text": 27318, "datasets used": 7186, "used training": 34632, "training large": 33542, "large lms": 17226, "usually contain": 34946, "efficient method": 9048, "method using": 19983, "using smaller": 34917, "smaller lms": 30380, "guide generation": 13345, "generation large": 12533, "lms make": 19098, "method achieving": 19871, "30 times": 308, "times faster": 33159, "additionally training": 1304, "generate new": 12307, "new capability": 22784, "controllable generation": 6058, "generation methods": 12547, "15b parameters": 152, "parameters significantly": 24289, "linguistic quality": 18020, "models maintaining": 21696, "fast generation": 10992, "generation speed": 12603, "advanced neural": 1437, "previous research": 25874, "potential abuse": 25235, "models assessing": 20990, "demonstrates significant": 7567, "significant improvement": 29989, "gpt2 generating": 12896, "generating text": 12445, "represents significant": 28197, "significant risk": 30021, "social norms": 30429, "public policy": 26842, "disinformation propaganda": 8309, "current limitations": 6507, "limitations language": 17922, "models need": 21748, "current approaches": 6482, "tradeoff language": 33336, "models including": 21377, "length efficient": 17705, "efficient attention": 9027, "openended text": 23462, "generation output": 12565, "like gpt23": 17868, "finetuning dataset": 11385, "improve prediction": 14289, "scaling model": 29175, "size efficiently": 30247, "poor performance": 25104, "performance scaling": 24746, "extend context": 10648, "context entire": 5888, "entire training": 9627, "training dataset": 33495, "trained data": 33388, "multilabel classification": 22291, "paper focus": 24052, "strong models": 31183, "models suffer": 22027, "bias propose": 3661, "propose simple": 26565, "effective augmentation": 8861, "augmentation framework": 2799, "takes advantage": 32032, "advantage pretrained": 1499, "pretrained gpt2": 25649, "perturbations input": 24911, "input texts": 15033, "augment existing": 2790, "existing training": 10320, "result present": 28544, "present substantial": 25557, "substantial improvements": 31467, "baseline models": 3255, "models contributions": 21109, "introduce new": 15518, "neural toxic": 22762, "toxic degeneration": 33309, "models pretrained": 21839, "lms prone": 19104, "prone generating": 26454, "toxic language": 33310, "safe deployment": 29029, "investigate extent": 15582, "extent pretrained": 10725, "lms prompted": 19102, "prompted generate": 26369, "controllable text": 6060, "generation algorithms": 12457, "preventing toxic": 25860, "naturally occurring": 22585, "corpus english": 6181, "web text": 35479, "toxic text": 33314, "methods data": 20016, "adaptive pretraining": 1221, "data effective": 6686, "text corpora": 32835, "corpora used": 6171, "used pretrain": 34616, "lms including": 19090, "including gpt2": 14482, "gpt2 radford": 12942, "radford et": 27150, "al 2019": 1682, "toxic content": 33308, "content work": 5877, "work provides": 35764, "test bed": 32760, "need better": 22622, "data selection": 6854, "models recently": 21910, "recently neural": 27612, "lms demonstrated": 19080, "impressive abilities": 14229, "generating highquality": 12427, "recent papers": 27539, "knowledge paper": 15885, "paper propose": 24106, "method quantitatively": 19963, "quantitatively evaluates": 26999, "neural lms": 22730, "lms understanding": 19119, "set linguistic": 29692, "linguistic features": 18012, "features derived": 11030, "transformer lms": 33729, "intermediate layer": 15427, "layer representations": 17431, "gpt2 xlnet": 12970, "method shows": 19972, "point view": 25066, "virtual assistants": 35284, "designed allow": 7721, "target user": 32060, "developed rulebased": 7933, "model integrates": 20589, "text classification": 32825, "classification model": 4600, "partofspeech tagging": 24368, "approaches including": 2378, "trained language": 33404, "model gpt": 20553, "performed similarly": 24831, "faithfulness metrics": 10932, "times fewer": 33160, "publicly released": 26864, "dataset composed": 6953, "bidirectional models": 3696, "models incremental": 21393, "humans process": 13930, "process language": 26068, "time step": 33145, "test models": 32776, "models various": 22109, "nlu datasets": 22970, "datasets compare": 7077, "performance using": 24792, "evaluation metrics": 9975, "metrics results": 20147, "results support": 28694, "possibility using": 25210, "bert model": 3518, "model achieves": 20346, "achieves better": 1033, "training testing": 33631, "context available": 5883, "contexts generated": 5938, "generated language": 12365, "model like": 20614, "style transfer": 31414, "informal formal": 14851, "formal language": 11744, "word order": 35642, "nlp models": 22938, "models typically": 22088, "work address": 35664, "translation problem": 33845, "problem build": 25988, "new dataset": 22790, "dataset parallel": 7019, "translation approach": 33820, "approach outperforms": 2321, "task performed": 32175, "computational resource": 5477, "promising step": 26298, "leveraging machine": 17789, "translation models": 33835, "transfer code": 33671, "code data": 4728, "data available": 6618, "texttotext transformers": 33020, "achieved impressive": 1011, "impressive results": 14247, "results range": 28666, "range natural": 27199, "understanding nlu": 34254, "generation nlg": 12563, "nlg tasks": 22910, "tasks current": 32281, "pretraining objectives": 25829, "objectives masked": 23211, "token prediction": 33198, "explicitly model": 10549, "knowledge everyday": 15848, "everyday concepts": 10055, "tasks need": 32430, "understand generate": 34191, "propose generative": 26517, "text use": 32960, "taskspecific finetuning": 32563, "finetuning downstream": 11391, "downstream datasets": 8675, "datasets furthermore": 7120, "furthermore develop": 11993, "extensive experimental": 10688, "results method": 28643, "knowledge parameters": 15886, "parameters pretrained": 24278, "pretrained texttotext": 25753, "texttotext transformer": 33019, "relying external": 27976, "knowledge graphs": 15859, "better performance": 3617, "relatively small": 27892, "small corpus": 30336, "outperforms baseline": 23806, "baseline methods": 3253, "margin comparable": 19584, "comparable larger": 5081, "plugandplay method": 25056, "method improving": 19932, "reasoning ability": 27373, "models question": 21883, "question answering": 27039, "answering recent": 2074, "recent works": 27571, "works shown": 35826, "shown language": 29891, "types knowledge": 34065, "fail provide": 10906, "provide appropriate": 26685, "cases paper": 4206, "paper ask": 24014, "probabilistic models": 25967, "t5 bart": 31935, "bart gpt2": 3107, "qa tasks": 26918, "models make": 21697, "confidence scores": 5650, "outputs inputs": 23891, "inputs experiments": 15047, "experiments diverse": 10436, "diverse range": 8453, "range datasets": 27189, "datasets demonstrate": 7091, "effectiveness methods": 8960, "methods perform": 20074, "analysis study": 1968, "strengths limitations": 31142, "shedding light": 29798, "calibrating lms": 3975, "released code": 27922, "gpt2 make": 12914, "make models": 19476, "models languages": 21419, "languages large": 16884, "models successful": 22025, "english languages": 9484, "data computational": 6649, "limitations propose": 17932, "existing pretrained": 10308, "models new": 21750, "new languages": 22812, "adaptation english": 1179, "transformer layers": 33728, "layers result": 17445, "aligned original": 1742, "scale complexity": 29130, "embeddings gpt2": 9140, "gpt2 small": 12952, "small gpt2": 30344, "gpt2 medium": 12915, "embedding space": 9132, "training prevents": 33589, "gpt2 english": 12888, "sentences generated": 29554, "generated gpt2": 12358, "model fully": 20540, "fully trained": 11958, "notoriously difficult": 23048, "artificial neural": 2539, "generative neural": 12682, "recast problem": 27474, "language generation": 16082, "generation learning": 12539, "new paradigm": 22828, "network called": 22687, "activations pretrained": 1143, "model produce": 20728, "produce desired": 26143, "desired outputs": 7765, "original model": 23714, "new tasks": 22856, "model contribute": 20443, "new data": 22789, "data set": 6859, "loss function": 19244, "models control": 21110, "autoregressive transformers": 2957, "transformers experiments": 33780, "experiments stateoftheart": 10484, "stateoftheart approaches": 30921, "approaches demonstrate": 2372, "demonstrate efficacy": 7451, "methods using": 20107, "using openais": 34865, "openais gpt2": 23442, "model successfully": 20812, "aspects language": 2576, "problem using": 26018, "datadriven approaches": 6926, "existing work": 10324, "work does": 35696, "increasingly powerful": 14642, "models able": 20936, "surprisal values": 31762, "conducting experiments": 5645, "compared existing": 5131, "existing baselines": 10263, "conditional generation": 5568, "sequences models": 29614, "knowledge proven": 15894, "proven useful": 26677, "capture temporal": 4151, "temporal relationships": 32699, "single model": 30212, "sequence use": 29611, "generation model": 12550, "model capture": 20413, "applied different": 2187, "different tasks": 8149, "model able": 20338, "sequences existing": 29613, "existing datasets": 10267, "evaluation shows": 10011, "shows model": 29929, "able generate": 745, "fit better": 11572, "story completion": 31087, "completion models": 5261, "models pile": 21816, "dataset diverse": 6976, "diverse text": 8468, "text language": 32900, "work demonstrated": 35691, "dataset diversity": 6977, "knowledge downstream": 15838, "generalization capability": 12209, "english text": 9493, "training largescale": 33550, "diverse highquality": 8431, "existing newly": 10301, "performance gpt2": 24618, "gpt2 gpt3": 12900, "shows models": 29930, "trained pile": 33416, "improving performance": 14417, "performance downstream": 24574, "downstream evaluations": 8676, "aspects data": 2573, "make publicly": 19479, "publicly available": 26850, "available code": 2968, "code used": 4828, "success nlp": 31522, "model complexity": 20432, "computation resources": 5449, "extremely long": 10801, "long training": 19188, "training time": 33633, "pretraining finetuning": 25798, "finetuning works": 11556, "works studied": 35827, "model compression": 20434, "compression large": 5417, "models focusing": 21289, "reducing inference": 27751, "inference time": 14817, "expensive training": 10368, "training process": 33592, "works use": 35828, "extremely large": 10798, "large batch": 16930, "batch sizes": 3290, "pretraining time": 25847, "resource demands": 28410, "demands paper": 7417, "paper inspired": 24058, "computer vision": 5505, "vision tasks": 35308, "tasks propose": 32462, "training algorithm": 33439, "finetuning largescale": 11437, "conduct comprehensive": 5589, "finetuning experiments": 11402, "tasks results": 32489, "achieves comparable": 1036, "comparable performance": 5084, "performance standard": 24765, "code available": 4722, "continuous prompts": 5999, "generation finetuning": 12506, "leverage large": 17752, "models perform": 21807, "perform downstream": 24483, "model parameters": 20689, "lightweight alternative": 17837, "alternative finetuning": 1851, "finetuning natural": 11461, "generation tasks": 12613, "parameters frozen": 24250, "subsequent tokens": 31447, "tabletotext generation": 31990, "performance data": 24561, "outperforms finetuning": 23824, "unseen training": 34446, "trillion parameter": 33903, "models simple": 21980, "simple efficient": 30147, "mixture experts": 20280, "model outrageous": 20678, "parameters constant": 24234, "constant computational": 5770, "computational cost": 5458, "despite notable": 7796, "widespread adoption": 35591, "communication costs": 5050, "costs training": 6276, "training instability": 33534, "switch transformer": 31796, "routing algorithm": 28995, "improved models": 14316, "models reduced": 21914, "computational costs": 5461, "training techniques": 33629, "techniques help": 32641, "design models": 7710, "models based": 21007, "t5base t5large": 31971, "t5large obtain": 31976, "computational resources": 5478, "multilingual settings": 22329, "101 languages": 54, "languages finally": 16875, "advance current": 1417, "scale language": 29135, "models pretraining": 21849, "t5xxl model": 31982, "model impact": 20569, "multiple parallel": 22407, "present indepth": 25535, "indepth analysis": 14674, "analysis impact": 1927, "model user": 20850, "input text": 15032, "text composition": 32831, "compares different": 5186, "recent literature": 27530, "results reveal": 28672, "discuss implications": 8293, "research design": 28304, "ai instead": 1610, "active learning": 1145, "classification work": 4620, "work propose": 35751, "propose use": 26583, "learning directly": 17560, "easily build": 8794, "build machine": 3915, "models directly": 21158, "data scientists": 6851, "approach leverages": 2309, "text representation": 32932, "like openais": 17889, "learning using": 17668, "using linear": 34819, "linear models": 17990, "models providing": 21875, "experiments publicly": 10472, "datasets empirically": 7101, "classification algorithms": 4592, "task hand": 32136, "targeting specific": 32067, "specific issues": 30698, "used generate": 34603, "prompt learning": 26331, "onthefly adaptation": 23374, "adaptation unseen": 1195, "unseen domains": 34436, "address challenging": 1317, "domains applied": 8612, "labeled unlabeled": 15960, "target domain": 32048, "domain available": 8555, "learning algorithm": 17533, "based t5": 3226, "t5 language": 31951, "model given": 20551, "given test": 12775, "test example": 32766, "trained generate": 33401, "token sequence": 33202, "domain related": 8590, "generated prompt": 12378, "semantic space": 29476, "domains experiments": 8619, "experiments tasks": 10490, "tasks text": 32526, "sequence tagging": 29608, "adaptation scenarios": 1191, "substantially outperforms": 31485, "outperforms strong": 23857, "strong baselines": 31163, "nlp systems": 22946, "fluent natural": 11635, "expert humans": 10510, "domain knowledge": 8569, "paper make": 24077, "main contributions": 19394, "present dataset": 25523, "new benchmark": 22780, "stateoftheart neural": 30965, "model achieve": 20343, "achieve good": 964, "good performance": 12821, "second main": 29323, "main contribution": 19393, "contribution novel": 6037, "novel curriculum": 23069, "approach model": 2316, "related tasks": 27857, "models investigate": 21406, "investigate model": 15588, "t5 exhibits": 31941, "consistent human": 5738, "considerably improves": 5712, "t5 baseline": 31936, "bestperforming model": 3584, "model fails": 20511, "unsolved challenge": 34448, "challenge nlp": 4323, "systems potential": 31914, "gpt2 create": 12879, "create synthetic": 6354, "synthetic data": 31850, "data improve": 6731, "prediction performance": 25432, "performance nlp": 24692, "nlp machine": 22936, "learning classification": 17551, "classification models": 4601, "models use": 22098, "input data": 15007, "data predict": 6801, "predetermined categories": 25402, "categories perform": 4225, "models require": 21930, "require large": 28220, "large datasets": 16942, "datasets training": 7184, "training common": 33450, "common practice": 5011, "utilize synthetic": 34963, "data boost": 6627, "using synthetic": 34923, "models detect": 21149, "created synthetic": 6361, "models identify": 21367, "learning practitioners": 17630, "generate synthetic": 12325, "image data": 14064, "data train": 6894, "convolutional neural": 6123, "paper explore": 24045, "performance natural": 24687, "learning finetune": 17568, "finetune pretrained": 11298, "transformer model": 33730, "reviews data": 28833, "data combined": 6644, "data create": 6663, "create new": 6352, "dataset new": 7017, "significantly outperformed": 30072, "model accuracy": 20342, "accuracy precision": 902, "extractive abstractive": 10778, "language explanations": 16071, "method based": 19884, "based gpt2": 3167, "model perform": 20694, "comparative evaluations": 5098, "shows promise": 29933, "improving pretrained": 14418, "social commonsense": 30420, "demonstrated outstanding": 7536, "outstanding performance": 23903, "tasks recently": 32476, "reasoning current": 27399, "mental states": 19842, "improving language": 14411, "task requiring": 32189, "emotional commonsense": 9204, "pretrained roberta": 25743, "roberta gpt2": 28917, "models propose": 21865, "propose architecture": 26497, "leveraging external": 17782, "optimize model": 23642, "achieves competitive": 1042, "models provides": 21874, "ways improve": 35451, "performance particular": 24712, "particular task": 24342, "models improves": 21375, "parallel data": 24169, "transfer models": 33681, "bart models": 3108, "amounts parallel": 1887, "task achieve": 32072, "achieve new": 973, "method unsupervised": 19981, "commonsense question": 5037, "does rely": 8535, "data existing": 6699, "popular solution": 25139, "solution use": 30482, "models score": 21955, "score candidate": 29266, "candidate choices": 3991, "directly conditioned": 8235, "question context": 27066, "models easily": 21178, "mislead model": 20217, "present novel": 25544, "instead directly": 15120, "method generates": 19925, "answers generative": 2084, "semantic similarity": 29474, "verify effectiveness": 35217, "effectiveness robustness": 8967, "extensive experiments": 10693, "experiments evaluate": 10440, "evaluate proposed": 9861, "proposed method": 26605, "datasets method": 7146, "method achieves": 19868, "synonym replacement": 31810, "demonstrates performance": 7562, "performance drops": 24578, "everyday conversations": 10056, "requires understanding": 28265, "understanding temporal": 34275, "despite recent": 7806, "lms t5": 19114, "t5 gpt3": 31949, "temporal reasoning": 32698, "remains largely": 28001, "largely underexplored": 17310, "underexplored paper": 34142, "present study": 25555, "study investigate": 31346, "reasoning capabilities": 27382, "introducing new": 15552, "new task": 22855, "challenge set": 4328, "set timedial": 29710, "carefully curated": 4176, "results demonstrate": 28586, "best performing": 3570, "performing models": 24835, "task compared": 32094, "compared humans": 5141, "absolute points": 765, "accuracy furthermore": 882, "reveals models": 28817, "models fail": 21259, "dialog context": 8004, "based existing": 3155, "modeling temporal": 20911, "text robust": 32935, "contextual reasoning": 5952, "reasoning dataset": 27402, "dataset publicly": 7027, "transformerbased models": 33760, "inference speed": 14808, "large model": 17231, "autoregressive decoding": 2937, "decoding process": 7280, "accuracy loss": 897, "proposed optimization": 26616, "optimization techniques": 23636, "techniques include": 32644, "attention cache": 2714, "efficient algorithm": 9023, "generation pipeline": 12571, "pipeline parallel": 24970, "t5 gpt2": 31948, "benchmark results": 3409, "diverse models": 8439, "models demonstrate": 21131, "easy use": 8802, "use simple": 34568, "simple oneline": 30160, "source code": 30548, "models recent": 21901, "size pretrained": 30274, "largescale plms": 17372, "realworld scenarios": 27347, "scenarios present": 29216, "techniques use": 32669, "finetuning inference": 11421, "introduce knowledge": 15512, "pretraining process": 25832, "existing plms": 10307, "training models": 33568, "models scratch": 21956, "explore best": 10575, "best practice": 3574, "prompt tuning": 26352, "compared conventional": 5128, "conventional finetuning": 6073, "finetuning prompt": 11496, "tuning significantly": 34013, "significantly reduces": 30083, "reduces number": 27739, "number taskspecific": 23162, "taskspecific parameters": 32567, "implement new": 14159, "using largescale": 34816, "limited computational": 17944, "pretrain models": 25624, "models encoderdecoder": 21200, "model 11": 20331, "11 billion": 68, "billion parameters": 3718, "parameters experiments": 24243, "experiments compare": 10424, "tasks experimental": 32321, "general language": 12171, "inference largescale": 14785, "largescale models": 17364, "models having": 21348, "tens billions": 32716, "billions parameters": 3728, "parameters single": 24290, "single gpu": 30203, "largescale knowledge": 17357, "enhanced pretraining": 9537, "pretraining language": 25805, "understanding generation": 34227, "generation pretrained": 12574, "results various": 28705, "gpt3 shown": 13006, "scaling pretrained": 29180, "models improve": 21372, "improve generalization": 14268, "generalization abilities": 12204, "175 billion": 172, "parameters shows": 24287, "shows strong": 29938, "learning capabilities": 17547, "capabilities despite": 4010, "despite success": 7817, "plain texts": 24991, "introducing knowledge": 15551, "linguistic knowledge": 18014, "trained autoregressive": 33383, "traditional finetuning": 33346, "finetuning approach": 11372, "approach demonstrates": 2256, "performance solving": 24759, "solving downstream": 30508, "tasks order": 32437, "solve problems": 30495, "problems propose": 26032, "propose unified": 26580, "unified framework": 34328, "framework named": 11884, "pretraining largescale": 25814, "network trained": 22703, "trained model": 33412, "model easily": 20477, "tasks zeroshot": 32555, "learning fewshot": 17566, "fewshot learning": 11110, "learning finetuning": 17569, "finetuning trained": 11550, "10 billion": 26, "knowledge graph": 15857, "results model": 28645, "outperforms stateoftheart": 23852, "stateoftheart models": 30956, "tasks english": 32311, "july 2021": 15731, "surpassing human": 31756, "performance 08": 24512, "spanish language": 30594, "work presents": 35750, "resources available": 28429, "industry research": 14746, "research community": 28299, "models spanish": 21994, "pretrained using": 25774, "assessed performance": 2606, "performance models": 24681, "models existing": 21230, "existing evaluation": 10271, "evaluation datasets": 9937, "extractive question": 10779, "answering dataset": 2059, "dataset created": 6966, "outperform existing": 23773, "models variety": 22108, "nlu tasks": 22975, "tasks training": 32535, "training settings": 33613, "dataset model": 7012, "parallel corpus": 24168, "based large": 3185, "model t5": 20821, "t5 trained": 31965, "shown produce": 29905, "widely applied": 35571, "target task": 32058, "able improve": 746, "performance pretrained": 24718, "models unclear": 22091, "works previous": 35822, "intermediate tasks": 15434, "tasks involving": 32382, "reasoning work": 27465, "reasoning complex": 27394, "skills simple": 30315, "target tasks": 32059, "tasks conduct": 32272, "experiments study": 10485, "impact different": 14121, "findings suggest": 11256, "news headlines": 22883, "detecting implicit": 7857, "causal relations": 4246, "task requires": 32188, "knowledge existing": 15849, "datasets focused": 7119, "causal reasoning": 4245, "dataset detecting": 6974, "dataset includes": 7001, "pairs english": 23978, "english news": 9487, "set models": 29696, "models experiments": 21237, "including multilingual": 14505, "based model": 3196, "gpt2 based": 12873, "effects prediction": 8983, "semantic expansion": 29455, "intent detection": 15373, "detection based": 7862, "challenging task": 4398, "additional information": 1256, "information regarding": 14902, "enhance performance": 9524, "detection propose": 7877, "generation ability": 12450, "context prompt": 5908, "apply zeroshot": 2215, "zeroshot oneshot": 35986, "learning lastly": 17596, "queries finetune": 27021, "bert roberta": 3527, "results performance": 28654, "models complex": 21075, "complex tasks": 5297, "paper demonstrates": 24031, "small number": 30361, "number examples": 23141, "examples specifically": 10143, "specifically finetune": 30739, "finetune gptneo": 11284, "examples finetuning": 10124, "gptneo model": 13158, "80 accuracy": 553, "accuracy achieved": 862, "dataset finetuning": 6993, "finetuning changes": 11378, "algorithm results": 1713, "results suggest": 28692, "suggest finetuning": 31569, "models small": 21988, "training machine": 33558, "coax models": 4718, "complex multistep": 5281, "multistep tasks": 22443, "tasks investigating": 32380, "learning ability": 17531, "transfer model": 33680, "transformerbased pretrained": 33765, "conventional nlp": 6076, "tasks struggle": 32515, "struggle tasks": 31244, "numerical understanding": 23180, "possible reasons": 25216, "specifically designed": 30735, "investigate ability": 15571, "t5 models": 31956, "tasks improving": 32361, "task models": 32161, "intermediate training": 15435, "training strategy": 33625, "strategy enhance": 31119, "models performance": 21811, "performance text": 24783, "specific domains": 30690, "strategy includes": 31125, "includes novel": 14453, "selfsupervised training": 29441, "training objective": 33577, "improve models": 14279, "preliminary experiments": 25488, "experiments shown": 10481, "approach able": 2225, "able outperform": 748, "outperform baselines": 23765, "domains language": 8622, "lms exhibit": 19084, "sentence completions": 29530, "methods targeted": 20100, "targeted syntactic": 32065, "makes possible": 19494, "possible explore": 25214, "apply method": 2208, "study behavior": 31305, "lms gpt2": 19089, "human sentence": 13862, "sentence processing": 29541, "areas improvement": 2486, "improvement truthfulqa": 14349, "mimic human": 20170, "propose benchmark": 26499, "generating answers": 12409, "answers questions": 2086, "benchmark comprises": 3361, "categories including": 4224, "law finance": 17419, "avoid generating": 3037, "imitating human": 14108, "t5based model": 31973, "model best": 20396, "models generated": 21311, "models generally": 21306, "tasks performance": 32449, "performance improves": 24629, "improves model": 14384, "learned training": 17524, "training distribution": 33500, "scaling models": 29177, "models promising": 21862, "finetuning using": 11552, "using training": 34930, "training objectives": 33578, "named entity": 22485, "entity recognition": 9648, "recognition ner": 27638, "seen significant": 29365, "significant progress": 30010, "progress recent": 26226, "stateoftheart sota": 30992, "sota models": 30535, "models achieving": 20954, "achieving high": 1092, "high performance": 13576, "studies focused": 31269, "context paper": 5905, "paper introduce": 24059, "task aims": 32076, "aims generate": 1666, "generate relevant": 12317, "relevant context": 27937, "entities sentence": 9640, "sentence context": 29531, "facilitate research": 10843, "research task": 28365, "task present": 32179, "dataset consists": 6960, "publicly traded": 26866, "traded companies": 33333, "dataset largest": 7008, "35 tokens": 342, "tokens sentence": 33244, "sentence making": 29538, "making challenging": 19499, "challenging dataset": 4380, "dataset propose": 7025, "propose baseline": 26498, "baseline approach": 3241, "approach combines": 2250, "generation algorithm": 12456, "model achieving": 20353, "dataset evaluate": 6981, "evaluate models": 9851, "supervised finetuning": 31674, "achieve sota": 987, "sota results": 30539, "results downstream": 28600, "model surpasses": 20817, "15 points": 143, "dataset generated": 6996, "encourage research": 9398, "research direction": 28308, "leading development": 17474, "development sophisticated": 7976, "models financial": 21272, "financial text": 11223, "text analysis": 32816, "exposure bias": 10636, "bias work": 3667, "work focuses": 35713, "bias text": 3665, "despite long": 7795, "numerous studies": 23188, "impact text": 14138, "widelyused pretrained": 35580, "gpt2 recently": 12946, "holtzman et": 13747, "al 2020": 1686, "paper attempt": 24015, "inspecting hidden": 15087, "hidden states": 13539, "states gpt2": 31011, "results text": 28697, "bias study": 3663, "study provides": 31385, "annotated data": 2017, "existing text": 10319, "mainly focus": 19403, "set realworld": 29704, "realworld applications": 27334, "applications require": 2176, "extending new": 10667, "number samples": 23160, "requirements introduce": 28239, "new problem": 22833, "data instead": 6738, "finegrained human": 11273, "human annotations": 13791, "human guidance": 13824, "pretrained generative": 25648, "specifically propose": 30754, "task furthermore": 32128, "furthermore devise": 11995, "problem setting": 26013, "framework uses": 11902, "data training": 6896, "training classifier": 33448, "unlabeled data": 34381, "data model": 6770, "model refinement": 20748, "experiments case": 10423, "case studies": 4195, "realworld datasets": 27338, "demonstrate superior": 7503, "superior performance": 31649, "performance sota": 24760, "zeroshot classification": 35962, "lot attention": 19260, "nlp domain": 22931, "stateoftheart performance": 30969, "tasks success": 32518, "data large": 6749, "large number": 17252, "number parameters": 23155, "parameters despite": 24239, "despite superior": 7819, "especially fewshot": 9734, "fewshot zeroshot": 11126, "compression techniques": 5429, "gpt models": 12857, "literature work": 18046, "work use": 35797, "small portion": 30364, "finetuned downstream": 11307, "tasks using": 32545, "evaluate model": 9850, "understanding evaluation": 34220, "evaluation benchmark": 9924, "benchmark tasks": 3416, "efficient pretraining": 9054, "outperforms existing": 23819, "significantly short": 30085, "wide range": 35549, "large used": 17285, "edge devices": 8820, "topic model": 33284, "increasing attention": 14618, "community existing": 5059, "existing works": 10327, "works focus": 35813, "best knowledge": 3559, "decoderbased models": 7250, "investigated paper": 15603, "paper aims": 24010, "specifically explore": 30738, "current stateoftheart": 6532, "stateoftheart knowledge": 30935, "techniques improve": 32642, "compressed model": 5406, "achieve better": 947, "performance finetuned": 24601, "tasks demonstrate": 32286, "impact data": 14120, "data cleaning": 6632, "model performance": 20695, "semantic parsing": 29462, "tuning recently": 34011, "recently emerged": 27593, "emerged effective": 9157, "effective method": 8883, "adapting pretrained": 1215, "models number": 21761, "number language": 23148, "tuning semantic": 34012, "language utterances": 16853, "meaning representations": 19723, "significantly outperforms": 30074, "conduct ablation": 5582, "ablation studies": 735, "studies different": 31266, "different model": 8104, "model scales": 20766, "increasing model": 14622, "model scale": 20764, "tuned t5": 33963, "improves language": 14379, "model generalization": 20542, "capabilities led": 4036, "like gpt3": 17869, "gpt3 t5": 13007, "t5 research": 31962, "research large": 28330, "new model": 22823, "training tasks": 33628, "engineering efforts": 9465, "scale model": 29141, "model capacity": 20412, "dataset size": 7038, "little work": 18054, "work improve": 35721, "models better": 21023, "recently proposed": 27614, "substantially improve": 31482, "generalization language": 12218, "models computational": 21082, "computational overhead": 5473, "natural questions": 22580, "particularly large": 24349, "large gains": 16948, "gains training": 12073, "tasks limited": 32404, "sequence sequence": 29606, "sequence model": 29603, "model extracting": 20510, "systems need": 31908, "gpt2 shown": 12950, "shown promising": 29907, "promising results": 26296, "nlp benchmarks": 22923, "benchmarks like": 3454, "research gap": 28320, "gap propose": 12105, "network architectures": 22685, "evaluation best": 9928, "performance improvement": 24625, "improvement 12": 14322, "test set": 32784, "set compared": 29677, "outperforms bert": 23810, "efficient tuning": 9064, "tuning pretrained": 34007, "models central": 21050, "starting point": 30900, "range downstream": 27192, "models grow": 21342, "175b parameters": 176, "parameters gpt3": 24253, "gpt3 finetuning": 12993, "finetuning process": 11495, "finetuned model": 11342, "finetuned models": 11345, "models deployed": 21140, "deployed resourceconstrained": 7636, "resourceconstrained environments": 28419, "propose framework": 26515, "parameterefficient finetuning": 24206, "finetuning leveraging": 11438, "weight updates": 35498, "final model": 11178, "model weights": 20865, "proposed framework": 26599, "framework dubbed": 11840, "parameter efficient": 24179, "efficient finetuning": 9034, "lowrank updates": 19309, "pretrained weights": 25780, "resourceefficient inference": 28424, "model leverage": 20611, "sparse patterns": 30619, "unified approach": 34324, "approach extensive": 2279, "backbones bert": 3058, "gpt2 dozens": 12884, "dozens datasets": 8705, "datasets consistently": 7083, "consistently demonstrate": 5747, "demonstrate impressive": 7462, "maintaining competitive": 19421, "downstream performance": 8684, "performance instance": 24631, "achieving comparable": 1088, "trainable parameters": 33380, "parameters bert": 24228, "codes available": 4849, "model finetuning": 20534, "finetuning language": 11424, "transformers architecture": 33776, "making language": 19506, "modeling effective": 20891, "nlp task": 22947, "leading significant": 17484, "significant advancements": 29954, "advancements field": 1462, "respect input": 28451, "input length": 15016, "length presents": 17709, "presents challenge": 25574, "long texts": 19187, "propose finetuning": 26514, "finetuning framework": 11407, "architecture current": 2439, "current pretrained": 6524, "models incorporate": 21385, "entity representations": 9653, "available information": 2982, "information outside": 14894, "model results": 20757, "better language": 3610, "fraction computational": 11816, "implement approach": 14157, "approach using": 2356, "gpt2 compare": 12878, "model original": 20667, "proposed model": 26612, "lower perplexity": 19289, "finetuned version": 11362, "compare models": 5109, "performance terms": 24781, "terms accuracy": 32737, "coreference annotations": 6156, "fewshot text": 11124, "augmentation techniques": 2806, "enhancing performance": 9573, "data sparsity": 6877, "stateoftheart generative": 30932, "shown provide": 29910, "provide significant": 26729, "augmentation text": 2807, "classification tasks": 4614, "tasks fewshot": 32329, "fewshot settings": 11123, "fully explored": 11954, "domains paper": 8632, "paper leverage": 24075, "generating artificial": 12411, "order improve": 23675, "improve classification": 14257, "classification performance": 4602, "performance aim": 24522, "selection process": 29394, "classifier performance": 4625, "perform experiments": 24486, "seed selection": 29354, "selection strategies": 29395, "domain expert": 8561, "results finetuning": 28617, "outperform competitive": 23768, "competitive baselines": 5221, "baselines finally": 3265, "interesting research": 15410, "research avenues": 28296, "scalable efficient": 29125, "optimization method": 23631, "residual learning": 28391, "learning scheme": 17651, "dynamically adjust": 8767, "test time": 32792, "enhancement performance": 9541, "incurring minimal": 14662, "memory training": 19832, "training overhead": 33581, "demonstrate proposed": 7481, "performance degradation": 24563, "trained endtoend": 33395, "generation using": 12631, "current language": 6500, "models generate": 21307, "generate highquality": 12285, "highquality text": 13701, "tease apart": 32602, "sequential structure": 29627, "models lstm": 21692, "lstm transformer": 19328, "transformerxl gpt2": 33802, "text substantially": 32953, "text models": 32912, "models test": 22054, "1000 words": 45, "words long": 35658, "set perform": 29702, "perform extensive": 24487, "extensive manual": 10710, "manual analysis": 19553, "analysis showing": 1965, "novel text": 23119, "efficient sparse": 9060, "sparse training": 30620, "training neural": 33571, "network models": 22699, "networks generalize": 22711, "expensive train": 10367, "ideally like": 13988, "reduce computational": 27702, "sparse model": 30618, "model training": 20839, "promising approach": 26282, "approach achieve": 2226, "challenges existing": 4342, "existing methods": 10293, "methods struggle": 20098, "model components": 20433, "modern hardware": 22158, "uses simple": 34715, "lowrank matrices": 19306, "network layers": 22696, "empirically validate": 9251, "speeds training": 30799, "accuracyefficiency tradeoffs": 918, "models train": 22064, "25x faster": 277, "faster dense": 10998, "vision transformer": 35309, "drop accuracy": 8740, "conditional language": 5569, "models catastrophic": 21048, "learning shifting": 17655, "generalpurpose pretrained": 12257, "trained selfsupervised": 33424, "amounts data": 1884, "applied solve": 2198, "number tasks": 23161, "training methodology": 33564, "abstractive summarization": 777, "code generation": 4754, "raises important": 27167, "important question": 14208, "adapt pretrained": 1168, "models meet": 21713, "meet requirements": 19780, "general capabilities": 12158, "work proposed": 35761, "solve problem": 30494, "policy gradients": 25083, "despite effectiveness": 7774, "effectiveness approach": 8939, "paper extend": 24051, "different control": 8061, "translation summarization": 33850, "baseline approaches": 3242, "does result": 8540, "result catastrophic": 28542, "systems use": 31921, "use large": 34542, "large neural": 17246, "networks require": 22714, "resources training": 28448, "inspired human": 15095, "knowledge acquisition": 15810, "researchers proposed": 28380, "curriculum learning": 6548, "facilitate training": 10847, "training work": 33644, "work investigates": 35729, "learning large": 17592, "modern language": 22159, "bert t5": 3533, "based range": 3215, "range complexity": 27188, "sampling strategies": 29096, "experiments different": 10435, "based various": 3237, "random sampling": 27177, "performs better": 24842, "crosslingual transfer": 6420, "building block": 3922, "nlp applications": 22921, "models requires": 21931, "existing models": 10299, "trained english": 33396, "alleviate problem": 1790, "problem introduce": 25993, "introduce novel": 15524, "efficiently effectively": 9070, "effectively transfer": 8932, "model uses": 20851, "subwordbased tokenization": 31504, "learns embedding": 17678, "source model": 30567, "model english": 20489, "target language": 32051, "token embeddings": 33190, "semantically similar": 29486, "static word": 31013, "method lowresource": 19944, "lowresource languages": 19313, "proposed methods": 26611, "outperforms models": 23834, "models comparable": 21069, "comparable size": 5090, "method makes": 19945, "make code": 19454, "code models": 4786, "models publicly": 21877, "available efficient": 2973, "adaptation pretrained": 1187, "models remarkable": 21927, "remarkable success": 28056, "success large": 31514, "models driven": 21176, "dense models": 7607, "trained massive": 33410, "unlabeled unstructured": 34384, "source text": 30570, "transferring knowledge": 33691, "domain typically": 8601, "introduce method": 15515, "adaptation diverse": 1177, "diverse domains": 8425, "domains using": 8643, "computationally efficient": 5485, "efficient adapter": 9022, "adapter approach": 1199, "based observation": 3202, "frozen pretrained": 11939, "model approach": 20373, "approach enables": 2269, "results gpt2": 28620, "gpt2 large": 12912, "large fraction": 16947, "additionally provide": 1298, "time algorithm": 33108, "cost inference": 6245, "inference latency": 14786, "transformer encoder": 33715, "efficient architecture": 9026, "paper proposes": 24120, "proposes efficient": 26627, "efficient transformer": 9063, "inference computational": 14766, "desired inference": 7764, "finetuning phase": 11483, "encoder layer": 9349, "using proposed": 34886, "proposed attention": 26594, "property inference": 26480, "range inference": 27195, "inference speedup": 14809, "training proposed": 33595, "method applied": 19878, "bertbase gpt2": 3539, "models evaluation": 21221, "evaluation extensive": 9946, "higher transformer": 13611, "latency experimental": 17403, "results extensive": 28611, "sentiment analysis": 29566, "classification text": 4618, "like glue": 17863, "method effective": 19907, "various datasets": 35085, "minimal impact": 20188, "accuracy drop": 871, "models llms": 21472, "necessary training": 22610, "foundation models": 11798, "automatic code": 2876, "code summarization": 4819, "software development": 30454, "help reduce": 13512, "manual writing": 19560, "artificial intelligence": 2533, "paradigm shift": 24159, "pretrained massive": 25710, "massive data": 19625, "data finetuned": 6713, "instead learning": 15123, "robust approach": 28931, "approach automatic": 2239, "summarization based": 31609, "based neural": 3201, "single neural": 30216, "neural model": 22736, "model named": 20651, "gaussian noise": 12133, "contextual information": 5950, "information optimize": 14893, "furthermore introduce": 12004, "knowledge transfer": 15915, "continuous pretraining": 5998, "tasks general": 32345, "finally evaluate": 11193, "dataset code": 6949, "sequencetosequence model": 29619, "model simple": 20786, "generation recent": 12590, "approaches proposed": 2387, "dedicated training": 7305, "training paradigms": 33584, "decoding strategies": 7282, "commonly used": 5029, "seq2seq language": 29589, "model bart": 20385, "easily adapted": 8792, "single batch": 30200, "using simple": 34910, "simple training": 30165, "training procedure": 33590, "results benchmarks": 28575, "benchmarks approach": 3431, "existing stateoftheart": 10315, "benchmarks test": 3475, "test abilities": 32757, "models difficult": 21157, "models exploit": 21239, "adversarial examples": 1514, "make errors": 19468, "data construction": 6657, "leads enhanced": 17492, "user engagement": 34646, "collected data": 4921, "collect highquality": 4917, "highquality data": 13684, "data scale": 6846, "using method": 34839, "method create": 19895, "yesno questions": 35904, "questions demonstrate": 27104, "best baseline": 3555, "achieves accuracy": 1028, "substantially higher": 31481, "knowledge grounding": 15862, "texttotext language": 33012, "models structured": 22015, "complete user": 5252, "answering knowledge": 2063, "knowledge bases": 15817, "inputs outputs": 15050, "studied separately": 31260, "paper overcome": 24083, "overcome limitation": 23922, "framework unifies": 11900, "tasks texttotext": 32530, "texttotext format": 33011, "single task": 30224, "task domain": 32112, "t5 different": 31940, "different sizes": 8139, "simple modifications": 30158, "achieves stateoftheart": 1070, "improves performance": 14387, "performance tasks": 24780, "tasks largely": 32394, "overall performance": 23910, "zeroshot fewshot": 35971, "gpt3 codex": 12988, "conduct series": 5618, "controlled experiments": 6063, "knowledge encoding": 15842, "model fairness": 20512, "explored paper": 10609, "paper examine": 24042, "examine effect": 10099, "distillation pruning": 8347, "pruning toxicity": 26816, "toxicity bias": 33317, "pruning methods": 26814, "methods gpt2": 20043, "model consistent": 20438, "line research": 17982, "serves reference": 29655, "compressed models": 5407, "models extends": 21246, "new ways": 22866, "written language": 35863, "ai technologies": 1619, "technologies like": 32678, "new tools": 22860, "new concept": 22787, "ai technology": 1620, "generate humanlike": 12288, "humanlike text": 13909, "aigenerated content": 1633, "article introduces": 2522, "models end": 21203, "end paper": 9414, "paper focuses": 24053, "processing models": 26113, "need access": 22617, "access training": 827, "parameters training": 24293, "essential enhancing": 9758, "learning ml": 17605, "performance recent": 24734, "recent empirical": 27518, "empirical studies": 9239, "conduct largescale": 5614, "analysis neural": 1944, "type model": 34054, "model selection": 20771, "test performance": 32778, "performance paper": 24709, "tasks prior": 32456, "prior work": 25941, "vision cv": 35292, "tasks ii": 32356, "directly predict": 8239, "data compute": 6650, "able provide": 752, "provide model": 26714, "results large": 28637, "transformers trained": 33798, "trained different": 33389, "different settings": 8138, "metrics derived": 20134, "particularly useful": 24357, "extend prior": 10657, "power law": 25323, "largescale training": 17382, "techniques enable": 32637, "remain open": 27985, "open question": 23416, "pretraining bert": 25786, "gpt paper": 12862, "paper demonstrate": 24030, "slow convergence": 30332, "applied alleviate": 2186, "limitation propose": 17913, "optimizer states": 23651, "wallclock time": 35413, "gpt2 pretraining": 12941, "able reduce": 753, "higher training": 13609, "training throughput": 33632, "endtoend training": 9443, "compared stateoftheart": 5172, "stateoftheart baseline": 30923, "convergence speed": 6085, "accuracy glue": 885, "validation set": 35007, "alternative approach": 1849, "propose alternative": 26494, "network training": 22704, "training using": 33642, "seminal work": 29497, "models glm": 21319, "problem solving": 26015, "approach leads": 2308, "special cases": 30655, "layer pretrained": 17429, "approach used": 2351, "essential step": 9761, "models llm": 21469, "llm demonstrate": 18285, "demonstrate applicability": 7435, "graph neural": 13225, "performance approach": 24524, "approach compared": 2251, "gradient descent": 13187, "synthetic real": 31858, "prediction tasks": 25438, "performance metrics": 24677, "mixtureofexperts moe": 20287, "moe models": 22198, "models allow": 20974, "parameters greatly": 24255, "given sample": 12769, "fixed number": 11578, "token using": 33205, "relative importance": 27879, "address propose": 1353, "topk experts": 33294, "systematically study": 31883, "using computational": 34754, "method improves": 19930, "improves training": 14396, "2x computational": 304, "cost method": 6249, "method demonstrates": 19898, "higher performance": 13600, "performance finetuning": 24603, "selected tasks": 29383, "glue superglue": 12803, "method outperforms": 19951, "outperforms t5": 23859, "dense model": 7606, "11 tasks": 74, "models building": 21035, "highly capable": 13658, "capable language": 4109, "years despite": 35890, "despite great": 7780, "great performance": 13252, "incur high": 14658, "high computational": 13558, "model desirable": 20463, "performance case": 24538, "compression paper": 5421, "dynamic inference": 8760, "inference approach": 14761, "approach called": 2246, "inference large": 14781, "decision making": 7233, "latent space": 17410, "method easily": 19906, "unlike existing": 34394, "tasks method": 32418, "method works": 19985, "sequencetosequence tasks": 29622, "set experiments": 29686, "experiments t5": 10488, "t5 bert": 31937, "code demo": 4746, "demo available": 7420, "paradigm finetuning": 24156, "models parameterefficient": 21801, "explore use": 10603, "learn taskspecific": 17514, "feature maps": 11025, "time enabling": 33121, "enabling flexible": 9321, "information sharing": 14913, "multitask learning": 22450, "parameters achieving": 24224, "computational efficiency": 5466, "extensive empirical": 10682, "empirical experiments": 9225, "experiments demonstrate": 10431, "achieve superior": 995, "superior performances": 31655, "understanding benchmarks": 34212, "architecture pretrained": 2451, "moe architecture": 22196, "achieved remarkable": 1013, "parameters base": 24226, "model extended": 20505, "layer increase": 17425, "increase model": 14598, "sharing parameters": 29791, "core information": 6154, "information different": 14860, "experiments based": 10421, "gpt2 improved": 12907, "improved performance": 14317, "performance efficiency": 24580, "total parameters": 33299, "superior model": 31648, "performance compared": 24550, "code publicly": 4801, "unclear extent": 34124, "training corpus": 33459, "paraphrased sentences": 24303, "similar training": 30120, "training samples": 33604, "work study": 35790, "gpt2 generated": 12894, "generated texts": 12394, "texts comparison": 32989, "finetuned lms": 11341, "domainspecific corpora": 8647, "extensively used": 10719, "practice results": 25378, "decoding methods": 7277, "vary based": 35165, "words phrases": 35660, "training sets": 33612, "ethical implications": 9806, "data increase": 6735, "raising concerns": 27172, "larger models": 17330, "larger training": 17339, "training corpora": 33458, "sensitive information": 29516, "data source": 6870, "various models": 35121, "models proposed": 21869, "structures neural": 31232, "specific language": 30700, "model usually": 20853, "network rnn": 22702, "models transformer": 22082, "gpt2 paper": 12934, "models novel": 21760, "modeling objective": 20901, "probability distribution": 25971, "given context": 12744, "human evaluations": 13810, "easily effectively": 8796, "effectively applied": 8911, "different neural": 8111, "models improving": 21376, "generation various": 12638, "various tasks": 35149, "tasks language": 32387, "generation dialogue": 12486, "prompt completion": 26313, "completion language": 5259, "recently shown": 27624, "generate factual": 12275, "zhou et": 36003, "al 2021": 1687, "combination retrieval": 4952, "method applies": 19879, "final response": 11182, "response using": 28483, "dialogue model": 8016, "stateoftheart model": 30955, "chen et": 4529, "terms consistency": 32742, "prompt completions": 26314, "standard language": 30878, "outperforms gpt2": 23825, "2019 gpt3": 223, "gpt3 brown": 12983, "brown et": 3897, "larger model": 17328, "model code": 20421, "models deep": 21126, "learning dl": 17561, "finetuning large": 11427, "large numbers": 17257, "performance task": 24779, "alzheimers disease": 1863, "disease ad": 8304, "questions remain": 27128, "ability generalize": 671, "generalize small": 12233, "available research": 2999, "parameters directly": 24241, "propose novel": 26543, "gpt2 pretrained": 12937, "pretrained general": 25647, "general english": 12165, "approaches stateoftheart": 2395, "text data": 32841, "data widely": 6913, "description task": 7684, "conversations furthermore": 6107, "generates text": 12404, "text characteristics": 32824, "better understanding": 3634, "understanding relationships": 34268, "human speech": 13864, "speech language": 30782, "outofdistribution generalization": 23748, "generalization natural": 12220, "nlp algorithms": 22919, "remains significant": 28012, "significant challenge": 29964, "challenge paper": 4324, "paper addresses": 24004, "addresses issue": 1364, "labeled data": 15955, "data multiple": 6779, "multiple source": 22419, "target domains": 32050, "training innovative": 33533, "innovative framework": 14996, "framework employs": 11843, "hypernetwork generate": 13956, "generate task": 12328, "tasks sentiment": 32493, "sentiment classification": 29569, "advanced version": 1445, "demonstrating effectiveness": 7580, "use cases": 34516, "feedforward layers": 11076, "layers build": 17437, "vocabulary space": 35384, "space transformerbased": 30584, "transformerbased language": 33747, "modern nlp": 22168, "work make": 35735, "network ffn": 22690, "ffn layers": 11128, "layers building": 17438, "building blocks": 3923, "changing distribution": 4414, "distribution vocabulary": 8398, "leverage findings": 17747, "findings controlling": 11232, "lm predictions": 19061, "reduce toxicity": 27727, "computation efficiency": 5446, "early exit": 8774, "recent neural": 27537, "neural networkbased": 22751, "scaling size": 29181, "size training": 30288, "training datasets": 33497, "parameters models": 24274, "models scaling": 21953, "various factors": 35093, "factors including": 10871, "data ensure": 6695, "results work": 28713, "models scale": 21951, "data evaluation": 6697, "hundreds billions": 13943, "datasets multiple": 7151, "encoderdecoder models": 9370, "decoderonly architectures": 7253, "open source": 23421, "source available": 30547, "efficient accurate": 9020, "popular approach": 25112, "approach reduce": 2332, "reduce compute": 27706, "compute memory": 5495, "weight matrices": 35495, "seen widespread": 29368, "address issues": 1336, "issues propose": 15672, "represent commonly": 28132, "optimal solution": 23616, "unlock new": 34410, "ways train": 35452, "finetune sparse": 11300, "comparable model": 5082, "model quality": 20741, "technique called": 32618, "serve useful": 29650, "intermediate representation": 15430, "bert pretraining": 3525, "optimized implementation": 23646, "mlperf 11": 20306, "bert finetuning": 3504, "comparable accuracy": 5073, "lms shown": 19108, "knowledge pretraining": 15889, "pretraining corpora": 25789, "corpora limited": 6167, "factually correct": 10895, "generation used": 12629, "focus modifying": 11652, "pretraining task": 25844, "finetuning objectives": 11465, "require additional": 28212, "lms practical": 19101, "practical applications": 25361, "novel decoding": 23073, "decoding algorithm": 7269, "based current": 3148, "current context": 6487, "local memory": 19133, "reinforcement learning": 27838, "gpt2 bart": 12872, "models particularly": 21806, "strong performance": 31185, "performance fewshot": 24597, "fewshot scenarios": 11121, "evaluation confirms": 9932, "language input": 16096, "input context": 15005, "compared multiple": 5155, "multiple baselines": 22379, "alleviates exposure": 1793, "generation quality": 12584, "generating longer": 12434, "longer sequences": 19201, "extraction text": 10775, "generation paper": 12566, "paper introduces": 24062, "generation different": 12488, "prior studies": 25940, "studies work": 31291, "datasets design": 7095, "effective model": 8887, "tokens context": 33220, "annotation data": 2025, "scenarios model": 29211, "model better": 20398, "pretrained t5": 25751, "model introduce": 20593, "20 billion": 208, "billion parameter": 3715, "openly available": 23474, "available public": 2998, "permissive license": 24863, "knowledge largest": 15876, "autoregressive model": 2952, "model publicly": 20738, "weights time": 35514, "work models": 35736, "models architecture": 20988, "architecture training": 2455, "training evaluate": 33511, "evaluate performance": 9854, "performance range": 24730, "performance evaluated": 24584, "similarly sized": 30135, "models opensource": 21771, "training evaluation": 33513, "evaluation code": 9929, "fewshot learners": 11109, "models successfully": 22026, "zero fewshot": 35936, "learning paradigms": 17627, "opens new": 23478, "new possibilities": 22831, "gptlike models": 13154, "models 13": 20920, "13 billion": 107, "billion 13": 3713, "parameters trained": 24292, "languages 25": 16862, "language families": 16074, "families using": 10972, "architecture using": 2457, "sparse attention": 30610, "attention mechanism": 2725, "training inference": 33531, "resulting models": 28559, "performance par": 24711, "recently released": 27619, "low resource": 19274, "resource languages": 28413, "architecture design": 2440, "data preparation": 6802, "versions model": 35237, "measure model": 19734, "model perplexity": 20711, "multilingual tasks": 22332, "tasks including": 32364, "including classification": 14467, "sequence labeling": 29599, "models evaluated": 21219, "furthermore compared": 11988, "stateoftheart multilingual": 30959, "multilingual model": 22319, "tasks nlp": 32431, "models generalize": 21305, "unseen tasks": 34444, "tasks provided": 32465, "task instructions": 32142, "address question": 1354, "question introduce": 27070, "supernaturalinstructions benchmark": 31666, "diverse nlp": 8446, "task types": 32204, "types including": 34063, "including limited": 14497, "classification extraction": 4597, "large diverse": 16944, "collection tasks": 4933, "tasks enables": 32308, "crosstask generalization": 6427, "instructions training": 15277, "models follow": 21290, "follow instructions": 11677, "unseen ones": 34443, "ones furthermore": 23348, "incontext instructions": 14546, "plain language": 24990, "language task": 16829, "task definitions": 32104, "kshot examples": 15944, "instructionfollowing models": 15236, "models instructgpt": 21399, "despite order": 7798, "order magnitude": 23676, "magnitude smaller": 19384, "function various": 11963, "scaling parameters": 29179, "number observed": 23154, "tasks number": 32433, "facilitate future": 10840, "systems user": 31923, "underlying user": 34164, "user information": 34652, "feature modern": 11026, "evaluation systems": 10016, "questions requires": 27131, "requires significant": 28261, "significant human": 29984, "human effort": 13802, "timeconsuming expensive": 33148, "expensive paper": 10364, "propose conversational": 26501, "conversational user": 6104, "user simulator": 34672, "simulator called": 30192, "automatic evaluation": 2880, "automatically answering": 2903, "including automated": 14458, "automated natural": 2870, "generation metrics": 12548, "responses generated": 28492, "answers make": 2085, "make steps": 19484, "multiturn interactions": 22465, "user goal": 34650, "currently available": 6541, "available datasets": 2972, "data acquisition": 6592, "model capable": 20410, "capable providing": 4118, "providing accurate": 26770, "discuss capabilities": 8290, "capabilities model": 4044, "model multiturn": 20650, "provide code": 26688, "model used": 20849, "used research": 34622, "research topic": 28366, "bert language": 3514, "given sentence": 12770, "social media": 30423, "media platforms": 19760, "extensively studied": 10718, "pretrained transformerbased": 25767, "transformerbased architectures": 33746, "gaining popularity": 12068, "data scarce": 6849, "models present": 21836, "bert models": 3520, "using masked": 34836, "language modelling": 16228, "models subsequent": 22020, "pos tagging": 25155, "based generative": 3164, "generative transformer": 12710, "capable generating": 4107, "codemixed data": 4844, "dataset models": 7013, "useful new": 34641, "new language": 22811, "language learners": 16108, "solving common": 30506, "does exist": 8526, "language present": 16772, "indian languages": 14683, "languages paper": 16903, "propose transformerbased": 26579, "learning approach": 17536, "approach tackle": 2344, "existing systems": 10317, "using mt5": 34845, "mt5 model": 22256, "model architecture": 20374, "translation language": 33829, "berts masked": 3546, "modeling mlm": 20900, "behavior transformerbased": 3323, "methods focus": 20040, "focus probing": 11654, "models outside": 21787, "input features": 15011, "transformerbased lms": 33758, "provides finegrained": 26752, "models internal": 21403, "recent method": 27533, "token representations": 33201, "demonstrate utility": 7512, "model behavior": 20391, "process release": 26083, "opensource tool": 23545, "controlled text": 6065, "desirable attributes": 7758, "attribute classifiers": 2757, "bridge gap": 3864, "training prompt": 33593, "prompt task": 26347, "task testing": 32197, "introduces trainable": 15548, "generation experiments": 12498, "experiments 11": 10416, "demonstrate strong": 7500, "strong performances": 31188, "training parameters": 33585, "parameters gpt2": 24252, "explanations fewshot": 10541, "fewshot prompting": 11119, "textual reasoning": 33036, "prompting large": 26381, "model llm": 20620, "llm like": 18334, "incontext learning": 14548, "learning study": 17658, "study question": 31388, "tasks involve": 32381, "reasoning text": 27461, "text question": 32926, "answering natural": 2065, "inference test": 14815, "performance llms": 24663, "reasoning datasets": 27403, "datasets using": 7187, "using prompts": 34885, "different styles": 8145, "opt gpt3": 23593, "gpt3 davinci": 12989, "accuracy improvements": 891, "generated llms": 12373, "models predictions": 21832, "factually grounded": 10896, "grounded input": 13289, "accurate predictions": 927, "using automatically": 34737, "reliability explanations": 27949, "vector representations": 35196, "conversational systems": 6103, "idioms figurative": 14031, "responses prompts": 28505, "prompts containing": 26409, "languages cultures": 16867, "great challenge": 13248, "challenge natural": 4319, "translation mt": 33836, "conversational ai": 6094, "tasks investigate": 32379, "conversation generation": 6090, "generation achieve": 12451, "achieve stateoftheart": 990, "macro f1": 19377, "classification task": 4613, "task using": 32208, "t5 model": 31954, "model dialogue": 20469, "evaluated using": 9884, "using automatic": 34736, "automatic metric": 2888, "metric perplexity": 20124, "evaluation results": 10000, "time compared": 33111, "similar model": 30109, "huggingface hub": 13787, "public access": 26830, "coreference resolution": 6158, "task understanding": 32205, "language large": 16105, "benefits large": 3490, "largely rely": 17309, "rely supervised": 27972, "prompt engineering": 26322, "engineering paper": 9468, "pretrained llms": 25706, "llms abilities": 18405, "abilities limitations": 632, "experiments gpt2": 10445, "gpt2 gptneo": 12904, "valid answers": 34989, "results evaluation": 28606, "assessing quality": 2614, "texttotext models": 33015, "diverse tasks": 8466, "tasks datasets": 32284, "summarization question": 31622, "additionally present": 1296, "finetuned various": 11361, "tasks single": 32507, "single training": 30226, "initializing model": 14971, "multilingual t5": 22330, "t5 mt5": 31957, "tasks summarization": 32519, "better results": 3625, "results encoderdecoder": 28601, "encoderdecoder architectures": 9364, "growing body": 13312, "body work": 3806, "work recent": 35771, "major problems": 19444, "lack systematic": 16005, "work revisit": 35776, "data size": 6868, "size model": 30264, "model incorporating": 20579, "characterlevel information": 4435, "release new": 27916, "bertstyle models": 3552, "comprehensive empirical": 5364, "systematically evaluate": 31879, "performance existing": 24587, "benchmark arabic": 3354, "significantly outperform": 30070, "plms achieve": 25039, "discriminative generative": 8286, "models source": 21992, "code reproduce": 4811, "reproduce results": 28200, "results available": 28573, "understand language": 34193, "works usually": 35830, "usually focus": 34947, "model families": 20513, "architecture pretraining": 2452, "datasets diverse": 7098, "diverse set": 8459, "including t5": 14519, "additionally adapt": 1269, "models evaluate": 21218, "evaluate gpt": 9839, "networks different": 22710, "findings models": 11243, "models resolve": 21935, "zeroshot fashion": 35970, "using existing": 34775, "existing pretraining": 10311, "global model": 12797, "size dataset": 30244, "dataset pretraining": 7022, "pretraining objective": 25827, "linguistic capabilities": 18007, "textual explanations": 33029, "inference nli": 14795, "current benchmarks": 6485, "spurious correlations": 30835, "tackle problem": 31999, "problem work": 26019, "models right": 21946, "language making": 16113, "address issue": 1331, "collect data": 4913, "framework based": 11832, "crowd workers": 6430, "expert annotators": 10507, "human annotators": 13793, "linguistic phenomena": 18017, "baseline performance": 3256, "performance t5": 24777, "step closer": 31038, "developing models": 7945, "models understand": 22093, "models conditional": 21087, "input sequence": 15027, "sequence tokens": 29610, "set nlp": 29699, "tasks entity": 32314, "entity typing": 9656, "models popular": 21823, "fully leverage": 11956, "leverage key": 17750, "key properties": 15783, "novel algorithm": 23053, "algorithm effectively": 1704, "model set": 20776, "taking advantage": 32037, "models method": 21719, "model augmented": 20380, "augmented data": 2811, "additional annotations": 1251, "average relative": 3023, "improvement 20": 14323, "datasets various": 7189, "bart t5": 3109, "code use": 4827, "demonstrate large": 7466, "available online": 2991, "automatically generate": 2912, "exam questions": 10095, "work developed": 35694, "program synthesis": 26195, "learning methods": 17604, "methods solve": 20096, "problem set": 26011, "set questions": 29703, "work develop": 35693, "compare methods": 5108, "problem sets": 26012, "set topics": 29711, "curate dataset": 6467, "dataset benchmark": 6943, "benchmark questions": 3406, "online code": 23361, "code answering": 4721, "questions generating": 27112, "generating new": 12437, "new questions": 22837, "perform ablation": 24469, "studies comparing": 31263, "learning chainofthought": 17550, "chainofthought prompting": 4302, "prompting using": 26399, "using gpt3": 34791, "gpt3 opt": 13004, "opt codex": 23589, "codex chatgpt": 4862, "perform best": 24471, "highlight transformative": 13637, "transformative potential": 33697, "models streamline": 22012, "significantly reducing": 30084, "models chatgpt": 21053, "correctness completeness": 6206, "critical thinking": 6395, "generation problem": 12575, "field natural": 11143, "trained various": 33434, "recipe data": 27630, "data present": 6804, "application generate": 2129, "transformer nonautoregressive": 33737, "endtoend speech": 9440, "speech recognition": 30787, "yield good": 35911, "decoder generate": 7247, "generate tokens": 12334, "computationally inefficient": 5487, "speed inference": 30796, "designed enable": 7728, "parallel generation": 24170, "output tokens": 23884, "models especially": 21217, "challenges improving": 4350, "accurately predict": 938, "tokens tackle": 33247, "tackle challenges": 31995, "challenges propose": 4371, "propose fast": 26512, "number tokens": 23164, "glancing language": 12787, "model glm": 20552, "generates semantic": 12403, "semantic embeddings": 29454, "ability model": 704, "model context": 20442, "finally design": 11191, "strategy generate": 31122, "generate negative": 12306, "negative samples": 22663, "word error": 35638, "error rate": 9715, "training improve": 33529, "performance experiments": 24593, "experiments using": 10496, "using public": 34889, "task demonstrate": 32106, "attain comparable": 2696, "performance stateoftheart": 24767, "model data": 20448, "existing solutions": 10314, "heuristic rules": 13532, "gpt2 using": 12964, "produce new": 26151, "new synthetic": 22853, "taskspecific knowledge": 32564, "knowledge limited": 15879, "issue propose": 15661, "propose knowledge": 26522, "augmentation model": 2805, "model pretrained": 20720, "novel framework": 23081, "framework knowledge": 11873, "knowledge single": 15906, "utilize knowledge": 34959, "task limited": 32153, "instances specifically": 15113, "tasks unified": 32538, "unified texttotext": 34339, "objectives different": 23210, "different granularity": 8079, "knowledge attempt": 15814, "multitask training": 22456, "experiments synthetic": 10487, "data produced": 6809, "successfully improves": 31542, "performance strong": 24769, "strong pretrained": 31189, "bert albert": 3495, "large margin": 17229, "successfully transfers": 31544, "task knowledge": 32146, "seen unseen": 29367, "pretraining work": 25852, "past decades": 24388, "potential new": 25285, "new learning": 22816, "learning paradigm": 17626, "paradigm nlp": 24158, "role data": 28956, "process data": 26055, "simple principle": 30161, "cache large": 3958, "large data": 16940, "pretraining models": 25822, "valuable information": 35011, "raw data": 27282, "engineering challenges": 9464, "models surpass": 22033, "surpass strong": 31735, "variety nlp": 35068, "tasks achieve": 32230, "college entrance": 4940, "entrance examination": 9659, "specifically proposed": 30755, "higher average": 13595, "addition test": 1248, "pretraining natural": 25824, "success natural": 31519, "unsupervised manner": 34456, "manner using": 19551, "increasing number": 14626, "number models": 23153, "data supervised": 6884, "showcase superior": 29841, "models motivated": 21738, "pretraining propose": 25833, "propose multitask": 26534, "collect largescale": 4918, "largescale natural": 17367, "11 diverse": 69, "soft prompts": 30449, "models capacity": 21044, "perform specific": 24504, "specific task": 30718, "model seen": 20770, "instruction tuning": 15186, "demonstrated effectiveness": 7518, "model number": 20659, "performance 13": 24513, "dataset chinese": 6948, "chinese language": 4545, "task demands": 32105, "general knowledge": 12170, "language paper": 16768, "dataset named": 7015, "model generation": 20549, "model produces": 20730, "descriptions generated": 7687, "order assess": 23669, "assess performance": 2601, "models task": 22046, "chatgpt chatglm": 4460, "test results": 32781, "reveal current": 28794, "language acquisition": 16034, "similar natural": 30111, "allows obtain": 1815, "representation linguistic": 28142, "using external": 34776, "statistical analysis": 31018, "analysis pretrained": 1949, "models widely": 22129, "nlu natural": 22971, "tasks making": 32417, "used downstream": 34596, "downstream applications": 8673, "linguistic theory": 18023, "english models": 9486, "information language": 14875, "models process": 21855, "linguistic information": 18013, "stages training": 30861, "training language": 33537, "demonstrate capabilities": 7438, "various levels": 35110, "fail tasks": 10908, "introduce opensource": 15531, "opensource framework": 23503, "compatible transformerbased": 5206, "sensitivity analysis": 29521, "architectures bert": 2460, "financial sentiment": 11220, "word embedding": 35636, "learning techniques": 17662, "potential applications": 25239, "financial sector": 11219, "like gpt": 17865, "works methods": 35817, "investigate performance": 15590, "finetuning performance": 11482, "performance based": 24528, "batch size": 3287, "size learning": 30259, "learning rate": 17640, "gpt2 stable": 12954, "layers gpt2": 17439, "pattern information": 24407, "information maintained": 14886, "models infer": 21396, "representations encode": 28159, "rich semantic": 28875, "semantic syntactic": 29477, "novel neural": 23101, "inductive biases": 14739, "relational structures": 27868, "output representations": 23879, "representations pretrained": 28170, "models specifically": 22000, "specifically model": 30749, "model encodes": 20487, "distribution demonstrate": 8391, "demonstrate model": 7474, "artificially generated": 2542, "generated datasets": 12351, "random token": 27178, "token sequences": 33203, "leverage pretrained": 17760, "pretrained bert": 25630, "models encoder": 21199, "encoder decoder": 9346, "language datasets": 16058, "datasets experiments": 7112, "encoding different": 9382, "different aspects": 8050, "models effectively": 21182, "finally explore": 11194, "explore training": 10601, "reasoning models": 27423, "models commonsense": 21067, "reasoning tasks": 27456, "tasks automatic": 32248, "valuable task": 35019, "methods achieved": 20001, "achieved great": 1006, "great progress": 13258, "information annotated": 14854, "limits performance": 17980, "performance methods": 24676, "annotation work": 2028, "work aims": 35667, "aims explore": 1665, "explore new": 10594, "specifically devise": 30736, "addition propose": 1245, "framework leverages": 11878, "detailed analyses": 7833, "used datasets": 34595, "effectiveness method": 8958, "experiments available": 10420, "context based": 5884, "computational linguistics": 5469, "intended meaning": 15368, "word sentence": 35649, "larger context": 17318, "developing efficient": 7943, "complex task": 5296, "task recent": 32185, "models used": 22099, "methods including": 20049, "including machine": 14503, "learning algorithms": 17534, "google t5": 12830, "presented training": 25569, "training run": 33603, "different context": 8058, "context lengths": 5899, "transformers ability": 33775, "ability pretrained": 712, "factual knowledge": 10886, "knowledge essential": 15847, "feedforward networks": 11077, "introduce extra": 15508, "memory slots": 19829, "extra knowledge": 10741, "original pretrained": 23717, "model train": 20833, "modeling ability": 20886, "ability original": 706, "verify strong": 35219, "strong ability": 31160, "closedbook question": 4683, "answering datasets": 2060, "representative tasks": 28187, "summarization machine": 31618, "translation thoroughly": 33857, "thoroughly analyze": 33075, "keys values": 15792, "way finally": 35431, "knowledge stored": 15911, "cognitive processes": 4880, "powered large": 25332, "research understand": 28367, "decisionmaking processes": 7238, "qualitative study": 26935, "study shed": 31397, "shed light": 29794, "bias language": 3648, "model align": 20361, "varying degrees": 35171, "complex ways": 5298, "various criteria": 35083, "writing process": 35855, "higher levels": 13599, "qualitative analysis": 26931, "analysis using": 1976, "process model": 26074, "model writing": 20875, "propose theoretical": 26574, "causal language": 4240, "models general": 21303, "task followed": 32126, "directions future": 8228, "spoken dialogue": 30814, "dialogue agents": 8010, "realtime feedback": 27331, "features pretrained": 11036, "pretrained speech": 25750, "representation model": 28146, "propose metrics": 26531, "train evaluate": 33361, "metrics vastly": 20151, "common approach": 5003, "algorithm faster": 1706, "deep models": 7335, "learning different": 17559, "different kinds": 8086, "deep networks": 7336, "need different": 22624, "process inefficient": 26064, "consistently improve": 5749, "improve model": 14275, "training speed": 33620, "propose adaptive": 26492, "develop new": 7918, "problems deep": 26023, "lower bound": 19284, "surpasses corresponding": 31741, "vision language": 35302, "rl tasks": 28903, "gpt2 transformerxl": 12962, "half training": 13366, "training cost": 33460, "achieve higher": 967, "higher comparable": 13596, "shows great": 29926, "large range": 17274, "32k code": 327, "code released": 4806, "used multiple": 34615, "multiple popular": 22409, "popular deep": 25115, "phishing detection": 24932, "phishing emails": 24933, "empirical analysis": 9219, "leverage knowledge": 17751, "knowledge training": 15914, "detection task": 7883, "task use": 32206, "network model": 22698, "performance significantly": 24752, "indicating effectiveness": 14702, "mitigate effect": 20250, "use gpt2": 34533, "outperforms current": 23816, "models f1": 21252, "additionally analysis": 1271, "analysis individual": 1929, "detecting phishing": 7860, "question generation": 27069, "study investigates": 31348, "generated questions": 12382, "triples knowledge": 33915, "plms typically": 25052, "typically trained": 34082, "trained natural": 33414, "proven effective": 26674, "effective lowresource": 8882, "effectively utilize": 8935, "address challenges": 1313, "generate questions": 12315, "handle complex": 13407, "secondly propose": 29334, "trained largescale": 33406, "largescale unsupervised": 17388, "performance especially": 24583, "especially lowresource": 9743, "lowresource settings": 19317, "settings furthermore": 29736, "inference finetuning": 14778, "large models": 17233, "models nlp": 21754, "benefit using": 3484, "llms 100": 18398, "100 billion": 34, "using models": 34844, "cases llms": 4204, "llms used": 19022, "requires access": 28245, "weights attention": 35502, "attention logits": 2723, "consumer gpus": 5818, "interactive llm": 15394, "llm applications": 18268, "models allowing": 20975, "allowing train": 1807, "based efficient": 3153, "finetuning methods": 11453, "news corpus": 22878, "pretrained autoregressive": 25627, "model paper": 20681, "shared task": 29784, "automatic detection": 2879, "using t5": 34925, "t5 pretrained": 31960, "model iteratively": 20595, "consider different": 5702, "causal relationships": 4247, "model conditioned": 20436, "despite training": 7822, "small dataset": 30338, "approach achieved": 2227, "achieved competitive": 1004, "competitive performance": 5223, "achieves similar": 1065, "similar results": 30116, "results automatic": 28572, "methods automatic": 20008, "potential impact": 25261, "learning recently": 17643, "recently large": 27606, "german language": 12731, "learning based": 17544, "promise improve": 26275, "models reliably": 21922, "sentences combined": 29552, "performed better": 24828, "2022 shared": 230, "task text": 32198, "text complexity": 32830, "data best": 6624, "gradientbased tuning": 13195, "sequencetosequence models": 29620, "learning performance": 17628, "linguistic tasks": 18022, "tasks huge": 32355, "cost training": 6255, "training larger": 33549, "prohibitively expensive": 26240, "expensive motivating": 10361, "study efficient": 31324, "hyperparameter optimization": 13959, "hyperparameters training": 13961, "apply simple": 2212, "simple general": 30150, "efficiency performance": 9010, "performance gains": 24606, "translation natural": 33837, "method generalizes": 19923, "language pairs": 16767, "pretraining improve": 25800, "tasks learning": 32398, "learning multiple": 17618, "global learning": 12796, "training improves": 33530, "learning unified": 17666, "transformers shown": 33795, "shown remarkable": 29911, "task multitask": 32163, "especially natural": 9745, "attempts train": 2709, "transformers different": 33779, "different domains": 8072, "usually clear": 34945, "study multitask": 31368, "learning works": 17672, "tasks significantly": 32504, "significantly different": 30046, "tasks domains": 32302, "python code": 26903, "carried extensive": 4187, "using popular": 34875, "training strategies": 33624, "finetuning evaluate": 11398, "metrics measure": 20142, "measure performance": 19735, "performance various": 24797, "considerable challenges": 5706, "challenges models": 4362, "finetuning strategy": 11539, "learning performs": 17629, "performs tasks": 24857, "tasks keeping": 32384, "accelerating transformerbased": 802, "transformerbased text": 33768, "generation transformer": 12625, "learning language": 17590, "models generative": 21315, "transformer gpt": 33718, "remarkable performance": 28044, "generation natural": 12559, "processing large": 26107, "large input": 16956, "context summarization": 5921, "single word": 30230, "word time": 35651, "parallel processing": 24171, "significantly degrades": 30044, "degrades generation": 7383, "high latency": 13571, "model inference": 20580, "low latency": 19269, "high throughput": 13585, "summarization generation": 31612, "model parallelism": 20686, "instructions provide": 15266, "operations endtoend": 23569, "xilinx alveo": 35871, "alveo u280": 1861, "high bandwidth": 13552, "bandwidth memory": 3090, "memory hbm": 19818, "hardware efficiency": 13429, "energy efficiency": 9448, "promising solution": 26297, "cloud datacenters": 4703, "llms training": 19007, "recent large": 27523, "llms demonstrated": 18512, "demonstrated remarkable": 7541, "growing array": 13311, "array tasks": 2510, "highstakes domains": 13712, "address need": 1347, "framework leveraging": 11880, "knowledge learned": 15877, "llms build": 18454, "use llms": 34547, "compared llms": 5147, "llms explore": 18592, "embeddings llm": 9143, "decision tree": 7234, "outperform larger": 23776, "6billion parameter": 491, "gptj model": 13150, "model despite": 20464, "despite having": 7783, "study generate": 31335, "generate interesting": 12295, "data code": 6634, "code using": 4829, "available github": 2978, "lms trained": 19117, "raw texts": 27285, "physical world": 24941, "trained text": 33432, "cooccurrence statistics": 6128, "lms smaller": 19109, "models scaled": 21952, "larger language": 17321, "llms palm": 18836, "query llms": 27029, "llms typical": 19013, "llms significantly": 18949, "outperform smaller": 23785, "human judgments": 13834, "certain types": 4282, "short texts": 29819, "paper explores": 24049, "transformer language": 33723, "intrinsic extrinsic": 15492, "short text": 29818, "scientific publications": 29254, "compare results": 5114, "results obtained": 28652, "different methods": 8102, "model yields": 20876, "particularly promising": 24353, "performance model": 24680, "news stories": 22887, "represent text": 28135, "scientific abstracts": 29248, "challenges evaluating": 4341, "simple strategy": 30164, "transfer new": 33682, "given natural": 12756, "language prompt": 16806, "perform task": 24505, "additional training": 1266, "prompt cause": 26310, "variations model": 35049, "model predictions": 20716, "task mitigate": 32158, "high degree": 13563, "effort involved": 9078, "lead high": 17464, "high quality": 13579, "prompting strategy": 26396, "proposed prompting": 26617, "prompting method": 26388, "effective prompt": 8891, "questionanswering qa": 27085, "prompts encourage": 26414, "openended generation": 23457, "tend outperform": 32707, "model outputs": 20677, "true false": 33924, "task inputs": 32140, "true label": 33925, "prompts different": 26411, "produce final": 26144, "final predictions": 11181, "opensource model": 23527, "bloom opt": 3790, "t0 model": 31933, "average performance": 3022, "fewshot baseline": 11096, "strategy enables": 31118, "model match": 20635, "match exceed": 19641, "exceed performance": 10147, "popular benchmarks": 25114, "averaged tasks": 3028, "outperforms fewshot": 23823, "llms shown": 18938, "shown exceptional": 29875, "exceptional performance": 10170, "performance variety": 24793, "variety natural": 35065, "language tasks": 16830, "tasks capabilities": 32257, "finetuned llms": 11339, "llms indepth": 18715, "description generation": 7683, "training procedures": 33591, "understanding llms": 34246, "llms pretrained": 18864, "language corpora": 16054, "tasks instance": 32376, "compared models": 5152, "trained exclusively": 33398, "dataset finetuned": 6992, "benchmark llms": 3396, "llms successfully": 18978, "successfully complete": 31537, "data compared": 6646, "compared previous": 5162, "model llms": 20628, "llms evaluate": 18570, "t5based models": 31974, "encoderdecoder architecture": 9363, "promote research": 26301, "research llms": 28335, "opensource largescale": 23514, "dataset distilled": 6975, "strong language": 31177, "models incur": 21394, "selfattention mechanism": 29409, "work proposes": 35762, "time memory": 33134, "memory complexity": 19805, "simple alternative": 30140, "outperforms prior": 23847, "prior methods": 25937, "retains 99": 28721, "generation challenging": 12470, "endtoend neural": 9437, "neural methods": 22735, "methods require": 20087, "require substantial": 28226, "substantial training": 31478, "data realworld": 6825, "issues access": 15665, "examples different": 10121, "different domain": 8071, "domain schema": 8592, "new approach": 22776, "diverse settings": 8462, "efficient use": 9065, "consists steps": 5766, "steps data": 31058, "sentence fusion": 29535, "offtheshelf pretrained": 23331, "finetuning data": 11384, "model understand": 20848, "stage uses": 30859, "like t5": 17895, "datasets different": 7097, "different scenarios": 8136, "scenarios including": 29209, "generalization unseen": 12228, "outofdomain data": 23751, "data experimental": 6702, "consistently achieves": 5744, "achieves significant": 1062, "improvement baselines": 14332, "dataset zeroshot": 7057, "zeroshot setting": 35994, "models understanding": 22094, "nlp research": 22945, "models abilities": 20931, "complex reasoning": 5289, "reasoning abilities": 27368, "abilities work": 648, "focuses simple": 11668, "end introduce": 9412, "questionanswering dataset": 27083, "dataset involving": 7006, "binary classification": 3732, "questions mcq": 27123, "models gpt3": 21327, "gpt3 gpt2": 12995, "gpt2 t5": 12956, "struggle answer": 31238, "questions correctly": 27103, "gpt3 achieves": 12981, "relevant knowledge": 27943, "answer question": 2050, "additional knowledge": 1257, "performance overall": 24708, "performance remains": 24736, "models reason": 21898, "models finetuning": 21279, "models collection": 21061, "collection datasets": 4928, "instructions shown": 15273, "shown improve": 29889, "performance generalization": 24611, "instruction finetuning": 15157, "finetuning particular": 11474, "focus scaling": 11656, "scaling number": 29178, "tasks scaling": 32492, "size finetuning": 30249, "data instruction": 6739, "model classes": 20419, "evaluation benchmarks": 9926, "benchmarks mmlu": 3463, "mmlu bbh": 20313, "generation instance": 12522, "flanpalm 540b": 11590, "tasks outperforms": 32439, "outperforms palm": 23842, "palm 540b": 23990, "performance benchmarks": 24531, "publicly release": 26862, "achieve strong": 993, "strong fewshot": 31170, "fewshot performance": 11117, "compared larger": 5143, "models palm": 21789, "finetuning general": 11408, "general method": 12179, "evaluation large": 9965, "knowledge encoded": 15841, "encoded pretrained": 9343, "introduce benchmark": 15499, "sentence pairs": 29539, "mandarin chinese": 19534, "syntactic semantic": 31823, "minimal pairs": 20191, "english blimp": 9475, "data generation": 6722, "generation process": 12576, "process test": 26086, "available pretrained": 2996, "pretrained monolingual": 25731, "average accuracy": 3009, "achieves highest": 1048, "highest accuracy": 13619, "lms larger": 19094, "larger ones": 17334, "lms strong": 19112, "gender number": 12151, "perform better": 24472, "use multiple": 34553, "multiple nodes": 22406, "step contrast": 31039, "improves accuracy": 14369, "accuracy distribution": 869, "distribution shift": 8396, "compared baseline": 5122, "opt language": 23594, "models 13b": 20922, "13b parameters": 132, "common crawl": 5006, "enables finetuning": 9300, "finetuning settings": 11519, "gpu hours": 13170, "scale increasing": 29134, "100b parameters": 49, "models increasingly": 21390, "emergent capabilities": 9184, "capabilities given": 4023, "openaccess multilingual": 23429, "multilingual language": 22310, "identify architecture": 14004, "training setup": 33614, "best use": 3580, "ablation study": 737, "comparing different": 5189, "zeroshot generalization": 35977, "impact various": 14142, "various popular": 35133, "study performance": 31372, "performance multilingual": 24682, "scaling behaviour": 29160, "target model": 32055, "models code": 21056, "code opensourced": 4795, "semiparametric language": 29499, "require huge": 28219, "number model": 23151, "solving multiple": 30514, "multiple natural": 22403, "settings addition": 29729, "costly model": 6264, "model retraining": 20759, "paper develop": 24033, "develop novel": 7920, "novel semiparametric": 23107, "causality knowledge": 4250, "input instance": 15013, "knowledge type": 15916, "knowledge augmentation": 15815, "generate output": 12309, "answer input": 2045, "input output": 15018, "model knowledge": 20598, "plays role": 25030, "superior zeroshot": 31658, "zeroshot performance": 35987, "performance unseen": 24790, "outperforms large": 23827, "emergent abilities": 9182, "abilities smaller": 639, "smaller model": 30381, "scale compared": 29129, "models leveraging": 21445, "leveraging pretrained": 17792, "failure analysis": 10917, "recently gained": 27598, "domain text": 8599, "text summarization": 32954, "generation questionanswering": 12586, "models long": 21687, "long short": 19179, "short term": 29816, "term memory": 32730, "memory lstm": 19821, "leverage attention": 17744, "pretrained causal": 25633, "model downstream": 20473, "downstream task": 8685, "task generating": 32132, "semiconductor industry": 29495, "compare different": 5105, "generative task": 12705, "task observe": 32169, "gpt2 outperformed": 12933, "gpt2 trained": 12959, "bert bart": 3497, "evaluation metric": 9974, "better evaluation": 3601, "human judgment": 13833, "existing metrics": 10296, "carbon footprint": 4160, "bloom 176b": 3782, "parameter language": 24184, "comes cost": 4970, "given training": 12779, "ml models": 20290, "significant computational": 29967, "aim quantify": 1648, "final training": 11186, "carbon emissions": 4159, "deployment inference": 7648, "user queries": 34667, "conclude discussion": 5551, "discussion regarding": 8301, "footprint ml": 11713, "models future": 21299, "research directions": 28309, "contribute improving": 6029, "ability reason": 719, "raw text": 27284, "text ability": 32813, "combine multiple": 4957, "multiple evidence": 22391, "evidence propose": 10062, "novel learning": 23091, "helps language": 13524, "better understand": 3633, "perform complex": 24476, "compositional reasoning": 5328, "reasoning model": 27422, "model learns": 20609, "multihop question": 22287, "comprehension model": 5345, "model predict": 20714, "predict answer": 25405, "using language": 34804, "outperform baseline": 23764, "absolute f1": 762, "task report": 32187, "make sentences": 19483, "annotated human": 2022, "respectively demonstrate": 28457, "difficult task": 8173, "task zeroshot": 32210, "given limitations": 12752, "limitations approaches": 17915, "generation method": 12545, "transformers scratch": 33794, "finetune t5": 11302, "improved finetuning": 14310, "dataset derived": 6972, "model large": 20602, "shown able": 29867, "able perform": 749, "perform new": 24497, "tasks based": 32250, "language instructions": 16098, "instructions capabilities": 15245, "led widespread": 17688, "adoption llms": 1412, "llms developed": 18538, "present bloom": 25516, "model designed": 20462, "decoderonly transformer": 7265, "corpus dataset": 6179, "dataset comprising": 6956, "programming languages": 26200, "performance wide": 24813, "wide variety": 35566, "stronger results": 31202, "multitask prompted": 22453, "prompted finetuning": 26367, "research applications": 28291, "using llms": 34825, "llms publicly": 18882, "release models": 27912, "responsible ai": 28520, "working memory": 35804, "llms led": 18752, "generation abilities": 12449, "massive amounts": 19623, "pretraining downstream": 25794, "applications provide": 2173, "factual information": 10885, "information presented": 14899, "context remains": 5912, "remains explored": 27995, "behavior llm": 3318, "context contains": 5885, "knowledge enables": 15840, "enables model": 9304, "specific model": 30706, "internal knowledge": 15437, "context llms": 5901, "llms demonstrate": 18508, "demonstrate stateoftheart": 7497, "stateoftheart t5": 30996, "pretrained finetuned": 25643, "exhibit poor": 10225, "poor controllability": 25102, "size solution": 30285, "solution propose": 30477, "standard supervised": 30882, "supervised datasets": 31672, "comprehensive evaluation": 5367, "architectures sizes": 2472, "generalization gap": 12215, "learning pretrained": 17631, "pretrained large": 25697, "shown great": 29879, "tasks exhibit": 32319, "exhibit low": 10224, "various nlp": 35130, "tasks just": 32383, "solve task": 30497, "finetuning known": 11423, "known incontext": 15935, "learning work": 17671, "work look": 35734, "indistribution id": 14714, "outofdistribution ood": 23749, "models semantic": 21961, "parsing tasks": 24321, "tasks incontext": 32369, "train model": 33367, "families opt": 10970, "opt bloom": 23588, "codegen codex": 4839, "different number": 8114, "gap models": 12097, "information overload": 14895, "major obstacle": 19443, "explosive growth": 10626, "growth scientific": 13322, "scientific literature": 29252, "useful insights": 34640, "scientific knowledge": 29251, "search engines": 29309, "train large": 33364, "material knowledge": 19663, "technical knowledge": 32606, "despite trained": 7821, "trained general": 33400, "outperforms bloom": 23811, "demonstrate potential": 7480, "model benefit": 20394, "scientific community": 29249, "use search": 34567, "algorithms possible": 1722, "identify mentions": 14011, "uses texttotext": 34716, "seq2seq paradigm": 29593, "underlying language": 34155, "obtain stateoftheart": 23253, "stateoftheart accuracy": 30920, "data sets": 6860, "sets experiments": 29718, "experiments zeroshot": 10505, "fewshot setting": 11122, "setting using": 29727, "available training": 3002, "languages previous": 16906, "previous approaches": 25865, "approaches significantly": 2393, "exceed previous": 10148, "previous supervised": 25887, "supervised stateoftheart": 31690, "results tested": 28696, "adapting large": 1208, "backpropagation finetuning": 3068, "models different": 21154, "methods reduce": 20084, "reduce number": 27721, "parameters require": 24285, "require gradientbased": 28218, "novel approach": 23056, "model adaptation": 20355, "model demonstrate": 20455, "demonstrate simple": 7496, "lora parameters": 19233, "model fewshot": 20519, "fewshot examples": 11102, "multitask finetuning": 22446, "finetuning mtf": 11456, "diverse language": 8435, "tasks evaluate": 32316, "datasets effectively": 7100, "flexible efficient": 11617, "efficient way": 9066, "models diverse": 21164, "diverse downstream": 8426, "applications understanding": 2179, "study diverse": 31320, "landscape large": 16023, "llms lens": 18754, "bloom model": 3788, "performance bloom": 24535, "decoderonly llms": 7261, "llms compared": 18475, "models achieve": 20944, "model variants": 20858, "performance does": 24571, "does scale": 8541, "parameter size": 24198, "unlike llms": 34396, "llms like": 18756, "experiments finetuning": 10443, "bloom models": 3789, "performs similarly": 24856, "similarly better": 30134, "zeroshot crosslingual": 35964, "gpt3 models": 13003, "models scientific": 21954, "paper examines": 24043, "typically focus": 34078, "limited set": 17965, "high similarity": 13583, "realistic setup": 27317, "dataset containing": 6962, "using dataset": 34763, "lms stateoftheart": 19111, "stateoftheart lms": 30950, "tasks highlighting": 32354, "challenges posed": 4368, "demonstrated substantial": 7550, "substantial gains": 31465, "largelanguage models": 17304, "paper evaluate": 24040, "reasoning benchmark": 27379, "tasks aim": 32239, "examine performance": 10104, "performance smaller": 24756, "smaller models": 30383, "llama2 mpt": 18189, "mpt falcon": 22246, "competitive accuracy": 5218, "results using": 28702, "understand model": 34196, "performance finally": 24600, "finally conduct": 11189, "robustness tests": 28950, "tests using": 32809, "using various": 34937, "various methods": 35116, "performance numerous": 24698, "knowledge large": 15871, "word cooccurrence": 35635, "corpora contain": 6164, "llms trained": 19006, "trained predict": 33418, "words context": 35656, "performance diverse": 24569, "semantic tasks": 29478, "tasks requiring": 32485, "important understudied": 14216, "question llms": 27072, "llms semantic": 18931, "knowledge common": 15825, "assign higher": 2623, "llms possess": 18857, "models particular": 21805, "teacher llms": 32583, "llms consistent": 18485, "active vs": 1148, "vs passive": 35402, "llm representations": 18358, "results important": 28628, "important aspects": 14197, "linguistic patterns": 18016, "highlight gap": 13629, "memory transformer": 19833, "processing long": 26112, "long documents": 19172, "transformer variants": 33744, "stateoftheart different": 30930, "summarization paper": 31621, "fine tuning": 11265, "study aims": 31299, "ability proposed": 717, "model handle": 20564, "used t5": 34628, "t5 transformer": 31966, "modeling task": 20907, "specific training": 30721, "parameters ablation": 24220, "study reveals": 31390, "ability using": 728, "degradation performance": 7376, "impact language": 14126, "characteristics multilingual": 4427, "mbert xlmr": 19712, "xlmr mt5": 35876, "mt5 mbart": 22255, "enabling natural": 9326, "transfer highresource": 33673, "understand models": 34197, "crosslingual signals": 6418, "texts language": 32996, "model appears": 20369, "implicitly learn": 14180, "raises questions": 27170, "source target": 30569, "model statistical": 20808, "crosslingual understanding": 6422, "source language": 30562, "key finding": 15768, "finding work": 11228, "syntax morphology": 31832, "lexical similarity": 17803, "given language": 12751, "able predict": 750, "scale number": 29146, "language data": 16056, "data points": 6797, "knowledge generative": 15854, "important role": 14210, "sequential decisionmaking": 29626, "decisionmaking problems": 7236, "knowledge required": 15902, "largescale generative": 17353, "models glms": 21320, "textual outputs": 33035, "decisionmaking propose": 7239, "algorithm named": 1711, "task goal": 32135, "knowledge proposed": 15893, "fills gap": 11169, "accordingly propose": 849, "glm based": 12791, "everyday tasks": 10058, "secure multiparty": 29346, "multiparty computation": 22375, "approach generating": 2289, "given news": 12759, "news story": 22888, "summarization task": 31625, "news article": 22875, "task produce": 32180, "corpora model": 6168, "results showcase": 28677, "data efficiency": 6688, "quality training": 26982, "training efficiency": 33507, "efficiency efficient": 9003, "efficient data": 9030, "recent advances": 27499, "root causes": 28971, "speed model": 30797, "rapidly evolving": 27255, "efficiently use": 9076, "use training": 34576, "foundation model": 11796, "framework focuses": 11856, "end present": 9415, "work achieves": 35663, "95 model": 603, "quality compared": 26947, "better model": 3611, "benefit additional": 3480, "including gpt3": 14484, "case study": 4196, "able capture": 742, "native speakers": 22500, "earlier results": 8771, "results showing": 28681, "examine effects": 10100, "effects gender": 8979, "study examines": 31329, "able produce": 751, "human raters": 13858, "generated model": 12374, "model explain": 20502, "sentence simplification": 29544, "simplification using": 30175, "using transformers": 34934, "maintaining original": 19429, "research focused": 28317, "focused tackling": 11664, "external linguistic": 10732, "sentences paper": 29557, "models experiment": 21234, "combination gpt2": 4950, "achieving best": 1085, "sari score": 29102, "mechanical turk": 19746, "dataset significantly": 7037, "better previous": 3619, "results code": 28578, "multilingual large": 22313, "multilingual dataset": 22305, "dataset used": 7051, "models datasets": 21124, "datasets analysis": 7064, "range research": 27210, "distributed training": 8388, "training paper": 33582, "collaborative research": 4907, "takes step": 32034, "diversity tasks": 8484, "main goal": 19397, "share lessons": 29781, "lessons learned": 17723, "impact social": 14137, "large deep": 16943, "different contexts": 8060, "sparsely activated": 30623, "computation costs": 5445, "models efficient": 21184, "terms quality": 32750, "computation cost": 5444, "models remain": 21925, "scratch large": 29291, "large scale": 17275, "way reuse": 35447, "training costs": 33461, "model dense": 20459, "base large": 3119, "large xl": 17302, "models vision": 22117, "models respectively": 21936, "respectively significantly": 28464, "dense counterparts": 7605, "using 50": 34724, "computation budget": 5443, "syntactic evaluations": 31815, "ask models": 2553, "models stable": 22007, "make judgements": 19471, "just single": 15734, "input does": 15008, "match language": 19643, "models training": 22077, "input sentences": 15026, "robust models": 28936, "contexts paper": 5945, "properties input": 26473, "context length": 5898, "syntactic phenomena": 31821, "randomly sampled": 27182, "linguistic contexts": 18009, "tested models": 32796, "gpt2 variants": 12965, "variants opt": 35043, "unrelated inputs": 34426, "changes model": 4411, "matching context": 19659, "test inputs": 32772, "lexical overlap": 17800, "highly specific": 13669, "explained models": 10532, "learning abilities": 17530, "shown perform": 29902, "investigate hypothesis": 15584, "ability large": 689, "model incontext": 20578, "attention heads": 2719, "feed forward": 11055, "task performance": 32173, "performance substantial": 24771, "number incontext": 23143, "incontext examples": 14544, "small set": 30367, "score highly": 29269, "ability perform": 710, "induction heads": 14736, "overall study": 23915, "provides insights": 26757, "perform incontext": 24491, "learning multilingual": 17614, "multilingual sequencetosequence": 22328, "nlp recent": 22943, "nlp large": 22934, "increased model": 14609, "size large": 30255, "data despite": 6675, "languages additionally": 16863, "focused encoderonly": 11661, "tasks named": 32423, "paper argue": 24013, "generative architectures": 12652, "leverage powerful": 17759, "multilingual pretrained": 22323, "pretrained sequencetosequence": 25748, "models mt5": 21739, "eliminating need": 9110, "need specialized": 22642, "using approach": 34732, "approach experiments": 2275, "previously published": 25901, "results existing": 28607, "benchmarks results": 3471, "tuning language": 33985, "tuning enables": 33974, "enables pretrained": 9306, "language descriptions": 16061, "approaches rely": 2388, "rely vast": 27973, "vast amounts": 35181, "human supervision": 13868, "user interactions": 34658, "instructions large": 15256, "large dataset": 16941, "diverse instructions": 8434, "examples instructions": 10130, "noise training": 22985, "training opensource": 33580, "surpassing performance": 31758, "models t0": 22040, "various benchmarks": 35077, "modelgenerated data": 20883, "personality traits": 24885, "explored aspects": 10608, "human personality": 13852, "used assess": 34584, "work explore": 35704, "explore question": 10600, "models exhibited": 21229, "generation example": 12495, "highly predictable": 13665, "dialog systems": 8005, "crowdsourced dataset": 6432, "human subjects": 13867, "chainofthought reasoning": 4304, "llms surprisingly": 18986, "generating natural": 12435, "language reasoning": 16812, "reasoning steps": 27454, "answering qa": 2069, "parameters using": 24294, "using question": 34895, "retrieve relevant": 28769, "relevant text": 27946, "llms observe": 18822, "using retrieved": 34903, "results improve": 28630, "substantially improves": 31483, "improves retrieval": 14393, "gains outofdistribution": 12072, "reduces model": 27738, "model hallucination": 20562, "cot reasoning": 6283, "data prompts": 6812, "safety large": 29048, "tested different": 32795, "different llms": 8096, "llms using": 19025, "instruction finetuned": 15154, "gpt35 gpt4": 13021, "gpt4 showed": 13117, "evaluated llms": 9879, "llms gpt": 18643, "gpt series": 12863, "impact finetuning": 14123, "models following": 21292, "using direct": 34768, "direct preference": 8213, "preference optimization": 25469, "effectively reduce": 8928, "based findings": 3160, "metrics evaluate": 20135, "improve safety": 14297, "safety llms": 29052, "labeling tasks": 15962, "tasks absence": 32229, "readily available": 27302, "data given": 6724, "task language": 32147, "data annotation": 6597, "parallel corpora": 24167, "leverages large": 17768, "models stateoftheart": 22010, "stateoftheart machine": 30952, "candidates using": 3997, "using multilingual": 34847, "model generated": 20545, "generated candidates": 12344, "conducted experiments": 5633, "outperforms previous": 23843, "wide margin": 35548, "lack highquality": 15990, "highquality training": 13703, "tasks code": 32263, "data publicly": 6820, "massive language": 19626, "models accurately": 20942, "pruned oneshot": 26805, "gpt family": 12847, "family models": 10982, "50 sparsity": 423, "oneshot retraining": 23351, "minimal loss": 20189, "loss accuracy": 19241, "pruning method": 26813, "designed work": 7748, "efficiently accurately": 9068, "gptfamily models": 13143, "models execute": 21224, "largest available": 17390, "available opensource": 2994, "opensource models": 23528, "models opt175b": 21778, "opt175b bloom176b": 23606, "billion weights": 3722, "weight quantization": 35496, "approaches code": 2370, "generative ai": 12645, "ai models": 1612, "stable diffusion": 30849, "perform tasks": 24506, "models industry": 21395, "ai capable": 1602, "texts images": 32993, "images like": 14085, "model text": 20829, "model images": 20568, "images text": 14088, "texts texts": 33003, "like chatgpt": 17853, "code like": 4771, "like codex": 17858, "codex model": 4863, "scientific texts": 29260, "model create": 20447, "algorithms like": 1721, "model bert": 20395, "albert roberta": 1696, "roberta t5": 28922, "t5 gpt": 31947, "proven promising": 26676, "recent nlp": 27538, "tuning model": 34000, "works proposed": 35824, "understanding methods": 34252, "methods work": 20111, "work paper": 35740, "finetuning procedure": 11494, "addition able": 1235, "theoretical analysis": 33048, "analysis framework": 1922, "design effective": 7702, "novel strategies": 23110, "extensively evaluate": 10717, "proposed approaches": 26592, "used realworld": 34621, "classification datasets": 4594, "datasets experiment": 7107, "experiment results": 10379, "results proposed": 28659, "generation style": 12607, "contextually appropriate": 5969, "generation systems": 12610, "systems existing": 31897, "existing approaches": 10261, "textual style": 33039, "transfer large": 33675, "large volumes": 17301, "data argue": 6603, "data second": 6852, "novel task": 23113, "analysis model": 1942, "based text": 3230, "text generator": 32888, "quantitative qualitative": 26994, "approach generate": 2287, "generic text": 12720, "text prompts": 32923, "prompts code": 26407, "data accessible": 6587, "effectiveness large": 8950, "models dialog": 21153, "increased size": 14612, "achieve high": 966, "high level": 13572, "level performance": 17735, "tasks question": 32468, "answering summarization": 2075, "summarization large": 31614, "tasks realm": 32472, "llms language": 18741, "understanding capabilities": 34213, "evaluation task": 10018, "prompting llms": 26387, "paper shows": 24133, "choice datasets": 4551, "training model": 33567, "task prompt": 32181, "datasets model": 7148, "evaluation performs": 9987, "paper investigates": 24072, "examples prompt": 10141, "example selection": 10110, "affect models": 1538, "performance step": 24768, "recent innovations": 27521, "nvidia a100": 23191, "inference stateoftheart": 14811, "optimizers like": 23653, "attentionbased llms": 2747, "llms paper": 18837, "light propose": 17833, "remains fixed": 27996, "automatically identifies": 2919, "empirically evaluate": 9249, "multiple tasks": 22422, "llm finetuning": 18307, "sparsity ratios": 30635, "generating realistic": 12441, "tabular data": 31992, "data common": 6645, "common form": 5007, "multiple models": 22402, "available generate": 2977, "tabular datasets": 31993, "ability produce": 716, "data challenging": 6631, "challenging requires": 4395, "tables introduce": 31988, "using autoregressive": 34738, "autoregressive gpt2": 2940, "model generates": 20546, "sequencetosequence seq2seq": 29621, "model implement": 20570, "using realworld": 34897, "baseline model": 3254, "outofthebox large": 23758, "zeroshot dense": 35966, "improve zeroshot": 14302, "ability language": 687, "memory inference": 19819, "model zeroshot": 20877, "dense retrieval": 7610, "setting augmenting": 29722, "strong zeroshot": 31194, "retrieval accuracy": 28730, "tasks included": 32363, "benchmark outperforms": 3404, "computation steps": 5450, "robust generalization": 28933, "parameters plan": 24276, "content generation": 5861, "complex diverse": 5273, "way generating": 35435, "generating content": 12416, "lack ability": 15974, "generate content": 12268, "incredibly effective": 14653, "trained llms": 33409, "llms finetuned": 18610, "accelerating training": 801, "training new": 33573, "tasks introduce": 32378, "finetuned gpt2": 11317, "generate diverse": 12273, "key challenges": 15756, "far know": 10988, "model combined": 20429, "enables generation": 9301, "content code": 5853, "main challenges": 19391, "modern transformer": 22173, "architectures like": 2466, "like bert": 17845, "strengths weaknesses": 31143, "language vision": 16854, "vision model": 35306, "vision models": 35307, "present empirical": 25526, "empirical evaluation": 9220, "evaluation different": 9941, "different lms": 8101, "gpt2 opt": 12931, "benchmark introduce": 3394, "unified multitask": 34334, "qa datasets": 26908, "structured explanations": 31220, "question used": 27076, "used produce": 34620, "extensive evaluation": 10685, "evaluation popular": 9990, "models fewshot": 21267, "models lag": 21414, "lag human": 16014, "producing structured": 26166, "believe work": 3341, "work provide": 35763, "multistep reasoning": 22442, "reasoning conversational": 27398, "art large": 2514, "large transformerbased": 17281, "gpt t5": 12864, "deep understanding": 7346, "understanding contextual": 34217, "semantics language": 29488, "enabled significant": 9291, "significant advances": 29958, "including development": 14471, "systems capable": 31888, "complete tasks": 5250, "levels reasoning": 17741, "reasoning humans": 27411, "ai research": 1615, "approaches include": 2377, "ai paper": 1614, "used evaluating": 34599, "commonsense capabilities": 5035, "capabilities stateoftheart": 4073, "dialogue models": 8017, "aspect based": 2563, "based sentiment": 3221, "analysis introduce": 1932, "aspectbased sentiment": 2570, "positive negative": 25194, "negative neutral": 22661, "examples training": 10144, "instruction tune": 15182, "tune model": 33958, "significant performance": 29999, "performance improvements": 24627, "sota approaches": 30531, "7x larger": 551, "models competitive": 21074, "strong generalization": 31173, "sample efficiency": 29066, "train data": 33360, "data required": 6837, "tuning approaches": 33968, "assess quality": 2603, "quality instructions": 26970, "qa language": 26911, "stateoftheart language": 30936, "strategies complex": 31102, "public data": 26833, "data standard": 6880, "complex questions": 5287, "problems does": 26026, "different cultures": 8063, "climate change": 4655, "knowledge skills": 15907, "sensitive data": 29515, "data protection": 6815, "feedback recent": 11068, "chatgpt galactica": 4470, "great potential": 13254, "limitations llm": 17925, "paper start": 24135, "research papers": 28341, "challenges llm": 4358, "llm terms": 18373, "evaluation accuracy": 9916, "accuracy fairness": 881, "discuss challenges": 8291, "challenges associated": 4336, "including domain": 14473, "decomposition efficient": 7290, "promising research": 26295, "trends using": 33890, "patterns training": 24414, "prompting strategies": 26395, "learning supervised": 17659, "guiding large": 13360, "prompting introduce": 26379, "introduce directional": 15503, "llms specific": 18963, "llms method": 18799, "method employs": 19909, "policy model": 25085, "guide llms": 13349, "llms generating": 18637, "direct llm": 8212, "model explore": 20504, "align llms": 1732, "desired behaviors": 7763, "using labeled": 34803, "data reinforcement": 6829, "offline online": 23322, "based llms": 3193, "llms output": 18835, "assess method": 2597, "dialogue response": 8018, "response generation": 28477, "generation chainofthought": 12468, "consistently improves": 5751, "improves llms": 14382, "llms chatgpt": 18463, "supervised tasks": 31691, "using minimal": 34842, "data notably": 6785, "using just": 34802, "dialogues multiwoz": 8025, "multiwoz dataset": 22468, "dataset approach": 6939, "approach enhances": 2271, "chatgpts performance": 4507, "performance impressive": 24623, "matching surpassing": 19660, "fully supervised": 11957, "models additionally": 20960, "chainofthought prompt": 4301, "prompt generated": 26326, "generated approach": 12343, "approach improves": 2297, "reasoning accuracy": 27377, "accuracy compared": 865, "automatically generated": 2914, "models continue": 21107, "resources required": 28446, "learning leverage": 17598, "overhead associated": 23936, "associated model": 2651, "models computer": 21085, "proven challenging": 26672, "modern deep": 22157, "key value": 15789, "successfully implement": 31540, "model model": 20644, "parameters best": 24229, "model date": 20453, "generation comprehension": 12474, "comprehension natural": 5347, "modifying transformer": 22184, "transformer block": 33711, "self attention": 29404, "computational complexity": 5457, "linear complexity": 17986, "sequence length": 29601, "length input": 17706, "input tokens": 15035, "models tested": 22055, "benchmarks maintaining": 3460, "fewer operations": 11088, "hardware leverage": 13430, "past work": 24390, "generation settings": 12601, "tools work": 33275, "democratize access": 7425, "extraction models": 10770, "decoderonly encoderdecoder": 7254, "showcase potential": 29838, "gender biases": 12150, "good practices": 12822, "model evaluations": 20496, "llama open": 18133, "foundation language": 11792, "models introduce": 21404, "introduce llama": 15514, "llama collection": 18089, "models ranging": 21889, "7b 65b": 529, "65b parameters": 478, "trillions tokens": 33910, "possible train": 25217, "train stateoftheart": 33376, "using publicly": 34890, "gpt3 175b": 12980, "competitive best": 5222, "best models": 3565, "models research": 21933, "currently largest": 6543, "largest language": 17394, "model explicitly": 20503, "search engine": 29308, "corpus date": 6180, "opensourced available": 23548, "available hugging": 2979, "hugging face": 13784, "possible use": 25218, "models plm": 21818, "tasks despite": 32294, "argue current": 2490, "critical aspect": 6382, "modeling human": 20895, "human intelligence": 13827, "tasks longstanding": 32409, "longstanding challenge": 19214, "field ai": 11133, "crosslingual summarization": 6419, "document summary": 8508, "open problem": 23415, "attention field": 2717, "plms gpt2": 25047, "models examine": 21222, "trained large": 33405, "underlying structure": 34163, "lms text": 19116, "observed model": 23241, "model behaviors": 20392, "using set": 34909, "american english": 1879, "consistency large": 5734, "does appear": 8522, "biases training": 3687, "data finetuning": 6715, "finetuning t5": 11541, "sensitive spelling": 29518, "gpt2 similarly": 12951, "need largescale": 22635, "largescale highquality": 17356, "text datasets": 32843, "data creation": 6664, "dataset spanning": 7039, "languages used": 16919, "multilingual bloom": 22296, "bloom language": 3785, "model release": 20750, "monolingual multilingual": 22210, "data processing": 6808, "stimulate research": 31063, "large multilingual": 17241, "multilingual corpus": 22302, "data pruning": 6817, "pruning aims": 26809, "samples make": 29084, "make contribution": 19460, "compared original": 5157, "original data": 23703, "problem propose": 26004, "framework aiming": 11826, "aiming achieve": 1656, "samples based": 29074, "classification semantic": 4609, "semantic segmentation": 29472, "finetuning tasks": 11544, "diffusion model": 8183, "llama instruction": 18114, "selection methods": 29393, "methods code": 20010, "humans ai": 13919, "ai systems": 1618, "increasingly important": 14637, "systems chatgpt": 31889, "chatgpt bloom": 4459, "ai writing": 1623, "creating image": 6367, "tasks present": 32453, "present use": 25561, "use ai": 34513, "holds potential": 13741, "traditional kbqa": 33347, "analysis question": 1953, "llm family": 18303, "powerful large": 25342, "supports natural": 31718, "language question": 16811, "answering using": 2080, "knowledge growing": 15863, "answering kbqa": 2062, "models works": 22138, "performance chatgpt": 24541, "lack largescale": 15997, "largescale comprehensive": 17344, "comprehensive testing": 5394, "various types": 35157, "analyze limitations": 1997, "limitations model": 17927, "family llms": 10981, "llms realworld": 18889, "complex question": 5286, "datasets include": 7130, "english datasets": 9478, "datasets multilingual": 7150, "multilingual datasets": 22306, "datasets total": 7182, "total number": 33298, "test cases": 32762, "addition gpt": 1240, "llms dataset": 18505, "humans language": 13925, "chatgpt vicuna": 4497, "internal workings": 15443, "black box": 3752, "unclear llms": 34125, "characteristics language": 4426, "12 experiments": 90, "respectively models": 28462, "different words": 8159, "sentences likely": 29556, "model preferred": 20718, "use context": 34520, "demonstrate llms": 7472, "lesser extent": 17721, "extraction given": 10767, "extraction aims": 10762, "image quality": 14073, "formulate task": 11772, "task extract": 32122, "aspects directly": 2574, "relations text": 27871, "text paper": 32914, "taskoriented dialogs": 32220, "systems google": 31900, "academic research": 788, "research area": 28293, "limited lack": 17954, "lack datasets": 15982, "wide array": 35547, "conversations introduce": 6110, "public dataset": 26834, "conversations humans": 6109, "diverse array": 8412, "conversational parsing": 6101, "dataset provides": 7026, "context users": 5925, "baselines demonstrate": 3264, "demonstrate conversational": 7444, "phenomenon present": 24925, "challenging model": 4387, "grammatical error": 13206, "error detection": 9713, "detection using": 7886, "method detecting": 19901, "grammatical errors": 13209, "using small": 34915, "primarily designed": 25909, "designed translation": 7747, "task extensive": 32121, "optimal performance": 23615, "performance final": 24599, "presents detailed": 25578, "detailed analysis": 7834, "challenges adapting": 4334, "translation model": 33834, "demonstrating potential": 7585, "models detecting": 21150, "exploring impact": 10616, "instruction data": 15143, "data scaling": 6848, "scaling large": 29167, "models empirical": 21192, "study realworld": 31389, "realworld use": 27351, "success chatgpt": 31508, "key factor": 15765, "remarkable results": 28055, "significantly enhances": 30049, "enhances models": 9549, "makes models": 19493, "generated results": 12386, "results consistent": 28584, "current research": 6527, "different amounts": 8043, "amounts instruction": 1885, "explore performance": 10595, "performance large": 24644, "based instruction": 3181, "tuning different": 33973, "different scales": 8135, "evaluation dataset": 9936, "dataset consisting": 6959, "results merely": 28642, "continuous improvement": 5997, "tasks openended": 32435, "math code": 19667, "potential future": 25255, "selecting highquality": 29387, "base models": 3128, "training methods": 33565, "tasks release": 32479, "model checkpoints": 20417, "attention placed": 2734, "llms downstream": 18548, "despite importance": 7787, "research space": 28362, "corpora using": 6172, "highly efficient": 13663, "compression rate": 5424, "opt 175b": 23587, "provides framework": 26754, "analysis current": 1916, "current future": 6491, "output llms": 23873, "llms koala": 18739, "public use": 26844, "llms revolutionized": 18922, "revolutionized natural": 28848, "impressive capabilities": 14231, "capabilities various": 4080, "hallucinations model": 13396, "false information": 10958, "information responses": 14906, "llm performance": 18348, "performance specific": 24763, "specific knowledge": 30699, "evaluated based": 9873, "based question": 3214, "question answer": 27038, "answer qa": 2049, "dataset covers": 6965, "entire field": 9625, "model improvement": 20573, "likely occur": 17902, "assess llms": 2596, "technique enables": 32621, "enables users": 9311, "evaluate llms": 9845, "llms performance": 18850, "provide detailed": 26693, "detailed insights": 7840, "insights llms": 15079, "llms knowledge": 18734, "capabilities different": 4011, "datasets llm": 7144, "llm responses": 18363, "detailed comparison": 7835, "comparison multiple": 5197, "multiple llms": 22399, "conduct comparative": 5587, "comparative analysis": 5096, "stateoftheart llms": 30945, "gpt3 chatgpt": 12987, "tested multiple": 32797, "feature engineering": 11022, "engineering approaches": 9463, "feature space": 11028, "automated machine": 2865, "learning automl": 17543, "method utilizes": 19984, "linear regression": 17994, "llms gpt4": 18654, "gptj llama": 13148, "llama falcon": 18098, "remains important": 27997, "important task": 14213, "performance increase": 24630, "models era": 21212, "family parameterefficient": 10983, "models success": 22024, "like gpt4": 17873, "gpt4 chatgpt": 13062, "led development": 17684, "llms taskspecific": 18997, "taskspecific data": 32560, "various finetuning": 35095, "finetuning peft": 11475, "requires finetuning": 28253, "llms achieving": 18423, "comparable better": 5074, "peft methods": 24437, "methods llms": 20064, "framework integrates": 11870, "adapters llms": 1205, "llms different": 18539, "framework includes": 11866, "llms llama": 18767, "llama bloom": 18081, "promptbased learning": 26361, "methods conduct": 20011, "evaluate effectiveness": 9828, "different reasoning": 8131, "arithmetic reasoning": 2504, "reasoning commonsense": 27392, "demonstrate using": 7511, "llms 7b": 18402, "parameters yields": 24295, "comparable cases": 5076, "cases superior": 4207, "performance powerful": 24717, "powerful llms": 25346, "llms 175b": 18401, "zeroshot inference": 35980, "inference reasoning": 14803, "ai community": 1605, "generation ai": 12454, "combining language": 4963, "specific tasks": 30719, "like image": 17876, "image captioning": 14057, "image models": 14072, "llm use": 18376, "enables better": 9294, "serve input": 29648, "open ai": 23383, "gpt4 demonstrate": 13069, "generating novel": 12438, "complex constraints": 5268, "multimodal models": 22363, "models currently": 21119, "currently lack": 6542, "format task": 11755, "task recently": 32186, "recently language": 27605, "similar problems": 30115, "offers enhanced": 23309, "enhanced capabilities": 9532, "ways work": 35454, "models tuned": 22086, "feedback large": 11064, "chatgpt exhibited": 4465, "exhibited remarkable": 10236, "remarkable abilities": 28025, "language processingnlp": 16804, "chat models": 4445, "models accessible": 20940, "accessible restricted": 834, "barriers new": 3104, "new research": 22839, "field propose": 11151, "framework enhance": 11847, "based opensource": 3206, "opensource llms": 23519, "feedback data": 11058, "data specifically": 6878, "translation data": 33823, "translation process": 33846, "propose instruction": 26520, "including translation": 14524, "translation instruction": 33827, "instruction contrastive": 15142, "instruction experiments": 15153, "improves translation": 14397, "translation performance": 33844, "vanilla llms": 35030, "humans demonstrate": 13921, "potential automatic": 25243, "evaluation tools": 10022, "quality information": 26969, "human annotation": 13790, "pile dataset": 24953, "accuracy given": 884, "compute budget": 5493, "powerlaw scaling": 25356, "stateoftheart training": 31001, "model scaling": 20767, "improving accuracy": 14403, "code making": 4778, "trained fixed": 33399, "available huggingface": 2981, "study evaluates": 31327, "potential large": 25266, "feature norms": 11027, "critical tool": 6396, "tool evaluating": 33258, "cognitive science": 4881, "expressed human": 10640, "suggest llms": 31574, "llms greatly": 18665, "methods semantic": 20092, "humans machines": 13928, "information extraction": 14867, "tasks uie": 32536, "study various": 31409, "extensively utilized": 10720, "syntactic knowledge": 31818, "better generation": 3606, "generation decoding": 12484, "finally introduce": 11196, "introduce taskoriented": 15536, "benchmarks tasks": 3474, "tasks shows": 32501, "shows significant": 29936, "significant improvements": 29991, "indepth analyses": 14673, "identifying source": 14024, "source codes": 30555, "educational questions": 8844, "questions generated": 27111, "generated large": 12367, "potential transform": 25303, "teachers students": 32588, "quality diverse": 26953, "diverse question": 8451, "generation dramatically": 12489, "dramatically reduce": 8719, "improve quality": 14290, "educational content": 8840, "content recent": 5871, "real teachers": 27312, "classroom setting": 4634, "conduct human": 5610, "showing promise": 29862, "widespread use": 35597, "text simplification": 32941, "architecture text": 2453, "simplification ts": 30174, "process generating": 26062, "sentences given": 29555, "piece text": 24949, "text aim": 32815, "given text": 12776, "english sentences": 9490, "proposed architecture": 26593, "sentence transformers": 29546, "using metrics": 34841, "models terms": 22053, "terms perplexity": 32749, "contributions paper": 6042, "baseline research": 3257, "results stateoftheart": 28689, "better instruction": 3608, "instruction following": 15161, "following language": 11694, "models chinese": 21054, "investigating impact": 15609, "impact training": 14140, "recently significant": 27626, "efforts directed": 9089, "models capabilities": 21038, "conversational models": 6100, "models remains": 21926, "evaluations models": 10034, "performance study": 24770, "study examine": 31328, "influence training": 14840, "quantity quality": 27002, "performance analysis": 24523, "analysis grounded": 1924, "publicly accessible": 26849, "highquality instruction": 13690, "instruction datasets": 15152, "datasets chinese": 7073, "chinese multiturn": 4549, "multiturn conversations": 22462, "using evaluation": 34773, "evaluation set": 10008, "manual evaluations": 19559, "offering valuable": 23303, "valuable insights": 35012, "opensource chat": 23486, "models furthermore": 21298, "furthermore enhance": 11998, "performance training": 24788, "inference efficiency": 14772, "llama model": 18128, "performance proprietary": 24726, "proprietary language": 26637, "secondary pretraining": 29331, "make model": 19472, "comparative study": 5101, "finetuning chinese": 11380, "following large": 11695, "models crucial": 21116, "area research": 2483, "research field": 28312, "parameterefficient tuning": 24216, "tuning techniques": 34017, "techniques lora": 32650, "encouraging results": 9404, "fullparameter finetuning": 11949, "terms training": 32752, "tuning methods": 33999, "methods utilizing": 20109, "utilizing llama": 34974, "llama base": 18078, "model experimental": 20500, "foundational model": 11808, "parameter quantity": 24195, "important factors": 14201, "provide inspiration": 26711, "especially field": 9735, "field chinese": 11135, "help researchers": 13513, "cost model": 6250, "negative impact": 22660, "blooms taxonomy": 3794, "generative text": 12709, "ai tools": 1622, "concerns regarding": 5546, "regarding potential": 27811, "concerns paper": 5542, "approach aims": 2234, "aims identify": 1667, "best set": 3578, "approach evaluated": 2273, "study uses": 31406, "data structures": 6883, "optimization algorithm": 23622, "questions chatgpt": 27101, "step forward": 31046, "create effective": 6349, "efficient effective": 9031, "effective text": 8901, "llama alpaca": 18073, "chatgpt gpt4": 4478, "transformed natural": 33699, "research shown": 28360, "artificial general": 2530, "general intelligence": 12168, "intelligence agi": 15351, "high costs": 13562, "costs associated": 6267, "associated training": 2652, "training deploying": 33499, "llms present": 18861, "models llama": 21464, "predominantly focus": 25462, "focus english": 11645, "capabilities understanding": 4075, "understanding generating": 34224, "ability follow": 666, "instructions achieve": 15242, "tokens improving": 33232, "encoding efficiency": 9383, "semantic understanding": 29481, "pretraining using": 25851, "chinese data": 4543, "data finetune": 6711, "finetune model": 11295, "model chinese": 20418, "significantly enhancing": 30053, "enhancing models": 9570, "models ability": 20932, "ability comprehend": 659, "execute instructions": 10193, "results indicate": 28632, "newly proposed": 22872, "proficiency understanding": 26182, "additionally results": 1302, "yield competitive": 35909, "models times": 22060, "open research": 23418, "llama series": 18142, "llama2 series": 18192, "pretraining text": 25846, "generalization capabilities": 12208, "various downstream": 35089, "tasks diverse": 32299, "diverse datasets": 8424, "datasets large": 7138, "corpus containing": 6176, "corpus curate": 6178, "perform simple": 24503, "data filtering": 6709, "filtering process": 11173, "space using": 30585, "use pretrain": 34559, "yielding performance": 35919, "performance drop": 24577, "benchmarks compared": 3433, "pretrained checkpoints": 25636, "effective instruction": 8876, "instructions instruction": 15253, "generalize better": 12232, "better follow": 3603, "follow user": 11680, "user intent": 34656, "data costly": 6661, "examples llms": 10134, "llms introduce": 18727, "instructions generate": 15252, "instructions llms": 15262, "select diverse": 29376, "set humanwritten": 29689, "llms approach": 18436, "approach provides": 2330, "instructiontuning dataset": 15303, "dataset natural": 7016, "long text": 19185, "outperform 10x": 23762, "10x larger": 66, "models instruction": 21400, "tuning tasks": 34016, "longform question": 19205, "outperform prior": 23784, "instructiontuned models": 15299, "models flant5": 21286, "improve language": 14270, "multilingual instructions": 22309, "instructions demonstrate": 15249, "news generation": 22882, "generation publicly": 12583, "release data": 27905, "data models": 6776, "learning code": 17552, "end extract": 9411, "applications built": 2143, "test potential": 32780, "code demonstrate": 4748, "critical machine": 6389, "draws attention": 8731, "learning systems": 17660, "extension works": 10672, "applications large": 2159, "openended questions": 23461, "multiplechoice questions": 22431, "review answers": 28828, "task timeconsuming": 32200, "llm paper": 18344, "paper analyze": 24011, "llms gpt3": 18648, "gpt3 bloom": 12982, "used zero": 34637, "compared performance": 5159, "performance results": 24742, "llms perform": 18847, "perform worse": 24510, "questions answers": 27096, "faces challenges": 10829, "lowrank adaptation": 19300, "adaptation lora": 1184, "abilities paper": 635, "stanford alpaca": 30892, "alpaca dataset": 1826, "13b 27b": 118, "models benchmark": 21012, "benchmark models": 3399, "models multiple": 21742, "multiple ways": 22427, "gpt4 judge": 13086, "programming tasks": 26203, "performant models": 24825, "little 40": 18048, "zeroshot slot": 35996, "slot filling": 30329, "taskoriented dialog": 32218, "systems work": 31930, "lowresource language": 19311, "al 2023": 1689, "using wide": 34940, "range models": 27198, "models settings": 21966, "settings given": 29737, "given recent": 12766, "recent success": 27559, "test generalization": 32768, "capability recent": 4101, "recent encoderdecoder": 27519, "encoderdecoder model": 9368, "model mt0": 20647, "al 2022": 1688, "languages intentionally": 16879, "intentionally seen": 15376, "baseline large": 3250, "realm computational": 27328, "social science": 30431, "aim establish": 1640, "synthetically generated": 31864, "generated data": 12349, "data gpt4": 6725, "gpt4 llama2": 13091, "tasks varying": 32548, "varying complexity": 35170, "additionally examine": 1283, "examine impact": 10101, "data sizes": 6869, "findings reveal": 11248, "reveal models": 28804, "data consistently": 6654, "exhibit superior": 10231, "tasks furthermore": 32343, "leverage gpt4": 17748, "fall short": 10950, "short compared": 29811, "compared specialized": 5169, "moderately sized": 22152, "peft techniques": 24438, "techniques llms": 32649, "currently popular": 6544, "provide comprehensive": 26690, "benchmark various": 3419, "representative llm": 28183, "llm flant5": 18308, "flant5 model": 11599, "model evaluate": 20494, "performance different": 24567, "different data": 8064, "data scales": 6847, "classification generation": 4598, "generation datasets": 12483, "datasets based": 7068, "provide framework": 26703, "optimal finetuning": 23612, "finetuning techniques": 11546, "given task": 12774, "data availability": 6617, "techniques applied": 32627, "parameters maintaining": 24272, "maintaining improving": 19425, "outperforming larger": 23798, "deploying large": 7639, "llms challenging": 18462, "train smaller": 33375, "taskspecific models": 32566, "finetuning distillation": 11390, "amounts training": 1890, "data achieve": 6588, "achieve comparable": 952, "llms achieves": 18422, "needed finetuning": 22647, "distillation method": 8344, "supervision training": 31699, "training small": 33616, "multitask framework": 22447, "framework present": 11887, "compared finetuning": 5134, "distillation mechanism": 8343, "llms achieve": 18410, "substantially smaller": 31487, "reduce model": 27719, "size data": 30243, "palm model": 23992, "available data": 2970, "data benchmark": 6622, "standard finetuning": 30876, "using 100": 34722, "dataset release": 7032, "entity tracking": 9654, "discourse entities": 8264, "given english": 12748, "gpt3 gpt35": 12996, "performance degrades": 24564, "evaluated different": 9875, "different set": 8137, "entities training": 9642, "training longer": 33557, "taken results": 32025, "suggest language": 31571, "models learn": 21439, "nucleus sampling": 23136, "sampling language": 29091, "text based": 32821, "set words": 29716, "work assess": 35671, "various linguistic": 35111, "conformal prediction": 5669, "prediction calibration": 25422, "calibration procedure": 3980, "prediction sets": 25435, "opt models": 23600, "inverse scaling": 15568, "intelligence ai": 15352, "image generators": 14068, "complex art": 5266, "text generators": 32889, "including chatgpt": 14464, "allow users": 1802, "generate code": 12266, "current state": 6530, "addresses main": 1366, "approach taken": 2345, "ai article": 1598, "models despite": 21144, "performs worse": 24858, "tuning simple": 34014, "method significantly": 19973, "soft prompt": 30448, "prompt embeddings": 26321, "residual connection": 28389, "notably method": 23030, "points improvement": 25075, "allows reduce": 1816, "prompt length": 26332, "hurting performance": 13953, "performance addition": 24517, "addition approach": 1236, "rate prompt": 27267, "effective fewshot": 8869, "era large": 9697, "semantic relationships": 29467, "text standard": 32949, "training modules": 33570, "conditioned input": 5576, "using larger": 34815, "work evaluating": 35700, "evaluating performance": 9909, "varying levels": 35176, "generative approaches": 12650, "sota performance": 30538, "supervised models": 31688, "chainofthought cot": 4297, "generated gpt3": 12360, "results release": 28670, "release model": 27910, "model new": 20657, "new baseline": 22779, "contrastive objective": 6023, "text embeddings": 32850, "useful features": 34639, "semantic search": 29471, "produce semantically": 26153, "second finetune": 29321, "adapter lora": 1201, "data scarcity": 6850, "quality learned": 26972, "learned embeddings": 17519, "proportional number": 26484, "unlabeled training": 34382, "data parameter": 6794, "previous solution": 25877, "achieve significant": 982, "models ptlms": 21876, "remarkable improvement": 28043, "emergence new": 9174, "new capabilities": 22783, "pretraining dataset": 25792, "training times": 33635, "environmental impact": 9667, "significant efforts": 29980, "training efficient": 33508, "training pipelines": 33588, "attention paid": 2729, "data key": 6744, "question ask": 27062, "data maintaining": 6763, "building recent": 3926, "subset selection": 31452, "corpora demonstrate": 6165, "framework applied": 11830, "efficiently train": 9074, "train multiple": 33369, "bert biobert": 3499, "data perform": 6795, "intent classification": 15372, "scale thousands": 29148, "coldstart problem": 4901, "space paper": 30580, "approaches lowresource": 2383, "adaptation data": 1176, "classification using": 4619, "descriptions large": 7688, "models results": 21941, "results approaches": 28571, "approaches effective": 2373, "different degrees": 8069, "yields best": 35921, "best performance": 3568, "performance just": 24637, "zeroshot method": 35985, "transforming natural": 33804, "natural languages": 22577, "models temporal": 22048, "systems engineering": 31895, "engineering applications": 9462, "language nl": 16764, "underexplored lack": 34141, "lack dataset": 15981, "model different": 20470, "different application": 8044, "application domains": 2128, "llms multiple": 18809, "multiple stages": 22421, "contributions twofold": 6044, "create dataset": 6348, "combining llms": 4964, "llms human": 18678, "characterizes common": 4432, "domains application": 8611, "application llms": 2134, "dataset creation": 6967, "varied domains": 35051, "recognition task": 27640, "finetuning specific": 11531, "specific domain": 30688, "domain finetuning": 8564, "finetuning model": 11454, "achieves higher": 1046, "higher accuracy": 13594, "accuracy 95": 861, "using 10": 34721, "evaluation platform": 9989, "interaction user": 15386, "user interface": 34659, "human interaction": 13829, "digital world": 8191, "facilitating efficient": 10853, "task completion": 32096, "researchers exploring": 28377, "exploring potential": 10621, "programming language": 26199, "language interfaces": 16100, "graphical user": 13234, "user interfaces": 34660, "interfaces guis": 15417, "limited capabilities": 17941, "models traditional": 22062, "single step": 30223, "llms exhibited": 18582, "reasoning planning": 27435, "planning abilities": 25000, "complex environments": 5275, "remains underexplored": 28018, "benchmark covering": 3366, "interaction capabilities": 15384, "comprehensive evaluations": 5375, "llm agents": 18266, "gpt llama": 12853, "challenges llms": 4359, "identifying causal": 14020, "generalpurpose language": 12248, "ai safety": 1616, "underlying model": 34160, "generalize unseen": 12234, "unseen inputs": 34437, "finetuned specific": 11353, "present paper": 25550, "search steps": 29313, "learned parameters": 17520, "parameters approach": 24225, "alpaca model": 1832, "7b parameters": 542, "numerical reasoning": 23179, "reasoning problem": 27437, "alignment neural": 1775, "neural representations": 22757, "widely deployed": 35572, "deployed language": 7633, "models tool": 22061, "larger llms": 17326, "released publicly": 27928, "leveraging large": 17783, "prediction large": 25426, "llms produce": 18871, "produce humanlike": 26149, "humanlike responses": 13908, "social sciences": 30433, "integrate llms": 15322, "llms social": 18958, "questions asked": 27098, "asked develop": 2556, "questions derived": 27106, "text latent": 32907, "contexts different": 5937, "finetuning llms": 11448, "using general": 34783, "ethical concerns": 9804, "prediction study": 25436, "study demonstrates": 31316, "enhance capabilities": 9505, "capabilities llms": 4040, "alignment llms": 1768, "enhancing large": 9562, "longterm memory": 19217, "advancements large": 1465, "intelligence systems": 15361, "increasingly evident": 14636, "tailored llms": 32017, "enables models": 9305, "synthesizing information": 31844, "updating mechanism": 34478, "closedsource models": 4688, "chatgpt opensource": 4491, "llmbased chatbot": 18385, "chatbot named": 4450, "realworld user": 27353, "covering wide": 6328, "topics results": 33292, "results analysis": 28569, "exhibits strong": 10254, "strong capability": 31166, "understand user": 34202, "generate factually": 12276, "correct answers": 6192, "answers existing": 2083, "existing llms": 10290, "llms generate": 18634, "responses different": 28490, "different prompts": 8130, "prompts paper": 26434, "study problem": 31379, "knowledge contained": 15826, "facts propose": 10875, "knowledge llms": 15880, "llms main": 18789, "main idea": 19398, "llm generating": 18316, "text corresponding": 32838, "comprehensive set": 5390, "method evaluate": 19916, "20 llms": 212, "llms various": 19034, "various sizes": 35144, "including llama": 14498, "results strong": 28691, "strong correlation": 31167, "results human": 28623, "human assessment": 13794, "assessment llms": 2619, "llms results": 18918, "backbone architecture": 3053, "scaling law": 29171, "instructionfollowing data": 15226, "models capability": 21039, "capability generate": 4089, "correct text": 6194, "realworld settings": 27348, "settings work": 29745, "task approach": 32078, "generation generate": 12509, "indomain dataset": 14724, "dataset using": 7053, "prompt training": 26351, "datasets improve": 7129, "able generalize": 744, "seen training": 29366, "alignment large": 1765, "unsupervised pretraining": 34457, "representations large": 28162, "learning better": 17546, "better align": 3587, "tasks user": 32543, "user preferences": 34664, "65b parameter": 477, "llama language": 18115, "finetuned standard": 11354, "learning human": 17575, "human preference": 13853, "remarkably strong": 28067, "performance learning": 24653, "follow specific": 11678, "specific response": 30713, "handful examples": 13405, "data including": 6734, "complex queries": 5285, "controlled human": 6064, "human study": 13866, "human feedback": 13818, "suggest knowledge": 31570, "models learned": 21441, "learned pretraining": 17521, "pretraining limited": 25815, "tuning data": 33970, "data necessary": 6782, "models produce": 21856, "produce high": 26146, "instructions prompting": 15264, "instructions recently": 15268, "emerged popular": 9162, "harnessing capabilities": 13459, "capabilities large": 4031, "explore prompting": 10599, "models manually": 21700, "tasks spanning": 32511, "tasks sourced": 32510, "language study": 16826, "performance llm": 24662, "llm families": 18301, "families bloom": 10965, "instructions leads": 15260, "results average": 28574, "average increase": 3021, "f1 scores": 10818, "tasks improvement": 32360, "improvement relative": 14346, "rougel scores": 28983, "tasks include": 32362, "detailed ablation": 7831, "encoded pseudocode": 9344, "improvement performance": 14344, "performance best": 24534, "work demonstrate": 35690, "lms nlp": 19099, "pretraining large": 25810, "large corpora": 16937, "corpora text": 6170, "models acquire": 20955, "achieve remarkable": 981, "acquire knowledge": 1119, "question paper": 27073, "ability models": 705, "systematically create": 31878, "evaluation data": 9935, "data data": 6669, "questions based": 27099, "evaluations multiple": 10035, "flan t5": 11588, "performance gap": 24607, "revealing interesting": 28810, "interesting findings": 15408, "research developing": 28306, "developing robust": 7947, "attention layers": 2722, "study discover": 31319, "networks used": 22717, "based finding": 3159, "finding propose": 11226, "summarization experiments": 31611, "best method": 3562, "based t5small": 3228, "xsum dataset": 35882, "dataset improves": 7000, "different architectures": 8049, "different popular": 8121, "popular autoregressive": 25113, "models alms": 20976, "important application": 14196, "successfully used": 31545, "cnn lstm": 4712, "transformer networks": 33736, "different training": 8152, "methods investigate": 20054, "investigate capabilities": 15578, "recognition using": 27643, "classification higher": 4599, "model robustness": 20763, "emergence generative": 9168, "generative large": 12666, "llms raises": 18885, "raises question": 27169, "including ones": 14508, "evaluation tasks": 10019, "human workers": 13877, "paraphrase generation": 24301, "apply data": 2205, "data collection": 6642, "similar scale": 30117, "seed data": 29352, "using chatgpt": 34749, "lead robust": 17469, "models response": 21938, "llm inference": 18321, "revolutionized field": 28844, "inference process": 14800, "process llms": 26072, "llms comes": 18472, "comes significant": 4971, "costs paper": 6272, "propose efficient": 26507, "efficient llm": 9044, "pipeline harnesses": 24968, "harnesses power": 13457, "power llms": 25324, "potential llms": 25274, "llms accurately": 18409, "information introduce": 14874, "introduce efficient": 15504, "evaluate approach": 9819, "approach realworld": 2331, "llamabased model": 18237, "inference throughput": 14816, "inference acceleration": 14759, "techniques making": 32651, "making valuable": 19518, "quantization llm": 27008, "multitask instruction": 22448, "tuning llama": 33992, "specific scenarios": 30714, "preliminary study": 25491, "writing assistance": 35850, "proprietary large": 26639, "garnered significant": 12122, "significant attention": 29960, "attention exceptional": 2716, "exceptional capabilities": 10167, "handling diverse": 13415, "range tasks": 27212, "studies demonstrate": 31264, "foundational models": 11809, "llama display": 18092, "display remarkable": 8315, "remarkable proficiency": 28053, "tasks finetuned": 32335, "finetuned using": 11359, "data work": 6915, "practical problem": 25369, "primary focus": 25921, "particular tasks": 24343, "tasks generalpurpose": 32346, "explore llms": 10591, "llm specifically": 18370, "tuning experimental": 33977, "finetuning llama": 11439, "data significantly": 6864, "conduct experiments": 5602, "offer insights": 23289, "insights future": 15074, "effectively finetuning": 8918, "employing llms": 9260, "taking account": 32036, "evaluating large": 9899, "models spoken": 22004, "spoken language": 30815, "demonstrated strong": 7549, "capabilities particularly": 4060, "tasks prompting": 32461, "assess impact": 2595, "understanding slu": 34270, "opt different": 23590, "multiple benchmarks": 22380, "emergent ability": 9183, "models reach": 21895, "classification accuracy": 4591, "models zero": 22140, "various languages": 35109, "contrast results": 6017, "results smaller": 28686, "fall far": 10949, "error cases": 9710, "annotation scheme": 2026, "responses chatgpt": 28487, "textual models": 33034, "encyclopedic knowledge": 9407, "assess ability": 2587, "ability foundation": 668, "range linguistic": 27196, "dataset contains": 6963, "paired counterfactuals": 23973, "models multilingual": 21740, "24 models": 263, "metas llama": 19863, "llama achieves": 18071, "errors reveals": 9727, "reveals significant": 28818, "languages english": 16871, "overall findings": 23906, "models far": 21263, "knowledge largescale": 15875, "task planning": 32176, "major challenge": 19439, "work exploits": 35703, "llms directly": 18542, "interesting results": 15411, "results paper": 28653, "shows llms": 29928, "llms provide": 18879, "world model": 35835, "search algorithm": 29307, "monte carlo": 22215, "carlo tree": 4184, "tree search": 33878, "model provides": 20736, "achieve effective": 961, "vastly improving": 35192, "llms gpt2": 18647, "gpt2 gpt35": 12903, "gpt35 wide": 13039, "novel tasks": 23114, "policy using": 25090, "using llm": 34824, "llm world": 18380, "better using": 3636, "finegrained atomic": 11270, "form text": 11742, "longform text": 19208, "mixture supported": 20282, "judgments quality": 15728, "quality inadequate": 26968, "new evaluation": 22799, "atomic facts": 2681, "extensive human": 10707, "stateoftheart commercial": 30925, "instructgpt chatgpt": 15137, "chatgpt retrievalaugmented": 4495, "report new": 28121, "new analysis": 22774, "demonstrating need": 7584, "model error": 20492, "finally use": 11205, "new set": 22842, "set 13": 29670, "recent lms": 27532, "evaluated humans": 9878, "public models": 26840, "models vicuna": 22114, "alpaca best": 1825, "best public": 3576, "enhanced crosslingual": 9533, "explores potential": 10613, "potential leveraging": 25271, "llms data": 18503, "datasets available": 7067, "data extremely": 6707, "effectiveness finetuning": 8945, "finetuning smaller": 11529, "multilingual models": 22320, "models mbert": 21707, "data generated": 6721, "target languages": 32053, "accuracy score": 910, "score improvement": 29270, "improvement best": 14333, "furthermore conduct": 11989, "coherence generated": 4889, "generated examples": 12354, "different languages": 8090, "languages results": 16914, "indicate llms": 14689, "coherent text": 4896, "text languages": 32902, "struggle generate": 31240, "text certain": 32823, "certain languages": 4275, "languages like": 16888, "like tamil": 17896, "falls short": 10956, "generating plausible": 12439, "gpt4 exhibit": 13074, "logical consistency": 19156, "meets llm": 19785, "need understand": 22645, "understanding reduce": 34267, "automatic speech": 2894, "recognition asr": 27637, "approach focuses": 2285, "interactions users": 15392, "users history": 34691, "history present": 13730, "challenges personalized": 4367, "rewriting paper": 28869, "approach builds": 2245, "user feedback": 34649, "graph traversal": 13231, "retrieval model": 28747, "ranking model": 27233, "utilization large": 34955, "link prediction": 18028, "domains specifically": 8640, "specifically paper": 30750, "7b model": 536, "augmented finetuned": 2813, "significantly enhanced": 30048, "queries compared": 27019, "bias large": 3650, "cater diverse": 4233, "diverse cultural": 8421, "despite advancements": 7768, "multilingual capabilities": 22297, "capabilities models": 4045, "models designed": 21143, "exhibit bias": 10212, "camel novel": 3988, "cultural biases": 6459, "intrinsic evaluations": 15491, "evaluations using": 10041, "16 different": 157, "lms tasks": 19115, "tasks story": 32514, "story generation": 31088, "ner sentiment": 22678, "finally analyze": 11188, "lms used": 19121, "present systematic": 25558, "systematic study": 31875, "particular construct": 24335, "dataset human": 6999, "english french": 9480, "data sources": 6875, "domain language": 8570, "language diversity": 16066, "nonenglish language": 22991, "llama2 gpt4": 18180, "gpt4 supervised": 13121, "supervised unsupervised": 31693, "prompting settings": 26394, "settings experiments": 29733, "experiments reveal": 10478, "datasets showcasing": 7171, "readability metrics": 27295, "grade level": 13184, "stateoftheart unsupervised": 31005, "make data": 19461, "hallucination large": 13378, "models inference": 21397, "tasks large": 32390, "capable natural": 4114, "like question": 17892, "present series": 25552, "studies llm": 31274, "llama gpt35": 18110, "gpt35 palm": 13032, "generative llms": 12671, "test samples": 32782, "memorized data": 19797, "similar effect": 30100, "data bias": 6626, "previous studies": 25885, "perform significantly": 24501, "significantly worse": 30089, "future llm": 12038, "llm evaluation": 18297, "decoding language": 7274, "lms struggle": 19113, "pay attention": 24425, "context generate": 5891, "generate texts": 12332, "contain hallucinations": 5827, "hallucinations mitigate": 13395, "mitigate issue": 20254, "issue present": 15660, "output distribution": 23865, "output probabilities": 23877, "used context": 34591, "context experiments": 5889, "different lm": 8100, "families including": 10967, "including opt": 14511, "opt gpt": 23592, "llama flant5": 18102, "summarization tasks": 31626, "factuality metrics": 10893, "metrics furthermore": 20138, "particularly effective": 24346, "models prior": 21854, "prior knowledge": 25936, "provided context": 26737, "leading substantial": 17487, "improvements tasks": 14365, "adapting language": 1207, "lms powerful": 19100, "context window": 5926, "expensive computational": 10358, "text documents": 32847, "propose adapt": 26490, "models capable": 21040, "compressing long": 5410, "long contexts": 19169, "model soft": 20802, "used language": 34606, "opt llama2": 23597, "llama2 models": 18188, "models sequences": 21965, "contexts improve": 5940, "task demonstrations": 32107, "increasing accuracy": 14617, "inference costs": 14771, "retrievalaugmented language": 28763, "passage reranking": 24379, "extracts comprehensive": 10783, "entities relations": 9639, "seek develop": 29358, "llm able": 18260, "using instruction": 34800, "tuning particular": 34004, "tuning dataset": 33971, "extensive annotations": 10678, "annotations diverse": 2031, "strong instructionfollowing": 31175, "instructionfollowing capabilities": 15224, "capabilities experiments": 4016, "outperforms traditional": 23862, "methods llm": 20063, "capabilities unseen": 4077, "unseen instructions": 34438, "emerges promising": 9188, "solution tackle": 30481, "recent advancements": 27489, "language speech": 16824, "research despite": 28305, "despite progress": 7802, "models lack": 21413, "lack specific": 16002, "models tailored": 22045, "speech processing": 30785, "models gpt35turbo": 21331, "gpt35turbo gpt4": 13043, "gpt4 bloomz": 13060, "distinct tasks": 8369, "46 hours": 398, "texttospeech tts": 33009, "experiments analysis": 10419, "measuring performance": 19744, "trend observed": 33888, "outperformed llms": 23793, "llms zeroshot": 19050, "computational models": 5472, "performance gaps": 24609, "findings provide": 11246, "provide valuable": 26734, "applicability llms": 2123, "semantic textual": 29479, "textual similarity": 33038, "degree similarity": 7390, "pair sentences": 23971, "broad application": 3884, "depending specific": 7621, "proposing novel": 26633, "task called": 32089, "described natural": 7678, "large small": 17278, "enables finegrained": 9298, "model evaluation": 20495, "evaluation diverse": 9942, "diverse natural": 8441, "flant5 gpt4": 11596, "spearman correlation": 30652, "evaluation semantic": 10007, "examples code": 10119, "significantly improved": 30058, "improved instruction": 14312, "lack transparency": 16008, "ability utilize": 729, "uptodate knowledge": 34490, "generation instruction": 12524, "following abilities": 11686, "search results": 29311, "results generated": 28619, "results training": 28698, "construct new": 5802, "set containing": 29679, "information response": 14905, "finetune llama7b": 11291, "llama7b model": 18234, "languages model": 16898, "model needs": 20655, "needs learn": 22652, "generate target": 12327, "multihop reasoning": 22288, "reasoning retrieved": 27449, "retrieved passages": 28776, "answer experiments": 2044, "experiments finetuned": 10442, "model strong": 20810, "instructionfollowing ability": 15223, "performs significantly": 24854, "openended question": 23459, "answering fact": 2061, "unified multilingual": 34333, "multilingual benchmark": 22295, "automatic text": 2899, "research work": 28368, "benchmark covers": 3367, "pairs benchmark": 23976, "developing effective": 7942, "effective multilingual": 8888, "simplification models": 30173, "metrics experiments": 20137, "pretrained multilingual": 25732, "models reveal": 21944, "transfer lowresource": 33679, "comparable quality": 5088, "validate findings": 34996, "proprietary llms": 26645, "llms emerging": 18556, "model finetune": 20523, "stronger model": 31199, "chatgpt alpaca": 4457, "proprietary models": 26647, "capabilities using": 4078, "weaker opensource": 35459, "model work": 20871, "critically analyze": 6399, "approach finetune": 2281, "output quality": 23878, "following instructions": 11692, "chatgpt conducting": 4461, "automatic evaluations": 2881, "base lm": 3123, "tasks heavily": 32353, "performance discrepancies": 24568, "models adept": 20963, "gap open": 12098, "open closed": 23390, "lms current": 19077, "current methods": 6514, "using capable": 34744, "base lms": 3124, "models tackle": 22044, "better base": 3592, "proprietary systems": 26651, "highquality dataset": 13685, "tasks unlike": 32539, "unlike prior": 34400, "prior works": 25943, "works rely": 35825, "extremescale teacher": 10807, "teacher model": 32584, "model gpt3": 20557, "produces highquality": 26162, "evaluate method": 9848, "method multiple": 19948, "generation sentence": 12600, "summarization model": 31620, "consistently outperforms": 5755, "baselines including": 3267, "distilled chatgpt": 8350, "chatgpt distilled": 4464, "distilled dataset": 8353, "exhibits higher": 10247, "times larger": 33164, "small finetuned": 30341, "models methods": 21721, "whitebox access": 35542, "access model": 822, "recent trend": 27565, "highest quality": 13621, "quality models": 26973, "weights available": 35503, "lightweight method": 17841, "new domains": 22795, "domains tasks": 8642, "intermediate activations": 15424, "approach finetunes": 2282, "finetunes small": 11365, "learned small": 17523, "small validation": 30372, "validate approach": 34992, "large lm": 17225, "task machine": 32154, "performance cases": 24539, "models partially": 21804, "interpretation large": 15463, "large body": 16933, "body literature": 3805, "llms acquire": 18424, "linguistic representations": 18021, "little known": 18051, "linguistic biases": 18006, "way present": 35446, "asking llms": 2559, "biases using": 3688, "using stimuli": 34921, "psycholinguistic experiments": 26821, "experiments recent": 10475, "studies suggest": 31287, "learning icl": 17583, "semantic biases": 29448, "fails generate": 10914, "results provide": 28663, "provide evidence": 26697, "contemporary llms": 5846, "sensitive syntactic": 29519, "local context": 19128, "semantic patterns": 29464, "planning capabilities": 25001, "capabilities pretrained": 4061, "models wide": 22127, "studies ability": 31262, "gpt2 empirically": 12886, "empirically demonstrate": 9247, "demonstrate performance": 7478, "finetuned baseline": 11304, "capabilities finetuned": 4019, "finetuned llm": 11338, "train verifier": 33378, "dataset generate": 6995, "invalid trajectories": 15562, "success rate": 31523, "domain additionally": 8553, "additionally finetuning": 1287, "better finetuning": 3602, "finetuning base": 11375, "base gpt2": 3116, "lastly investigate": 17399, "investigate role": 15597, "sampling temperature": 29099, "used control": 34592, "data makes": 6764, "text gpt2": 32890, "gpt4 demonstrated": 13070, "astonishing performance": 2668, "general public": 12183, "ecosystem online": 8815, "online text": 23371, "text images": 32895, "images paper": 14086, "paper consider": 24026, "llms contribute": 18492, "language online": 16765, "original content": 23701, "content distribution": 5858, "effect model": 8854, "model collapse": 20428, "variational autoencoders": 35046, "gaussian mixture": 12132, "mixture models": 20281, "largescale data": 17345, "data collected": 6641, "human interactions": 13830, "content generated": 5860, "data crawled": 6662, "dont know": 8664, "excel various": 10155, "research focuses": 28318, "existing knowledge": 10280, "vast knowledge": 35186, "llms limited": 18766, "limited information": 17950, "ability understand": 724, "understand limitations": 34194, "paramount importance": 24299, "ability identify": 684, "identify unanswerable": 14018, "questions introduce": 27115, "responses models": 28501, "providing novel": 26779, "unique dataset": 34359, "diverse categories": 8415, "counterparts extensive": 6303, "extensive analysis": 10677, "llms including": 18688, "gpt3 instructgpt": 12999, "demonstrate incontext": 7464, "learning instruction": 17588, "tuning enhance": 33975, "despite promising": 7803, "findings highlight": 11235, "considerable gap": 5709, "promptbased fewshot": 26359, "fewshot finetuning": 11103, "finetuning recent": 11502, "years significant": 35898, "progress developing": 26210, "finetuned small": 11352, "small datasets": 30339, "datasets address": 7061, "adaptation approaches": 1174, "promptbased tuning": 26365, "way especially": 35429, "shows adding": 29920, "contrastive learning": 6022, "promptbased finetuning": 26360, "finetuning effective": 11393, "helps model": 13527, "generate embeddings": 12274, "negative examples": 22659, "important components": 14199, "learning data": 17556, "effective data": 8864, "especially large": 9739, "experiments multiple": 10463, "multiple text": 22425, "augmentation method": 2802, "outperforms methods": 23833, "models handle": 21347, "word frequency": 35640, "prediction head": 25424, "reveal biases": 28790, "word prediction": 35643, "prediction heads": 25425, "significant role": 30023, "adjustment method": 1394, "autoregressive text": 2954, "generation scenarios": 12599, "scenarios particular": 29213, "text quality": 32925, "recent efforts": 27516, "models retrieval": 21943, "data input": 6737, "added training": 1230, "training test": 33630, "computation memory": 5448, "memory grows": 19817, "data test": 6891, "time using": 33146, "using standard": 34919, "standard training": 30883, "build largescale": 3914, "largescale distributed": 17350, "test input": 32771, "performance 20": 24514, "gap small": 12110, "10 times": 31, "quality size": 26978, "work establishes": 35698, "learning various": 17669, "various design": 35086, "settings incontext": 29738, "bias model": 3657, "model particular": 20693, "understanding task": 34273, "design choices": 7699, "mitigating impact": 20265, "work define": 35688, "analysis demonstrates": 1917, "calibration methods": 3979, "methods fall": 20035, "short addressing": 29810, "types biases": 34058, "calibration method": 3978, "using random": 34896, "making predictions": 19515, "icl performance": 13977, "gptj gpt3": 13147, "pretraining methods": 25820, "instructions showing": 15272, "exploratory study": 10569, "study using": 31407, "given rapid": 12765, "llms study": 18973, "models help": 21351, "scientific papers": 29253, "gpt4 outperforms": 13107, "outperforms llms": 23831, "bard vicuna": 3100, "alpaca llama": 1831, "study use": 31405, "llms specifically": 18964, "specifically gpt4": 30744, "gpt4 tasks": 13123, "errors construct": 9723, "computer science": 5504, "check correctness": 4514, "errors spanning": 9728, "pairs llm": 23981, "better paper": 3614, "paper generate": 24055, "pairs based": 23975, "based experiments": 3156, "llms promising": 18873, "comparing language": 5190, "models challenging": 21051, "challenging current": 4379, "method enables": 19910, "topics demonstrate": 33290, "similarities differences": 30124, "distilroberta gpt2": 8361, "web data": 35476, "data web": 6912, "models commonly": 21066, "commonly trained": 5028, "trained mixture": 33411, "data curated": 6665, "curated highquality": 6471, "highquality corpora": 13683, "curation process": 6476, "models broad": 21034, "models requiring": 21932, "data lead": 6753, "powerful models": 25347, "significantly outperforming": 30073, "outperforming models": 23800, "despite extensive": 7776, "trillion tokens": 33906, "billion tokens": 3721, "gpt model": 12856, "largescale transformer": 17383, "modelling tasks": 20915, "models feature": 21265, "parameters leading": 24266, "prohibitive training": 26237, "forward backward": 11782, "training resulting": 33601, "including language": 14496, "understanding text": 34276, "model performs": 20709, "model proposed": 20733, "pretraining transformer": 25849, "focused enhancing": 11663, "imitation learning": 14110, "outputs generated": 23890, "large foundation": 16945, "outputs small": 23898, "small scale": 30365, "tend learn": 32706, "reasoning process": 27438, "parameter model": 24190, "thought processes": 33080, "complex instructions": 5276, "largescale diverse": 17351, "surpasses conventional": 31739, "conventional stateoftheart": 6079, "stateoftheart instructiontuned": 30933, "models vicuna13b": 22115, "zeroshot reasoning": 35991, "reasoning benchmarks": 27380, "bigbench hard": 3701, "hard bbh": 13421, "bbh benchmark": 3297, "benchmark shows": 3410, "shows competitive": 29924, "professional academic": 26175, "lsat gre": 19325, "zeroshot settings": 35995, "gpt4 research": 13112, "research indicates": 28327, "generated humans": 12364, "humans advanced": 13918, "promising direction": 26285, "model capabilities": 20408, "efficient instruction": 9040, "instruction optimization": 15172, "language modelsllms": 16761, "instruction followers": 15160, "blackbox llms": 3754, "opensource llm": 23517, "llm generate": 18313, "generate instruction": 12291, "using opensource": 34866, "zeroshot evaluation": 35968, "evaluation performance": 9985, "new soft": 22843, "improving zeroshot": 14426, "different combinations": 8057, "llms apis": 18435, "apis including": 2107, "including vicuna": 14529, "chatgpt results": 4494, "outperforms sota": 23850, "variety downstream": 35060, "acquisition children": 1127, "children language": 4534, "increasingly complex": 14634, "remain largely": 27984, "largely unknown": 17313, "compare learning": 5107, "deep language": 7320, "training gpt2": 33525, "gpt2 exhibits": 12889, "scratch evaluate": 29290, "step using": 31052, "language production": 16805, "main findings": 19395, "models tend": 22049, "tasks learned": 32397, "improve training": 14301, "models overall": 21788, "results shed": 28675, "shed new": 29795, "new light": 22817, "highlight important": 13631, "process natural": 26075, "reasoning question": 27441, "prompts random": 26437, "knowledge entities": 15845, "entities pretrained": 9635, "propose techniques": 26572, "specifically use": 30760, "prompts guide": 26422, "encoded knowledge": 9339, "questions random": 27127, "paths lead": 24401, "applying methods": 2220, "questions require": 27130, "lossless text": 19256, "text compression": 32833, "models provide": 21873, "provide new": 26718, "upper bound": 34482, "given window": 12783, "past tokens": 24389, "significantly smaller": 30086, "lossless compression": 19255, "preliminary results": 25490, "results limited": 28638, "experiments suggest": 10486, "aims translate": 1673, "unified evaluation": 34325, "benchmark crosslingual": 3368, "comprehensive benchmark": 5356, "benchmark study": 3413, "models mbart": 21706, "models codex": 21060, "design experiment": 7703, "covering various": 6327, "multilingual crosslingual": 22303, "zeroshot experiments": 35969, "achieve highest": 968, "highest performance": 13620, "compared popular": 5160, "popular models": 25129, "performance notably": 24697, "models bloom": 21032, "training crosslingual": 33463, "models mitigated": 21729, "fewshot training": 11125, "knowledge understanding": 15917, "llms achieved": 18412, "great success": 13262, "general domains": 12162, "processing paper": 26124, "paper bring": 24018, "applications field": 2153, "llm research": 18359, "llms context": 18490, "domain specifically": 8595, "specifically train": 30758, "corpus including": 6185, "supervised data": 31671, "domainspecific data": 8648, "data construct": 6656, "abilities using": 645, "using tools": 34929, "experiments conducted": 10426, "approach datasets": 2255, "chatbot arena": 4449, "llm based": 18275, "based chat": 3142, "chat assistants": 4440, "existing benchmarks": 10265, "human preferences": 13856, "preferences address": 25473, "explore using": 10604, "using strong": 34922, "models openended": 21770, "llm judges": 18325, "platform results": 25009, "strong llm": 31181, "crowdsourced human": 6433, "preferences achieving": 25472, "approximate human": 2412, "expensive obtain": 10362, "variants llama": 35042, "llama vicuna": 18151, "conversations human": 6108, "transfer ability": 33669, "gap study": 12111, "research questions": 28356, "questions does": 27108, "models does": 21167, "models second": 21958, "tasks multilingual": 32422, "multilingual reasoning": 22327, "types reasoning": 34071, "does outperform": 8534, "outperform englishcentric": 23772, "model furthermore": 20541, "types tasks": 34072, "exhibit different": 10213, "transfer abilities": 33668, "findings demonstrate": 11233, "models possess": 21824, "experiments provide": 10470, "insights enhancing": 15073, "2023 shared": 234, "paper describes": 24032, "task generation": 32133, "task benchmark": 32085, "models act": 20956, "including alpaca": 14455, "flant5 gpt2": 11593, "evaluated terms": 9883, "ability based": 657, "automated human": 2863, "evaluation generated": 9955, "generated responses": 12385, "gpt35 using": 13038, "using ensemble": 34772, "given dialogue": 12746, "dialogue contexts": 8013, "participating teams": 24332, "results highlight": 28622, "highlight need": 13634, "better suited": 3628, "translation large": 33830, "models nonenglish": 21757, "content analysis": 5851, "analysis recent": 1955, "years large": 35891, "models open": 21767, "gpt4 metas": 13095, "llama googles": 18108, "googles palm": 12833, "dominant approach": 8660, "approach building": 2244, "generate language": 12298, "content moderation": 5864, "languages recently": 16912, "recently researchers": 27621, "technology companies": 32680, "extend capabilities": 10647, "explore capabilities": 10576, "explanation large": 10537, "data english": 6692, "languages multilingual": 16900, "models attempt": 20992, "analysis large": 1934, "companies researchers": 5069, "developing deploying": 7941, "design implementation": 7705, "generative artificial": 12653, "emergence large": 9169, "ai agents": 1595, "paper aim": 24008, "llms telecom": 18998, "telecom domain": 32683, "finetune llms": 11294, "including bert": 14461, "languages demonstrate": 16869, "demonstrate use": 7508, "use case": 34515, "selected models": 29382, "demonstrate finetuning": 7457, "finetuning bert": 11377, "roberta model": 28921, "accuracy gpt2": 886, "model 50": 20336, "similar performance": 30113, "pretrained llm": 25705, "llm effectively": 18293, "developed framework": 7927, "paves way": 24419, "capabilities natural": 4047, "pose significant": 25161, "significant risks": 30022, "harmful text": 13444, "suite opensource": 31600, "opensource code": 23489, "code repositories": 4810, "llms based": 18443, "transformers gpts": 33784, "goal project": 12808, "create worlds": 6357, "worlds best": 35837, "opensource alternative": 23484, "opensource community": 23494, "opensource finetuned": 23502, "commercial use": 4998, "apache 20": 2098, "release 100": 27899, "opensource language": 23506, "ai development": 1607, "models needs": 21749, "llms structured": 18971, "recent months": 27536, "potential artificial": 25240, "weights public": 35512, "demonstrating impressive": 7582, "capabilities generative": 4022, "lms believe": 19071, "lms solving": 19110, "solving tasks": 30518, "analysis providing": 1952, "problemsolving paper": 26040, "received little": 27478, "little attention": 18049, "attention present": 2736, "new algorithm": 22773, "lms use": 19120, "program execution": 26194, "model hope": 20565, "light need": 17829, "crosslingual alignment": 6413, "alignment instruction": 1763, "foundation llms": 11795, "llms instructionfollowing": 18725, "instructionfollowing llms": 15234, "llms instruction": 18723, "plays vital": 25032, "vital role": 35371, "aligning llms": 1749, "preferences existing": 25474, "llms usually": 19030, "focused english": 11662, "performance nonenglish": 24694, "nonenglish languages": 22992, "languages order": 16902, "llms construct": 18489, "human workload": 13878, "propose transfer": 26577, "capabilities language": 4029, "translation task": 33854, "llama foundation": 18103, "llm automatically": 18272, "automatically constructing": 2908, "translation instructions": 33828, "despite utilizing": 7826, "considerably smaller": 5713, "smaller parameter": 30394, "results translation": 28699, "translation tasks": 33855, "translation capability": 33822, "compared gpt4": 5138, "gpt4 automatic": 13055, "estimate performance": 9781, "performance general": 24610, "general tasks": 12187, "instruction test": 15180, "achieves 89": 1025, "performance knowledge": 24638, "available finetuning": 2975, "scientific writing": 29261, "writing support": 35859, "trained corpus": 33387, "corpus scientific": 6187, "score indicates": 29271, "investigate effect": 15580, "potential biases": 25245, "sentence likely": 29537, "finally propose": 11201, "alternative given": 1853, "word substitutions": 35650, "writing style": 35857, "using context": 34758, "produce output": 26152, "gold standard": 12814, "t5 large": 31953, "considering various": 5726, "input sentence": 15025, "aims explain": 1664, "capabilities deep": 4009, "gradientbased training": 13194, "gap theory": 12112, "theory practice": 33060, "trajectory arbitrary": 33661, "broad range": 3885, "networks transformers": 22716, "training algorithms": 33440, "sgd adam": 29771, "exploit lowrank": 10555, "design new": 7711, "new training": 22861, "training propose": 33594, "total training": 33300, "counterfactual data": 6295, "finegrained sentiment": 11277, "evaluation aspects": 9921, "great impact": 13249, "impact models": 14133, "performance mitigate": 24678, "mitigate problem": 20256, "novel simple": 23108, "method generate": 19924, "opinion expressions": 23578, "sentiment polarity": 29571, "integrated gradients": 15325, "original text": 23721, "text pretrained": 32917, "model plm": 20712, "plm t5": 25037, "shows proposed": 29935, "method performs": 19955, "better current": 3598, "current augmentation": 6483, "new large": 22813, "smaller size": 30397, "transformerbased model": 33759, "model 13b": 20335, "quality data": 26949, "1b tokens": 199, "despite small": 7815, "pass1 accuracy": 24373, "finetuning stage": 11534, "350m parameters": 347, "trained pipeline": 33417, "deep fusion": 7318, "remarkable progress": 28054, "progress wide": 26229, "range domains": 27191, "domains particularly": 8634, "llms need": 18815, "need large": 22634, "resources time": 28447, "offer potential": 23292, "potential cost": 25250, "underlying mechanisms": 34159, "poorly understood": 25108, "present notable": 25543, "efficient approach": 9025, "leverages pretrained": 17772, "second propose": 29326, "theoretical framework": 33049, "framework using": 11903, "error analysis": 9708, "practical effective": 25364, "effective approach": 8860, "process reduces": 26079, "reduces computational": 27733, "computational requirements": 5476, "traditional training": 33353, "finally validate": 11206, "framework guides": 11863, "optimal use": 23617, "use deep": 34524, "training dynamics": 33505, "reduces training": 27740, "llms express": 18595, "empowering large": 9269, "methods primarily": 20077, "primarily rely": 25912, "access internal": 817, "internal model": 15439, "model information": 20582, "information model": 14889, "llms especially": 18567, "growing need": 13315, "need explore": 22627, "approaches llm": 2381, "uncertainty estimation": 34118, "systematic framework": 31873, "sampling methods": 29094, "methods generating": 20041, "multiple responses": 22415, "methods key": 20055, "types datasets": 34059, "widelyused llms": 35579, "including gpt4": 14490, "gpt4 llama": 13089, "llama chat": 18082, "analysis uncovers": 1975, "key insights": 15775, "tend overconfident": 32708, "model capability": 20409, "performance improve": 24624, "proposed strategies": 26620, "responses better": 28486, "help mitigate": 13509, "techniques consistently": 32632, "consistently outperform": 5754, "challenging tasks": 4403, "professional knowledge": 26176, "indicating significant": 14704, "study serve": 31396, "serve strong": 29649, "provide insights": 26709, "arithmetic operations": 2503, "efficient alternative": 9024, "finetuning parameterefficient": 11470, "dataset underlying": 7050, "underlying pretrained": 34161, "model remains": 20752, "remains unchanged": 28015, "representing diverse": 28195, "applied various": 2200, "various domains": 35087, "weight space": 35497, "capabilities specifically": 4072, "addition negation": 1243, "approach requires": 2335, "highly flexible": 13664, "apply different": 2206, "domain transfer": 8600, "instructiontuned large": 15286, "based llama": 3191, "llama empirical": 18094, "demonstrate approach": 7436, "approach produces": 2327, "existing ones": 10302, "harnessing llms": 13466, "design using": 7717, "using gpt4": 34792, "learning objectives": 17624, "transformer gpt4": 33722, "generation explanation": 12499, "emerging technology": 9198, "study models": 31366, "course design": 6311, "focus specific": 11657, "specific cognitive": 30685, "time consuming": 33114, "carefully crafted": 4174, "gpt4 conceptual": 13068, "best practices": 3575, "analysis showed": 1964, "models support": 22032, "texttoimage generation": 33006, "generation lightweight": 12540, "pure language": 26880, "pythia gpt2": 26900, "qa reasoning": 26917, "generation machine": 12543, "translation achieving": 33818, "model twice": 20845, "methods like": 20060, "like chainofthought": 17852, "tasks used": 32542, "increase faithfulness": 14596, "prompts human": 26423, "tensortrain decomposition": 32727, "llms capture": 18459, "significantly enhance": 30047, "complex language": 5277, "language patterns": 16771, "parameters prohibitively": 24280, "model storage": 20809, "issue work": 15663, "proposes approach": 26625, "approach based": 2242, "token embedding": 33189, "distributed manner": 8385, "manner experimental": 19547, "gpt2 demonstrate": 12881, "performance original": 24705, "remarkable potential": 28052, "potential natural": 25281, "challenge lies": 4317, "susceptibility hallucinations": 31781, "uncertainty quantification": 34119, "presents promising": 25591, "llms remains": 18905, "significant hurdle": 29986, "address critical": 1319, "llmgenerated text": 18395, "tokens carry": 33219, "phenomenon linguistic": 24924, "existing methodologies": 10292, "methodologies treat": 19990, "estimating uncertainty": 9785, "propose jointly": 26521, "attention relevant": 2739, "experiments involving": 10453, "range popular": 27208, "popular offtheshelf": 25131, "offtheshelf llms": 23329, "instructiontuned llms": 15296, "llms vicuna": 19037, "vicuna wizardlm": 35257, "like opt": 17891, "opt llama": 23596, "33b parameters": 333, "evaluation various": 10025, "tasks encompassing": 32310, "science qa": 29243, "medical qa": 19770, "addressing challenges": 1370, "memory efficient": 19814, "demonstrated excellent": 7519, "excellent performance": 10162, "high cost": 13561, "memory overheads": 19824, "memory usage": 19834, "performance penalty": 24714, "efficient optimizers": 9052, "fast convergence": 10991, "methods extensive": 20031, "demonstrate training": 7507, "training stability": 33621, "tasks bert": 32252, "training notably": 33576, "faster convergence": 10997, "available multilingual": 2990, "source knowledge": 30561, "information easily": 14863, "easily accessible": 8791, "texts contain": 32990, "contain complex": 5826, "convey information": 6117, "extracted pretrained": 10751, "results wellknown": 28710, "evaluation approach": 9920, "competitively compared": 5233, "participating systems": 24331, "metrics model": 20144, "alignment efficient": 1758, "unified model": 34332, "llms typically": 19014, "nextword prediction": 22899, "formulation tasks": 11777, "tasks demanding": 32285, "suboptimal performance": 31439, "build efficient": 3909, "sizes paper": 30302, "model wide": 20870, "factual consistency": 10878, "texts model": 32997, "alignment model": 1773, "finetuning roberta": 11515, "355m parameters": 349, "datasets despite": 7096, "experiments models": 10462, "20 datasets": 209, "tasks model": 32419, "model matches": 20636, "matches surpasses": 19657, "flant5 models": 11600, "single unified": 30228, "outperforms taskspecific": 23860, "applied evaluate": 2188, "evaluate factual": 9837, "consistency language": 5732, "model improves": 20574, "improves various": 14401, "various baselines": 35076, "gpt35 chatgpt": 13018, "lightweight model": 17842, "model serve": 20774, "llms gpt35": 18649, "answering tasks": 2077, "improving average": 14404, "exact match": 10088, "match em": 19640, "em score": 9119, "questions evaluating": 27109, "evaluating effectiveness": 9893, "textual descriptions": 33027, "utilize llms": 34960, "embeddings preserve": 9144, "challenges remain": 4374, "research highlights": 28322, "highlights need": 13653, "need improvement": 22632, "improvement terms": 14348, "terms capturing": 32740, "support various": 31713, "models generating": 21313, "generating accurate": 12408, "use nlp": 34556, "educational applications": 8839, "task study": 32195, "study attempt": 31302, "abilities large": 628, "present extensive": 25531, "fewshot incontext": 11107, "finetuned flant5": 11309, "using reinforcement": 34900, "learning experimental": 17565, "experimental findings": 10387, "indicate efficacy": 14687, "models measured": 21711, "significant challenges": 29966, "challenges finetuning": 4345, "models finally": 21270, "skills large": 30310, "perspectives different": 24900, "llms exhibit": 18578, "humans tend": 13932, "contexts introduce": 5941, "introduce concept": 15501, "refers models": 27778, "experiments use": 10495, "based different": 3152, "different perspectives": 8120, "experiments llms": 10461, "implicitly explicitly": 14179, "prompt llms": 26334, "conduct quantitative": 5616, "quantitative experiments": 26993, "different models": 8109, "models gpt4": 21332, "gpt4 gpt35": 13082, "effectiveness various": 8971, "scientific questions": 29255, "project website": 26247, "website available": 35488, "models current": 21118, "developments large": 7980, "llms enabled": 18561, "impressive zeroshot": 14250, "zeroshot capabilities": 35954, "highly challenging": 13659, "abilities llms": 633, "relative comparisons": 27877, "work examines": 35702, "multiple perspectives": 22408, "general effective": 12164, "llms flant5": 18615, "flant5 llama2chat": 11598, "achieve performance": 977, "performance competitive": 24554, "competitive stateoftheart": 5230, "stateoftheart methods": 30954, "methods additionally": 20004, "additionally demonstrate": 1278, "exhibit strong": 10229, "debiasing methods": 7216, "methods improve": 20046, "policy improve": 25084, "models math": 21705, "math problems": 19670, "solve math": 30492, "problems language": 26028, "sampling strategy": 29097, "math reasoning": 19672, "reasoning step": 27453, "generate wrong": 12339, "abstract level": 769, "token probability": 33199, "select token": 29380, "test method": 32774, "gsm8k dataset": 13326, "dataset gpt2": 6998, "performance gain": 24605, "implementation available": 14161, "planning long": 25002, "long context": 19167, "context understanding": 5924, "llms recently": 18894, "recently achieved": 27586, "achieved better": 1003, "web automation": 35474, "performance realworld": 24732, "limited context": 17946, "inductive bias": 14738, "agent learns": 1562, "tasks real": 32471, "following natural": 11698, "python programs": 26904, "llms long": 18782, "documents using": 8520, "global attention": 12795, "attention mechanisms": 2727, "denoising objectives": 7601, "solve various": 30498, "tasks achieving": 32232, "higher success": 13606, "models graphtotext": 21337, "graphtotext generation": 13241, "llms widely": 19046, "widely employed": 35573, "process finetuning": 26060, "llms requires": 18911, "significant training": 30028, "training resources": 33599, "explore capability": 10577, "generate descriptive": 12270, "graph data": 13220, "data zeroshot": 6917, "specifically evaluate": 30737, "llm models": 18339, "generating fluent": 12423, "fluent coherent": 11633, "achieving bleu": 1087, "bleu scores": 3769, "struggle understanding": 31247, "semantic relations": 29466, "tend generate": 32705, "irrelevant information": 15644, "detect machinegenerated": 7850, "scores text": 29283, "generated generative": 12357, "transportation safety": 33866, "remarkable effectiveness": 28041, "various generaldomain": 35096, "generaldomain natural": 12191, "domain tasks": 8598, "tasks suboptimal": 32517, "primarily attributed": 25908, "accurate responses": 928, "responses address": 28485, "address challenge": 1308, "challenge introduce": 4316, "instructionoutput pairs": 15238, "dataset accessible": 6935, "key technology": 15788, "development large": 7957, "llms involves": 18730, "align models": 1735, "models responses": 21939, "responses human": 28496, "human expectations": 13813, "major approaches": 19436, "finetuning sft": 11520, "sft reinforcement": 29764, "feedback rlhf": 11071, "produce best": 26139, "commercial llms": 4988, "improve accessibility": 14255, "llms research": 18915, "research development": 28307, "llms introduced": 18728, "alpaca vicuna": 1833, "existing opensource": 10304, "llms instructiontuned": 18726, "popular languages": 25118, "tuning llms": 33996, "significant gap": 29983, "diverse languages": 8436, "important questions": 14209, "overcome issue": 23921, "introduces instruction": 15542, "development future": 7954, "multilingual llm": 22317, "research present": 28345, "present benchmark": 25515, "evaluation generative": 9957, "languages experiments": 16874, "demonstrate advantages": 7434, "sft different": 29759, "different base": 8054, "sentence embeddings": 29534, "learning llms": 17599, "tasks application": 32244, "area ongoing": 2482, "ongoing research": 23358, "propose incontext": 26518, "incontext learningbased": 14567, "learningbased method": 17675, "aimed improving": 1654, "approach involves": 2302, "previous promptbased": 25873, "representation method": 28145, "enables llms": 9303, "learning scaling": 17649, "experiments incontext": 10449, "learning enables": 17563, "finetuning helps": 11415, "performance comparable": 24547, "methods scaling": 20091, "size scaling": 30283, "largest model": 17396, "stateoftheart result": 30982, "tasks finetune": 32334, "llms current": 18501, "opt model": 23599, "promptbased method": 26362, "method surpasses": 19978, "surpasses performance": 31748, "llms moral": 18804, "reasoning large": 27415, "tasks wide": 32549, "range different": 27190, "important know": 14203, "issues paper": 15669, "employ methods": 9254, "gemini pro": 12141, "anthropics claude": 2090, "openais gpt4": 23446, "alignment human": 1762, "human responses": 13861, "alignment gpt4": 1761, "lead models": 17466, "llmgenerated responses": 18394, "responses highly": 28495, "correlated human": 6214, "human participants": 13849, "need research": 22641, "opensource large": 23509, "specially designed": 30681, "generation llms": 12541, "training llms": 33554, "dataset collected": 6951, "title abstract": 33178, "developed finetuning": 7926, "general llms": 12177, "demonstrated powerful": 7540, "field experiments": 11136, "academic papers": 787, "comparable chatgpt": 5077, "outperforms opensource": 23840, "llama13b model": 18157, "led paradigm": 17686, "primary objective": 25923, "assess effectiveness": 2591, "effectiveness models": 8961, "prompting models": 26390, "tasks past": 32448, "aim evaluate": 1641, "performance current": 24560, "current large": 6502, "models highlighting": 21357, "constraints context": 5790, "largescale synthetic": 17381, "dataset related": 7031, "vqa dataset": 35396, "build dataset": 3908, "context provided": 5910, "palm2 paper": 23996, "models llava": 21468, "llava mplugowl": 18249, "cider score": 4566, "accuracy improvement": 890, "mask tokens": 19608, "leveraging larger": 17787, "prompting techniques": 26398, "speculative decoding": 30778, "advances large": 1478, "capabilities propose": 4065, "accelerate llm": 791, "scenarios address": 29201, "improving previous": 14419, "second stage": 29327, "smaller language": 30376, "rationale generation": 27277, "strong reasoning": 31190, "evaluate methods": 9849, "methods improvement": 20047, "rationales generated": 27279, "generated larger": 12371, "model longer": 20631, "longer contexts": 19197, "retrieval method": 28745, "involves training": 15632, "score generated": 29268, "generated rationales": 12383, "retrieved contexts": 28772, "knowledge sources": 15909, "second method": 29325, "relevant information": 27942, "improve results": 14294, "improves strong": 14395, "type question": 34055, "question selecting": 27074, "does better": 8524, "proposed models": 26614, "generally outperform": 12243, "stablevicuna 13b": 30853, "fewshot chainofthought": 11099, "existing large": 10283, "imbalance training": 14101, "english tasks": 9492, "tasks languages": 32389, "semantic alignment": 29447, "general task": 12185, "crosslingual models": 6417, "scaling laws": 29172, "investigate advantages": 15575, "perform multilingual": 24494, "resources build": 28430, "resourceconstrained setting": 28422, "alpaca average": 1824, "translation dataset": 33824, "outperform previous": 23782, "llamabased models": 18238, "models average": 21004, "demonstrates ability": 7556, "response content": 28476, "representation space": 28150, "middle layers": 20159, "tasks ecommerce": 32304, "recently instructionfollowing": 27603, "instructionfollowing large": 15230, "represented chatgpt": 28191, "exhibited exceptional": 10234, "unique characteristics": 34357, "ecommerce data": 8809, "llm tailored": 18372, "solve issue": 30491, "instruction dataset": 15150, "information user": 14923, "user reviews": 34670, "final task": 11185, "different parameter": 8117, "parameter scales": 24196, "backbone model": 3055, "model bloomz": 20403, "exhibits excellent": 10246, "capabilities extensive": 4017, "evaluations demonstrate": 10027, "outperforms chatgpt": 23812, "improved loss": 14314, "writing natural": 35853, "neural code": 22723, "techniques generating": 32640, "generating descriptions": 12418, "descriptions using": 7692, "propose evaluate": 26509, "similarity metric": 30130, "loss output": 19250, "output sentence": 23880, "training batch": 33443, "compared baselines": 5123, "report improvement": 28116, "vast majority": 35187, "trajectories using": 33659, "tokens using": 33251, "using architecture": 34733, "gpt2 sequence": 12949, "model sequentially": 20772, "special tokens": 30657, "tokens training": 33250, "training tokens": 33636, "increasing use": 14631, "use internet": 34538, "created comprehensive": 6359, "detection model": 7872, "editing model": 8829, "approach utilizes": 2358, "model controlled": 20444, "achieves average": 1029, "average bleu": 3011, "gpt2 roberta": 12948, "dataset achieve": 6936, "field previous": 11150, "previous attempts": 25866, "models optimization": 21779, "behavior large": 3315, "models pressing": 21838, "finetuning reinforcement": 11503, "forward pass": 11784, "steering vectors": 31030, "gpt2 openwebtext": 12930, "approach yields": 2364, "properties output": 26478, "method requires": 19968, "language specification": 16823, "enhancing reliability": 9574, "models emergence": 21188, "showcasing exceptional": 29849, "tasks existing": 32320, "existing research": 10313, "transformers like": 33791, "applicability findings": 2119, "paper embarks": 24037, "empirical investigation": 9228, "domain llms": 8574, "llms focusing": 18616, "focusing llama": 11672, "thoroughly evaluate": 33076, "finetuning scenarios": 11517, "scenarios notably": 29212, "finetuning generative": 11410, "objective llms": 23207, "tasks findings": 32332, "cosine distance": 6240, "demonstrates superior": 7576, "superior efficacy": 31647, "provide intriguing": 26712, "explanation phenomenon": 10538, "embedding spaces": 9133, "bert family": 3502, "enhances understanding": 9553, "llms detect": 18534, "data enhancing": 6694, "enhancing adaptability": 9556, "dynamic environments": 8757, "evaluation nlp": 9982, "educational materials": 8842, "fields like": 11156, "expensive create": 10359, "achieved significant": 1016, "success various": 31528, "education domain": 8835, "explored work": 10611, "work examine": 35701, "nlp computer": 22928, "automated benchmarks": 2856, "benchmarks reveal": 3472, "reveal gpt4": 28798, "like gpt35": 17871, "gpt35 palm2": 13033, "palm2 llama2": 23995, "compare human": 5106, "gptbased evaluation": 13140, "evaluation scores": 10006, "provide indepth": 26707, "analysis findings": 1921, "ones certain": 23345, "certain limitations": 4276, "limitations observed": 17928, "content occasionally": 5865, "factual errors": 10882, "errors compared": 9722, "systematic bias": 31868, "using gpt": 34787, "gpt evaluation": 12846, "closing gap": 4701, "foreign languages": 11725, "model scratch": 20768, "language domain": 16067, "serves essential": 29654, "particular linguistic": 24340, "domain context": 8558, "context ii": 5893, "approach lies": 2311, "size number": 30267, "llama llama2": 18120, "scenarios involving": 29210, "memory resources": 19827, "tokens required": 33243, "required represent": 28232, "present methodology": 25540, "methodology named": 19997, "research demonstrates": 28302, "methodology applied": 19992, "architecture model": 2447, "model known": 20599, "resulting model": 28557, "results significant": 28683, "significant reduction": 30019, "reduction number": 27764, "tasks achieved": 32231, "model compared": 20431, "compared traditional": 5177, "pretraining approach": 25784, "7b models": 537, "models english": 21204, "english pretrained": 9489, "foundational language": 11803, "models foundational": 21296, "advanced natural": 1433, "researchers developing": 28375, "contextualized language": 5961, "language representation": 16817, "potential smaller": 25299, "benchmark realworld": 3407, "using datasets": 34766, "mental health": 19839, "present strong": 25554, "strong general": 31171, "capabilities current": 4007, "specialized capabilities": 30667, "tuning standard": 34015, "instruction input": 15170, "mechanism llms": 19751, "llms limitations": 18765, "focus llms": 11651, "llms tend": 19000, "tend focus": 32704, "instructionfollowing dataset": 15227, "model instruction": 20586, "instruction understanding": 15210, "translation apply": 33819, "apply methods": 2210, "methods mainstream": 20066, "bloom llama": 3786, "demonstrate significant": 7492, "improvements translation": 14366, "average improvement": 3019, "english german": 9481, "metric based": 20119, "based word": 3238, "recently growing": 27600, "benchmarks proposed": 3469, "evaluate ability": 9817, "ability llms": 697, "data leakage": 6754, "ability paper": 708, "issues based": 15667, "based blooms": 3140, "particular design": 24336, "potential data": 25251, "leakage objective": 17499, "objective subjective": 23208, "evaluation llms": 9970, "llms comprehensive": 18480, "comprehensive experiments": 5376, "experiments advanced": 10417, "advanced llms": 1430, "gpt4 achieves": 13053, "achieves sota": 1067, "llms substantial": 18975, "substantial room": 31476, "room improvement": 28967, "improvement especially": 14337, "data codes": 6638, "codes publicly": 4854, "instruction tuned": 15183, "models advent": 20969, "advent large": 1509, "processing enabling": 26101, "progress various": 26228, "various applications": 35074, "structured information": 31221, "models focus": 21288, "llama architecture": 18076, "wikipedia dataset": 35603, "low rank": 19272, "rank adaptation": 27222, "lora technique": 19235, "dense passage": 7608, "passage retrieval": 24380, "answer relevant": 2052, "entity relation": 9652, "model achieved": 20345, "achieved average": 1000, "average f1": 3015, "generation recommendation": 12593, "recommendation paper": 27649, "suggestions based": 31587, "text prompt": 32922, "model extract": 20509, "new features": 22803, "features users": 11044, "user study": 34675, "study comparing": 31308, "generated finetuned": 12356, "model outperformed": 20669, "fedllm using": 11053, "forward gradient": 11783, "federated learning": 11050, "learning fl": 17570, "user data": 34645, "data privacy": 6807, "tasks approach": 32246, "vast model": 35188, "challenges concerning": 4339, "mobile devices": 20319, "significant memory": 29996, "memory consumption": 19809, "model convergence": 20445, "response challenges": 28475, "work introduces": 35726, "designed enhance": 7729, "key idea": 15770, "methods requiring": 20090, "memory efficiency": 19813, "efficiency time": 9016, "time efficiency": 33119, "key designs": 15762, "parameterefficient training": 24214, "methods essential": 20027, "approach llm": 2312, "speed accuracy": 30795, "valuable model": 35015, "llms nlp": 18818, "significant advantages": 29959, "conventional methods": 6075, "orders magnitude": 23681, "magnitude faster": 19382, "reduction memory": 27763, "memory footprint": 19815, "loss functions": 19245, "advancements natural": 1470, "models computationally": 21083, "techniques reduce": 32658, "reduce size": 27725, "student model": 31254, "explore various": 10605, "various techniques": 35152, "transformer layer": 33727, "methods tuning": 20105, "proposed techniques": 26622, "goal work": 12809, "improve efficiency": 14264, "efficiency effectiveness": 9002, "accurate models": 926, "optimization using": 23637, "important challenge": 14198, "specifically focus": 30742, "domain specific": 8594, "end propose": 9416, "deep reinforcement": 7343, "learning rl": 17646, "rl based": 28901, "based search": 3220, "search optimal": 29310, "deep rl": 7345, "performance open": 24700, "observe average": 23225, "diverse benchmark": 8414, "benchmark including": 3392, "proposed approach": 26590, "research recent": 28357, "develop endtoend": 7915, "depends heavily": 7624, "diversity quality": 8482, "emergence powerful": 9179, "promising avenue": 26284, "proposes novel": 26630, "domain generates": 8567, "instructions based": 15244, "based input": 3178, "transformer decoder": 33713, "showcase practical": 29839, "applications benefit": 2142, "integrating large": 15331, "enable automated": 9284, "findings validate": 11261, "validate efficacy": 34995, "efficacy proposed": 8991, "future advancements": 12028, "intelligence large": 15358, "language learning": 16109, "progress large": 26212, "llms impressive": 18685, "efficacy realworld": 8993, "expert knowledge": 10511, "remains unclear": 28016, "hold potential": 13736, "development artificial": 7949, "ai based": 1600, "evaluating efficacy": 9894, "second language": 29322, "multiplechoice question": 22430, "effectiveness llms": 8957, "including understanding": 14526, "understanding application": 34208, "language knowledge": 16104, "influence various": 14842, "various prompting": 35135, "techniques zero": 32674, "fewshot method": 11116, "cot think": 6284, "think stepbystep": 33066, "external tools": 10736, "conducted largescale": 5639, "popular llms": 25123, "distinct models": 8367, "using methods": 34840, "improvements compared": 14357, "compared zeroshot": 5184, "zeroshot baseline": 35953, "practical questions": 25370, "reasoning realworld": 27446, "additionally explore": 1284, "preliminary findings": 25489, "user interaction": 34657, "approaches suffer": 2398, "suffer poor": 31553, "limited language": 17955, "manual efforts": 19558, "understanding reasoning": 34265, "perspective task": 24898, "unified language": 34330, "capable handling": 4108, "arbitrary tasks": 2431, "key insight": 15774, "llms domainspecific": 18547, "domainspecific knowledge": 8651, "main components": 19392, "memory injection": 19820, "injection techniques": 14983, "performance new": 24691, "common tasks": 5017, "results demonstrated": 28598, "openais gpt": 23440, "marked significant": 19593, "significant advancement": 29950, "trained vast": 33435, "amounts text": 1888, "data llms": 6759, "llms capable": 18458, "capable understanding": 4122, "generating humanlike": 12428, "range topics": 27214, "expands applications": 10343, "applications llms": 2167, "llms exploring": 18593, "data preprocessing": 6803, "data mining": 6769, "analytics applications": 1986, "detection data": 7864, "tasks alongside": 32240, "inherent capabilities": 14948, "llms highlight": 18672, "limitations particularly": 17929, "particularly terms": 24356, "terms computational": 32741, "propose llmbased": 26525, "llmbased framework": 18388, "engineering techniques": 9471, "models effectiveness": 21183, "experimental study": 10410, "12 datasets": 89, "datasets gpt4": 7127, "achieving 100": 1080, "100 accuracy": 33, "accuracy f1": 879, "score datasets": 29267, "immense potential": 14115, "study underscores": 31403, "underscores promise": 34183, "llms domain": 18546, "future developments": 12030, "specific models": 30707, "instead individual": 15122, "usually suffer": 34948, "model search": 20769, "limited number": 17958, "address problems": 1351, "harness inherent": 13453, "update scheme": 34474, "enables training": 9310, "dynamic model": 8761, "storage requirement": 31077, "validated various": 35001, "llama bert": 18080, "image classification": 14061, "classification demonstrating": 4595, "demonstrating superiority": 7592, "superiority existing": 31663, "able train": 756, "awareness llms": 3045, "llms model": 18803, "safety alignment": 29042, "reasoning contrast": 27397, "finetune llm": 11293, "examples demonstrations": 10120, "assess model": 2598, "llms succeed": 18977, "size findings": 30248, "llms code": 18468, "framework pretraining": 11888, "models limited": 21462, "limited resources": 17962, "computational demands": 5465, "demands hinder": 7415, "large portion": 17258, "challenge present": 4326, "framework efficient": 11841, "models drawing": 21175, "t5base model": 31970, "gpu just": 13172, "loss performance": 19251, "modelling research": 20914, "implementations make": 14166, "technical report": 32607, "report large": 28117, "way interact": 35436, "information conduct": 14856, "llms remain": 18904, "progress opensource": 26223, "limited ability": 17937, "longer sequence": 19200, "sequence lengths": 29602, "context address": 5880, "series 7b": 29632, "7b parameter": 540, "models 8k": 20930, "tokens finetuned": 33227, "instructional data": 15212, "commercial applications": 4983, "standard benchmarks": 30870, "results compared": 28581, "stateoftheart opensource": 30967, "long sequence": 19176, "sequence modeling": 29604, "open llm": 23406, "nlp multimodal": 22940, "multimodal tasks": 22367, "despite successes": 7818, "llms high": 18671, "objective evaluations": 23204, "evaluations paper": 10037, "paper report": 24130, "solution significantly": 30480, "significantly reduce": 30080, "reduce llm": 27717, "llm training": 18374, "range evaluations": 27194, "evaluations existing": 10028, "existing evaluations": 10272, "evaluations focus": 10030, "minimize potential": 20197, "achieves performance": 1056, "layers improves": 17440, "improves factuality": 14377, "despite impressive": 7788, "content deviates": 5857, "seen pretraining": 29364, "decoding strategy": 7283, "reducing hallucinations": 27750, "llms does": 18545, "does require": 8536, "retrieved external": 28774, "additional finetuning": 1255, "later layers": 17414, "llms generally": 18633, "generation incorrect": 12521, "incorrect facts": 14584, "improves truthfulness": 14399, "tasks example": 32318, "performance llama": 24660, "llama family": 18100, "models truthfulqa": 22085, "primarily focus": 25910, "ask questions": 2554, "reliability trustworthiness": 27952, "accurately identify": 935, "provide reasonable": 26725, "investigate question": 15594, "different categories": 8056, "categories questions": 4226, "definitive answers": 7371, "tasks test": 32525, "tasks lack": 32386, "performance baseline": 24529, "research important": 28325, "gpt4 palm": 13108, "palm llama": 23991, "llama shown": 18143, "shown achieve": 29870, "llms ability": 18406, "llms pose": 18856, "pose challenges": 25158, "vietnamese language": 35272, "language limited": 16111, "leverage largescale": 17756, "instructionfollowing datasets": 15228, "datasets opensource": 7157, "opensource projects": 23541, "general domain": 12160, "specific medical": 30705, "medical domain": 19767, "instructional dataset": 15213, "utilize parameterefficient": 34961, "llms bloomz": 18452, "effectiveness methodology": 8959, "relevance accuracy": 27933, "responses evaluation": 28491, "evaluation process": 9994, "tasks analysis": 32243, "fake news": 10934, "news detection": 22880, "using finetuned": 34780, "paper considers": 24027, "considers possibility": 5728, "llama large": 18117, "detection finetuning": 7866, "finetuning peftlora": 11478, "peftlora based": 24440, "based approach": 3133, "used study": 34624, "study model": 31362, "finetuned following": 11312, "following tasks": 11704, "tasks analysing": 32241, "analysing text": 1909, "extracting named": 10759, "named entities": 22481, "sentiments obtained": 29578, "obtained results": 23257, "results finetuned": 28613, "finetuned llama": 11329, "reveal complex": 28792, "extracted sentiments": 10752, "sentiments named": 29574, "entities considered": 9630, "considered predictive": 5718, "predictive features": 25449, "features supervised": 11039, "supervised machine": 31684, "family large": 10975, "models lightweight": 21446, "opt family": 23591, "ranging 125m": 27217, "large collection": 16934, "collection diverse": 4929, "diverse data": 8422, "data time": 6893, "tokens current": 33221, "current input": 6492, "residual stream": 28392, "scale models": 29144, "textual data": 33024, "models operate": 21773, "power smaller": 25330, "smaller transformerbased": 30399, "10 million": 29, "million parameter": 20164, "produce coherent": 26140, "coherent english": 4892, "model python": 20740, "performance close": 24544, "use existing": 34528, "data way": 6911, "enhance learning": 9514, "learning process": 17634, "data follow": 6716, "approach focusing": 2286, "time common": 33110, "sense reasoning": 29508, "reasoning natural": 27429, "tasks comparable": 32268, "llms complex": 18478, "llms good": 18642, "step step": 31049, "including hallucinations": 14493, "biased generations": 3669, "data opensource": 6788, "attracted attention": 2752, "comprehensive capabilities": 5359, "network operations": 22700, "designed evaluating": 7732, "covering different": 6324, "available llms": 2988, "results gpt4": 28621, "gpt4 achieve": 13051, "open models": 23409, "like llama": 17882, "llama demonstrate": 18090, "significant potential": 30008, "integrated various": 15326, "sectors understanding": 29343, "crucial particularly": 6443, "autonomous driving": 2931, "framework investigate": 11872, "prominent llms": 26268, "including gpt35": 14485, "llms humans": 18681, "similarities llm": 30125, "llm human": 18320, "llms potential": 18858, "potential implications": 25262, "removing model": 28077, "targeted ablation": 32063, "models exhibit": 21225, "performance pretraining": 24719, "harm performance": 13438, "undesirable behaviors": 34291, "bad behavior": 3073, "given small": 12773, "generation minimal": 12549, "understanding interpreting": 34235, "need diverse": 22625, "zeroshot approach": 35952, "entities corpus": 9634, "gpt2 use": 12963, "news media": 22884, "model corpus": 20446, "previously encountered": 25897, "finetuning generate": 11409, "results encouraging": 28602, "astronomy large": 2672, "models excel": 21223, "highly specialized": 13668, "specialized domains": 30671, "domains like": 8628, "gap introduce": 12091, "finetuned llama2": 11334, "llama2 using": 18194, "adaptation model": 1186, "having significantly": 13474, "domainspecific model": 8654, "public release": 26843, "exploring large": 10618, "alignment work": 1784, "series flant5": 29636, "systems like": 31907, "framework prompt": 11891, "prompt design": 26318, "various recent": 35140, "study human": 31340, "human behavior": 13797, "behavior example": 3313, "semantically equivalent": 29484, "used measure": 34611, "llm prompts": 18355, "prompts lead": 26430, "lead different": 17463, "statistically significant": 31022, "large majority": 17228, "majority scenarios": 19449, "scores robust": 29281, "prompt template": 26348, "chatgpt llama2": 4487, "created humans": 6360, "decoding present": 7279, "novel inference": 23088, "accelerating large": 799, "approach characterized": 2248, "twostage process": 34046, "slightly lower": 30323, "intermediate layers": 15428, "original llm": 23711, "llm validate": 18379, "final output": 11179, "requires additional": 28247, "benchmarks llama2": 3459, "traditional chinese": 33343, "models comprehensive": 21078, "benchmark suite": 3414, "suite evaluation": 31599, "essential task": 9762, "field language": 11138, "generation language": 12531, "continue advance": 5986, "need effective": 22626, "benchmarks evaluate": 3440, "evaluate capabilities": 9820, "despite existence": 7775, "dataset address": 6938, "address gap": 1323, "leverage existing": 17746, "datasets tailored": 7179, "chinese benchmarks": 4541, "benchmarks encompass": 3439, "offer comprehensive": 23287, "framework enabling": 11846, "assessment language": 2616, "performance gpt35": 24619, "proprietary model": 26646, "highlight model": 13633, "comparable gpt35": 5079, "llms excel": 18574, "crafted prompts": 6341, "automate process": 2853, "process paper": 26077, "discrete prompt": 8280, "prompt optimization": 26338, "exhibit good": 10218, "discrete prompts": 8281, "language expressions": 16073, "approach allows": 2235, "processing capabilities": 26097, "llms efficient": 18553, "optimization performance": 23632, "prompts llms": 26431, "development set": 7975, "closed opensource": 4679, "datasets covering": 7086, "covering language": 6325, "tasks bigbench": 32254, "prompts existing": 26416, "automatic prompt": 2890, "prompt generation": 26327, "llms conventional": 18494, "better alpaca": 3591, "foundational large": 11805, "opendomain question": 23450, "applications like": 2166, "single language": 30209, "empirically analyze": 9246, "scenarios study": 29220, "multilingual data": 22304, "used tune": 34633, "tune llms": 33957, "par better": 24151, "findings serve": 11252, "language support": 16828, "good generating": 12820, "generating complex": 12415, "complex structured": 5295, "structured data": 31219, "power large": 25320, "structured outputs": 31226, "study assess": 31301, "assess capability": 2589, "current llms": 6511, "data propose": 6813, "propose structureaware": 26569, "improve ability": 14254, "perform comprehensive": 24479, "evaluation propose": 9996, "representative llms": 28184, "gptneox 20b": 13160, "carefully constructed": 4173, "datasets spanning": 7172, "tables based": 31987, "based analysis": 3132, "current model": 6515, "identify specific": 14016, "potential improvement": 25264, "address complex": 1318, "formatting requirements": 11761, "finetuning method": 11452, "based results": 3217, "reasoning comprehension": 27395, "weaknesses llms": 35466, "llms handling": 18666, "handling complex": 13414, "promising directions": 26287, "work code": 35677, "unlocking potential": 34413, "models dynamic": 21177, "widespread deployment": 35596, "enabling dynamic": 9319, "inference leveraging": 14789, "generative nlp": 12683, "making large": 19507, "approach boosts": 2243, "boosts model": 3828, "model efficiency": 20481, "need multiple": 22639, "various scenarios": 35142, "unlock power": 34411, "layers transformers": 17448, "transformers generating": 33782, "target output": 32057, "components original": 5316, "model minimizing": 20642, "storage requirements": 31078, "method demonstrated": 19897, "tune llama": 33956, "llama 13b": 18059, "dataset instruction": 7004, "comparison standard": 5200, "usage inference": 34504, "contrastive decoding": 6021, "improves reasoning": 14392, "demonstrate contrastive": 7443, "method proposed": 19960, "li et": 17808, "greedy decoding": 13281, "perceived quality": 24457, "generation contrastive": 12480, "difference likelihood": 8035, "palm 2l": 23989, "gsm8k math": 13327, "math word": 19675, "benchmark addition": 3352, "analysis suggests": 1969, "improves existing": 14376, "abstract reasoning": 773, "reasoning errors": 27407, "making powerful": 19514, "powerful general": 25337, "general purpose": 12184, "purpose method": 26883, "method generating": 19926, "typically require": 34081, "large gpu": 16953, "gpu memory": 13173, "reduce gpu": 27711, "accuracy existing": 877, "solutions provide": 30485, "tensor core": 32722, "based key": 3182, "main bottleneck": 19387, "bottleneck generative": 3839, "matrix multiplications": 19694, "propose general": 26516, "matrix multiplication": 19693, "memory bandwidth": 19802, "bandwidth bottleneck": 3089, "endtoend performance": 9438, "effective software": 8895, "sparse data": 30611, "data extraction": 6706, "significantly lower": 30068, "inference cost": 14770, "examples natural": 10137, "reducing need": 27757, "need extensive": 22628, "limited capability": 17942, "report present": 28122, "largescale multilingual": 17365, "models containing": 21103, "matches outperforms": 19653, "public benchmarks": 26832, "like mmlu": 17888, "mmlu cmmlu": 20315, "medicine law": 19773, "pretraining model": 25821, "benefit research": 3483, "store information": 31080, "evaluating faithfulness": 9895, "help address": 13502, "address develop": 1322, "modes evaluation": 22176, "evaluation natural": 9979, "individual neurons": 14718, "text input": 32898, "apply framework": 2207, "gpt2 xl": 12969, "high error": 13566, "error rates": 9716, "paper critically": 24029, "modern llms": 22165, "interactive llms": 15395, "gpt4 bard": 13058, "bard llama": 3098, "careful attention": 4168, "systems built": 31887, "practical terms": 25373, "amounts compute": 1883, "resources does": 28433, "llms llms": 18781, "architectures incorporate": 2465, "superior capabilities": 31645, "processing understanding": 26133, "understanding language": 34237, "language applications": 16042, "remain underexplored": 27987, "crucial step": 6447, "deeper understanding": 7349, "related concepts": 27854, "effective solution": 8896, "task automated": 32081, "explanation generation": 10536, "generation present": 12573, "present evaluate": 25528, "evaluate framework": 9838, "framework called": 11834, "questions large": 27117, "evaluation model": 9977, "model framework": 20538, "framework generates": 11861, "generates highquality": 12402, "instruction prompt": 15174, "llama213b gpt4": 18198, "gpt4 generate": 13080, "higher quality": 13603, "quality explanations": 26959, "written students": 35864, "datasets findings": 7117, "promising path": 26292, "models educational": 21179, "various data": 35084, "627b tokens": 466, "tokens extensive": 33226, "fundamental characteristics": 11974, "different sources": 8141, "local single": 19135, "single source": 30222, "affect performance": 1539, "performance trained": 24787, "slimpajama dataset": 30325, "using 13b": 34723, "best configuration": 3556, "configuration outperforms": 5655, "13b model": 127, "number training": 23169, "tokens significant": 33245, "significant margin": 29994, "13b models": 129, "small language": 30346, "text style": 32951, "1000 sentences": 44, "impact large": 14127, "llm shown": 18366, "shown promise": 29906, "privacy concerns": 25951, "high deployment": 13564, "deployment costs": 7646, "explore effectiveness": 10582, "learning propose": 17637, "automated evaluation": 2860, "evaluation text": 10020, "quality based": 26944, "compare approach": 5104, "methods model": 20067, "models effective": 21180, "field machine": 11139, "translation recent": 33848, "nmt systems": 22980, "fail handle": 10902, "cases large": 4200, "llms emerged": 18555, "emerged promising": 9164, "promising alternative": 26281, "performance traditional": 24786, "nmt models": 22979, "models introducing": 21405, "outputs paper": 23896, "word senses": 35648, "match outperform": 19644, "outperform stateoftheart": 23787, "nllb language": 22915, "language directions": 16065, "provides valuable": 26767, "adapting llms": 1212, "llms better": 18448, "cultural characteristics": 6460, "current mainstream": 6513, "mainstream models": 19412, "models significant": 21973, "significant concerns": 29972, "address paper": 1348, "proposes comprehensive": 26626, "texts supervised": 33002, "gpt4 responses": 13113, "ai feedback": 1608, "reward model": 28859, "evaluations reveal": 10039, "model dubbed": 20476, "sets stateoftheart": 29720, "benchmarks including": 3449, "newly introduced": 22871, "value alignment": 35023, "evaluated gpt4": 9876, "limited scale": 17963, "codes data": 4851, "llms represent": 18910, "interact computers": 15380, "dedicated hardware": 7304, "execution study": 10200, "study evaluate": 31326, "based 13": 3131, "llama models": 18132, "quantization process": 27011, "models considered": 21097, "koala vicuna": 15940, "models developed": 21152, "analysis revealed": 1957, "achieved accuracy": 999, "original texts": 23722, "english translations": 9494, "models measuring": 21712, "time required": 33140, "average 13": 3008, "approximately 20": 2414, "process queries": 26078, "calculations large": 3968, "models highquality": 21359, "conversational datasets": 6099, "successful development": 31533, "development intelligent": 7956, "systems utilize": 31929, "generated using": 12398, "using advanced": 34727, "gpt4 models": 13100, "models common": 21065, "common strategy": 5015, "creating datasets": 6365, "pose challenge": 25157, "capabilities limitations": 4037, "mathematical reasoning": 19682, "limitation introduce": 17912, "uses python": 34714, "approach notably": 2318, "quality synthetic": 26980, "synthetic conversation": 31848, "datasets especially": 7104, "expert evaluations": 10509, "model effectively": 20480, "reversal curse": 28820, "autoregressive large": 2947, "trained sentence": 33425, "instance model": 15110, "correct answer": 6191, "curse finetuning": 6551, "finetuning gpt3": 11413, "chatgpt gpt35": 4475, "questions like": 27120, "insights dataset": 15071, "instructiontuned lms": 15297, "lms led": 19095, "usage development": 34502, "detailed information": 7839, "automate model": 2852, "generation introduce": 12527, "questionanswer pairs": 27080, "models cover": 21113, "aspects model": 2578, "training configurations": 33456, "architecture details": 2442, "details training": 7847, "capabilities lms": 4042, "lms generating": 19087, "initial experiments": 14959, "llama galactica": 18104, "showcase significant": 29840, "gap understanding": 12114, "textual responses": 33037, "models automate": 20996, "automate generation": 2851, "process complete": 26053, "complete dataset": 5249, "dataset available": 6941, "impressive skills": 14249, "tasks llms": 32408, "llms evaluated": 18571, "evaluated various": 9885, "thorough evaluation": 33072, "llms benchmark": 18446, "benchmark performance": 3405, "performance bengali": 24532, "classification sentiment": 4611, "zeroshot llms": 35984, "current sota": 6529, "models tasks": 22047, "performance opensource": 24703, "efforts develop": 9088, "develop better": 7911, "llms large": 18743, "enormous parameter": 9590, "extremely high": 10797, "compute power": 5497, "challenges practical": 4369, "practical deployment": 25363, "models distillation": 21161, "studies explore": 31267, "explore potential": 10597, "leveraging llms": 17788, "work focusing": 35715, "table reasoning": 31984, "reasoning skills": 27452, "specifically tailored": 30757, "scientific tabletotext": 29257, "reasoning distillation": 27405, "distillation approach": 8336, "distilling llms": 8357, "llms tailored": 18989, "models experimental": 21235, "results shown": 28682, "distilled data": 8351, "data achieves": 6591, "improvement compared": 14336, "traditionally finetuned": 33355, "specific llms": 30704, "generation dataset": 12482, "test study": 32789, "ethical considerations": 9805, "based relevance": 3216, "study shows": 31399, "gpt3 exhibit": 12992, "better random": 3621, "chatgpt llama2chat": 4489, "palm2 gpt4": 23994, "gpt4 significantly": 13118, "observe models": 23232, "perform consistently": 24481, "gaps understanding": 12118, "rank decomposition": 27223, "code llms": 4777, "parameters model": 24273, "speedup modern": 30801, "hardware unlike": 13433, "linear layers": 17989, "efficient kernels": 9041, "floating point": 11622, "study potential": 31374, "layers models": 17443, "pass1 score": 24376, "single a100": 30196, "quantization method": 27009, "compression gains": 5415, "model reduces": 20746, "reduces memory": 27736, "similar gains": 30102, "tuning work": 34020, "work shows": 35786, "promising new": 26290, "llm compression": 18283, "use knowledge": 34539, "logical reasoning": 19157, "reasoning remains": 27448, "stored knowledge": 31082, "knowledge retrieval": 15904, "chain thoughts": 4293, "perform poorly": 24500, "primary contribution": 25920, "synthetic dataset": 31853, "inherent weaknesses": 14952, "weaknesses language": 35465, "model efficiently": 20484, "data knowledge": 6745, "paradigm efficient": 24155, "domainspecific text": 8658, "faces challenge": 10828, "data high": 6726, "methods large": 20057, "llms gained": 18626, "models slms": 21987, "1b parameters": 198, "offer significant": 23293, "domainspecific tasks": 8657, "tasks given": 32349, "investigate potential": 15593, "potential slms": 25298, "promptbased model": 26364, "220m parameters": 252, "parameters achieve": 24221, "approximately 75": 2415, "limited labeled": 17952, "data shows": 6862, "validate effectiveness": 34993, "pivotal observation": 24979, "designed prompts": 7740, "accuracy exceeding": 876, "optimized prompt": 23647, "findings underscore": 11259, "underscore promise": 34177, "models solving": 21991, "nlp problems": 22942, "recent developments": 27515, "promise enhancing": 26274, "enhancing capabilities": 9557, "nlp despite": 22930, "problemsolving abilities": 26038, "llms gap": 18627, "present unique": 25560, "benchmarking dataset": 3422, "questions spanning": 27132, "spanning various": 30600, "questions context": 27102, "context multiple": 5903, "information diverse": 14862, "question types": 27075, "answer math": 2046, "advanced prompting": 1440, "strategies like": 31109, "effectiveness advanced": 8938, "especially smaller": 9747, "like llama2": 17886, "llama2 13b": 18159, "problemsolving skills": 26041, "comprehension llms": 5344, "improvements natural": 14359, "coding tasks": 4869, "tasks ability": 32228, "formal languages": 11745, "proficiency various": 26184, "various llms": 35113, "llms created": 18497, "set tasks": 29708, "tasks probe": 32458, "ability parse": 709, "understand analyze": 34188, "create knowledge": 6351, "tasks embodying": 32306, "integrated automated": 15324, "gpt4 claude": 13063, "freely accessible": 11915, "analysis offers": 1946, "indepth understanding": 14679, "understanding strengths": 34272, "commercial models": 4990, "models fall": 21260, "crucial requirement": 6445, "thoughts prompting": 33083, "extensive text": 10714, "textrelated tasks": 32987, "encounter challenges": 9392, "proposed means": 26604, "enhance llms": 9517, "solving math": 30510, "word problems": 35645, "primary aim": 25915, "aim research": 1649, "skills using": 30316, "cot prompting": 6281, "research provide": 28351, "following contributions": 11689, "essays dataset": 9754, "dataset previously": 7023, "use cot": 34522, "approach training": 2349, "suggest models": 31575, "models llama7b": 21467, "cohen kappa": 4885, "kappa score": 15740, "important note": 14206, "user privacy": 34665, "allowing users": 1808, "metric text": 20126, "wide spectrum": 35565, "tasks different": 32297, "evaluation methods": 9973, "methods provide": 20082, "guided natural": 13353, "language instruction": 16097, "based llama2": 3192, "meticulously curated": 20116, "datasets dataset": 7090, "analysis collected": 1912, "outputs large": 23894, "large variety": 17286, "variety models": 35064, "quantitatively assess": 26997, "correlation human": 6219, "human ratings": 13859, "surpass best": 31733, "best existing": 3558, "possibility building": 25207, "testing limits": 32805, "llm pretraining": 18350, "pretraining diverse": 25793, "present web": 25562, "web pages": 35477, "semistructured data": 29503, "available internet": 2984, "approach large": 2305, "used solve": 34623, "solve diverse": 30490, "classification problems": 4605, "models specialized": 21997, "specialized task": 30675, "model works": 20872, "tasks significant": 32503, "significant degradation": 29976, "pretraining stage": 25840, "t5 data": 31939, "surrounding context": 31771, "context downstream": 5886, "selfsupervised objectives": 29439, "significantly boost": 30037, "specific pretraining": 30710, "sequence models": 29605, "finetuned variants": 11360, "models reasoning": 21899, "essential understanding": 9763, "limited scope": 17964, "consistent evaluations": 5737, "different studies": 8144, "datasets encompassing": 7102, "encompassing various": 9390, "temporal aspects": 32694, "facilitate comprehensive": 10835, "llms conduct": 18484, "evaluation using": 10024, "learning scenarios": 17650, "scenarios additionally": 29200, "additionally employ": 1282, "bertbased models": 3541, "establish baseline": 9766, "findings indicate": 11238, "indicate models": 14690, "models trail": 22063, "spur progress": 30833, "llms future": 18623, "providing nuanced": 26780, "nuanced understanding": 23133, "data recent": 6826, "advancements llms": 1469, "demonstrated potential": 7539, "focus tasks": 11658, "simple reasoning": 30162, "reasoning processes": 27439, "gap remains": 12108, "reasoning events": 27408, "limitation existing": 17911, "introduce task": 15535, "requires multiple": 28260, "multiple reasoning": 22414, "reasoning multiple": 27428, "multiple events": 22390, "task offers": 32170, "ai applications": 1597, "applications support": 2178, "dataset explainable": 6988, "reasoning paths": 27431, "paths using": 24402, "using novel": 34861, "based dataset": 3150, "propose opensource": 26558, "llm series": 18365, "based foundation": 3162, "ability instruction": 685, "performance method": 24675, "prediction explanation": 25423, "aim provide": 1647, "explore large": 10587, "learning architecture": 17539, "zeroshot prompting": 35990, "automatically using": 2923, "accuracy using": 914, "greater accuracy": 13267, "task best": 32086, "models combined": 21064, "automated methods": 2869, "models outputs": 21786, "feedback utterances": 11074, "negatively correlated": 22665, "gained significant": 12065, "academia industry": 783, "fewshot generalization": 11104, "capabilities opensource": 4057, "llms finetuning": 18611, "realworld tasks": 27349, "tasks generating": 32347, "generating responses": 12442, "token classification": 33185, "tasks classification": 32262, "label space": 15952, "prior research": 25938, "llms outperform": 18834, "bert prompting": 3526, "latent representations": 17409, "representations llms": 28168, "adaptation llms": 1183, "llms aims": 18428, "llm finetuned": 18306, "representations final": 28160, "loss model": 19249, "minimize loss": 20196, "consistent improvements": 5739, "baselines like": 3268, "benchmarking llms": 3427, "recently showcased": 27622, "showcased remarkable": 29844, "domains clinical": 8613, "clinical medicine": 4661, "diverse user": 8471, "evaluating diverse": 9892, "aspects llms": 2577, "abilities study": 643, "textdavinci003 gpt35turbo": 32981, "gpt4 llama27b": 13093, "llama27b llama213b": 18206, "bypass safety": 3948, "openly accessible": 23473, "games large": 12080, "llms effective": 18551, "incorrect outputs": 14586, "underscores need": 34181, "need development": 22623, "intelligent agents": 15364, "agents capable": 1567, "capability requires": 4102, "requires complex": 28249, "state tracking": 30911, "tracking reasoning": 33328, "paper offer": 24081, "models systematically": 22039, "evaluate various": 9869, "significant differences": 29978, "differences performance": 8040, "model finally": 20521, "enhance reasoning": 9528, "vicuna models": 35254, "lead significant": 17470, "improvement hope": 14340, "offers insights": 23310, "autonomous agents": 2930, "september 2023": 29587, "generating validating": 12447, "measuring consistency": 19743, "lms propose": 19105, "propose finetune": 26513, "math questions": 19671, "qa instruction": 26910, "llms fall": 18601, "domain experts": 8562, "intricate nature": 15484, "issues introduce": 15668, "domain instruction": 8568, "based multiagent": 3198, "multiagent collaboration": 22266, "additionally construct": 1277, "higher level": 13598, "tasks gains": 32344, "intelligence capabilities": 15354, "soon available": 30523, "models represent": 21928, "llms sparked": 18961, "systems just": 31903, "reflect real": 27792, "real world": 27313, "learned representations": 17522, "llama2 family": 18176, "models discover": 21159, "discover llms": 8267, "llms learn": 18749, "linear representations": 17996, "multiple scales": 22417, "representations robust": 28174, "robust prompting": 28939, "entity types": 9655, "spatial temporal": 30642, "decoderonly language": 7255, "models standard": 22009, "scale poorly": 29147, "propose solution": 26568, "solution based": 30470, "method models": 19947, "offtheshelf models": 23330, "experiments language": 10454, "modeling question": 20905, "drastically reducing": 8722, "terms time": 32751, "compression ratio": 5425, "achieving nearly": 1097, "costs large": 6269, "llms exploded": 18589, "exploded popularity": 10553, "prior stateoftheart": 25939, "technologies increasingly": 32677, "domains law": 8627, "finance medicine": 11214, "medicine models": 19774, "llms despite": 18532, "despite large": 7793, "models called": 21037, "llms increasing": 18710, "deployment various": 7660, "paper experiments": 24044, "conducted study": 5640, "inference llms": 14790, "benchmark conduct": 3363, "conduct preliminary": 5615, "inference performance": 14796, "llama recent": 18140, "recent stateoftheart": 27550, "stateoftheart llm": 30944, "llm developed": 18288, "developed meta": 7929, "meta ai": 19857, "gpus nvidia": 13179, "datasets alpaca": 7063, "research practice": 28344, "present results": 25551, "multigpu inference": 22282, "inference using": 14822, "study llm": 31358, "implicit representations": 14177, "representations knowledge": 28161, "remains open": 28005, "models contain": 21102, "contain various": 5830, "responsible encoding": 28522, "knowledge model": 15881, "knowledge models": 15882, "models minimizing": 21725, "adverse effects": 1525, "original language": 23710, "demonstrate method": 7473, "code debugging": 4745, "solving problem": 30515, "solution directly": 30474, "conversational agents": 6093, "human instruction": 13825, "evaluation paper": 9984, "manually created": 19565, "zeroshot chain": 35960, "chain thought": 4290, "thought prompting": 33081, "gpt4 code": 13066, "code datasets": 4744, "freely available": 11916, "models good": 21322, "success wide": 31529, "spectrum tasks": 30774, "tasks face": 32327, "face limitations": 10824, "spatial reasoning": 30640, "benchmark termed": 3417, "benchmark evaluates": 3384, "evaluates llms": 9888, "path planning": 24398, "planning tasks": 25003, "constraints leveraging": 5791, "systematically investigate": 31882, "investigate llms": 15587, "gpt4 different": 13072, "finetuning experimental": 11400, "results promise": 28658, "fewshot gpt4": 11106, "reason act": 27355, "model calls": 20407, "solve complex": 30489, "unfortunately existing": 34313, "prompt templates": 26349, "systematic approach": 31867, "approach developing": 2260, "computational graphs": 5468, "prompting finetuning": 26373, "reasoning techniques": 27459, "conduct case": 5585, "studies showing": 31282, "retrieval answer": 28731, "answer complex": 2041, "outperform standard": 23786, "small lms": 30353, "lms like": 19096, "competitive approaches": 5219, "proprietary gpt35": 26636, "opportunities challenges": 23581, "despite rapid": 7805, "rapid advancements": 27246, "advancements artificial": 1460, "recently emergence": 27596, "rapid adoption": 27238, "advanced large": 1425, "study investigating": 31349, "ai genai": 1609, "gap researchers": 12109, "researchers practitioners": 28379, "bridging gap": 3874, "unprecedented capabilities": 34419, "capabilities generate": 4020, "content based": 5852, "based learning": 3190, "questions future": 27110, "study delves": 31313, "perception using": 24465, "implementation framework": 14162, "framework provides": 11892, "subsequent research": 31446, "llm prompting": 18354, "prompting prompt": 26392, "llms poorly": 18854, "class discrete": 4583, "dynamical systems": 8765, "explore prompt": 10598, "theory investigate": 33059, "output token": 23883, "control input": 6052, "llm output": 18342, "parameter matrices": 24189, "matrices present": 19691, "short prompt": 29814, "prompt sequences": 26343, "analysis llms": 1939, "llms demonstrates": 18529, "input sequences": 15029, "enhancing language": 9561, "attention head": 2718, "single attention": 30198, "overall model": 23908, "model calibration": 20405, "component language": 5309, "components results": 5317, "task interactive": 32143, "pretrained largescale": 25702, "abilities realworld": 637, "realworld knowledge": 27341, "llm capabilities": 18279, "capabilities english": 4013, "increasingly vital": 14650, "datasets work": 7191, "multitask language": 22449, "understanding benchmark": 34211, "empirical evaluations": 9222, "models bloomz": 21033, "falcon perform": 10941, "joint entity": 15712, "extraction process": 10772, "entity pairs": 9647, "using single": 34911, "focus problem": 11655, "problem training": 26016, "entity mentions": 9646, "corresponding entity": 6226, "knowledge base": 15816, "key challenge": 15755, "effectiveness supervised": 8968, "supervised learning": 31682, "learning applications": 17535, "applications existing": 2152, "research primarily": 28346, "limiting effectiveness": 17977, "learning framework": 17571, "includes new": 14452, "experiments datasets": 10430, "extraction performance": 10771, "benchmarking large": 3423, "models augmented": 20995, "task natural": 32164, "need adapt": 22618, "dataset tailored": 7044, "llms employing": 18559, "output formats": 23867, "extensive evaluations": 10687, "t5 flant5": 31946, "generalizing unseen": 12238, "chatgpt exhibits": 4467, "performance solely": 24758, "techniques work": 32672, "work paves": 35744, "utilization llms": 34957, "llms information": 18720, "emerged pivotal": 9161, "solutions data": 30484, "data imbalance": 6730, "topic models": 33286, "data level": 6756, "data poses": 6799, "poses unique": 25176, "unique challenges": 34356, "hierarchical structure": 13544, "efficacy generated": 8987, "data demonstrating": 6674, "effectively address": 8909, "address aforementioned": 1307, "generate high": 12282, "scientific text": 29259, "help model": 13510, "embeddings improve": 9141, "finetuning improved": 11417, "embedding vectors": 9134, "finetuning llama27b": 11445, "llama27b using": 18211, "using alpaca": 34731, "using noisy": 34860, "datasets models": 7149, "10 improvement": 28, "models application": 20982, "application machine": 2135, "increasingly common": 14633, "predictive power": 25454, "spatial information": 30638, "key indicators": 15771, "method effectively": 19908, "performance measured": 24673, "use information": 34537, "information directly": 14861, "directly prompt": 8241, "observe gpt35": 23228, "gpt35 outperforms": 13031, "outperforms llama": 23829, "dataset experiments": 6987, "reveal llms": 28803, "llms remarkably": 18909, "limitations existing": 17919, "remarkable capabilities": 28031, "domains including": 8621, "achieve similar": 984, "similar better": 30098, "present comprehensive": 25520, "llama gpt": 18109, "retrievalaugmented generation": 28761, "techniques combine": 32630, "retrieval generation": 28741, "generation capabilities": 12466, "capabilities prompting": 4064, "strategies improve": 31107, "improve llms": 14274, "performance demonstrate": 24565, "analysis highlights": 1925, "gpt4s ability": 13133, "ability achieve": 652, "passing score": 24385, "generalpurpose models": 12256, "accuracy experiments": 878, "experiments gpt4": 10447, "compared human": 5140, "performance suggests": 24773, "explore models": 10593, "capacity address": 4125, "address general": 1328, "contribute meaningfully": 6030, "continual learning": 5974, "models aligned": 20972, "demonstrate exceptional": 7454, "ensuring safety": 9612, "aligned llms": 1740, "overlooked existing": 23947, "learning benchmarks": 17545, "lack sufficient": 16003, "models potential": 21826, "tuning paper": 34001, "novel benchmark": 23064, "benchmark designed": 3378, "designed evaluate": 7731, "consists distinct": 5763, "distinct datasets": 8364, "capabilities code": 4005, "unified format": 34327, "llms experiments": 18588, "exhibit significant": 10227, "general ability": 12156, "example accuracy": 10109, "llama2chat 13b": 18216, "challenge finding": 4313, "finding suitable": 11227, "achieving performance": 1099, "preserving original": 25611, "prowess llms": 26791, "llms empirical": 18557, "empirical findings": 9226, "tasks inherently": 32373, "motivated introduce": 22228, "effectively reducing": 8930, "sparse finetuning": 30612, "acceleration large": 804, "models consider": 21095, "llms specialized": 18962, "specialized tasks": 30676, "especially high": 9737, "detailed study": 7842, "enables accurate": 9293, "model types": 20846, "sparse llms": 30616, "cpu gpu": 6336, "standard approach": 30868, "reducing memory": 27754, "accuracy t5": 913, "language translation": 16837, "speech translation": 30790, "generation time": 12622, "accuracy drops": 872, "gpu inference": 13171, "compatible quantization": 5205, "instructiontuning llms": 15307, "paper makes": 24080, "indepth empirical": 14676, "systematically explore": 31881, "explore impact": 10586, "impact llm": 14130, "parameterefficient methods": 24213, "methods instruction": 20051, "conduct experiment": 5601, "open chinese": 23389, "paper release": 24129, "release powerful": 27917, "llms comparable": 18474, "opensource alternatives": 23485, "performance address": 24519, "metric performance": 20123, "optimal model": 23614, "task considering": 32099, "performance cost": 24559, "source models": 30568, "models varying": 22111, "varying sizes": 35179, "sizes 7b": 30293, "small memory": 30357, "memory footprints": 19816, "vicuna benchmark": 35247, "leverage llms": 17757, "compromising performance": 5441, "reducing costs": 27745, "democratizing access": 7427, "models zeroshot": 22143, "time series": 33141, "series forecasting": 29638, "nexttoken prediction": 22894, "series models": 29641, "trained downstream": 33394, "performance propose": 24723, "distributions tokens": 8403, "success llms": 31518, "llms time": 19004, "naturally represent": 22586, "salient features": 29061, "textual information": 33030, "information answer": 14855, "questions help": 27113, "explain predictions": 10524, "size generally": 30250, "generally improves": 12242, "performance time": 24785, "uncertainty calibration": 34116, "result alignment": 28539, "text entry": 32853, "process making": 26073, "effective efficient": 8867, "deep learningbased": 7334, "collection model": 4931, "learning capability": 17548, "capability large": 4093, "models gpt35": 21329, "unique feature": 34360, "feature allows": 11021, "various text": 35153, "prompting gpt35": 26375, "gpt35 model": 13030, "models specialize": 21996, "specific text": 30720, "expertise prompt": 10514, "address introduce": 1330, "agent designed": 1559, "complex prompts": 5284, "meet specific": 19781, "specific needs": 30708, "conducted user": 5641, "study involving": 31350, "prompts results": 26439, "increase similarity": 14605, "assessing capabilities": 2610, "capabilities human": 4024, "structure llms": 31214, "paper based": 24017, "meticulously annotated": 20114, "human test": 13869, "test dataset": 32764, "dataset based": 6942, "structures llms": 31231, "llms gain": 18625, "cognitive capabilities": 4878, "emphasizes significance": 9214, "investigating llms": 15610, "patterns llms": 24412, "llms shedding": 18934, "researchers advance": 28371, "development utilization": 7977, "finegrained evaluation": 11272, "capability language": 4091, "llm gpt4": 18318, "longform responses": 19207, "using proprietary": 34888, "closedsource nature": 4690, "costs work": 6277, "language feedback": 16076, "generated gpt4": 12362, "gpt4 using": 13126, "llm assess": 18271, "assess given": 2594, "provided user": 26743, "human evaluators": 13812, "par gpt4": 24152, "greatly outperforms": 13274, "compared opensourced": 5156, "reward models": 28861, "models explicitly": 21238, "explicitly trained": 10551, "preference datasets": 25468, "highlighting potential": 13647, "model opensource": 20664, "code dataset": 4742, "models materials": 21704, "materials science": 19665, "data curation": 6666, "model targeted": 20824, "helps alleviate": 13523, "available open": 2992, "billionparameter language": 3724, "model specialized": 20804, "data prompting": 6811, "available large": 2985, "models generation": 21314, "construct dataset": 5795, "dataset multiple": 7014, "measure quality": 19736, "quality dataset": 26950, "multiple dimensions": 22386, "dimensions including": 8200, "iteratively generate": 15690, "progressively better": 26234, "existing language": 10281, "evaluation analyze": 9919, "studies understand": 31290, "limitations code": 17916, "code relevant": 4808, "datasets publicly": 7165, "applied question": 2196, "answering text": 2078, "rank set": 27225, "set candidate": 29674, "different predictions": 8122, "model decoding": 20454, "decoding approach": 7271, "language sentences": 16821, "develop computational": 7912, "applied large": 2191, "reasoning mathematical": 27421, "mathematical problemsolving": 19681, "benchmarks observe": 3465, "highlight promise": 13636, "fundamental challenges": 11973, "tuning human": 33981, "understanding human": 34230, "research proposes": 28349, "learning methodology": 17603, "nature human": 22589, "key steps": 15785, "synthetic instruction": 31857, "pipeline designed": 24966, "instruction specifically": 15178, "generation framework": 12507, "taxonomy classic": 32576, "questions presented": 27126, "utilizing information": 34972, "yields significant": 35927, "performance enhancements": 24582, "enhancements compared": 9544, "approach consistently": 2252, "benchmarks hope": 3445, "similarity human": 30129, "learning rank": 17639, "dataset recent": 7030, "recent pretrained": 27540, "limited range": 17960, "alleviate issue": 1789, "lack supervision": 16004, "unsupervised approaches": 34454, "instead propose": 15124, "synthetic context": 31847, "context retrieval": 5915, "retrieval training": 28757, "llm using": 18378, "based bert": 3138, "ner task": 22680, "models sensitivity": 21963, "spurious features": 30836, "features prompt": 11037, "llms adopted": 18427, "fundamental component": 11976, "crucial accurately": 6437, "choices prompt": 4557, "influence model": 14838, "effectively using": 8934, "modern pretrained": 22169, "work focus": 35711, "llms extremely": 18597, "accuracy points": 901, "using llama213b": 34822, "tuning analysis": 33966, "evaluating llms": 9905, "performance single": 24754, "fixed prompt": 11579, "prompt format": 26325, "systematic analysis": 31866, "analysis propose": 1950, "accessing model": 836, "furthermore present": 12008, "internal representation": 15440, "representation particular": 28148, "perform multiple": 24495, "answering mcqa": 2064, "datasets english": 7103, "literature recent": 18044, "high school": 13582, "studies mainly": 31275, "mainly focused": 19404, "aim create": 1639, "novel highquality": 23086, "physics chemistry": 24943, "used evaluate": 34598, "llms smaller": 18955, "context question": 5911, "wellknown llms": 35526, "proposed dataset": 26596, "shows promising": 29934, "research purposes": 28353, "models unlock": 22096, "crucial human": 6440, "human reasoning": 13860, "firstofitskind largescale": 11566, "pairs diverse": 23977, "set tests": 29709, "sentence embedding": 29532, "embedding models": 9131, "chatgpt llama": 4486, "llama chatgpt": 18084, "accuracy humans": 888, "humans furthermore": 13924, "furthermore observe": 12007, "performance zeroshot": 24818, "model transparency": 20843, "societal impact": 30438, "models growing": 21343, "help improve": 13506, "time introduce": 33129, "models spanning": 21995, "build foundation": 3910, "details model": 7846, "downstream use": 8702, "model developers": 20467, "model gpt4": 20559, "gpt4 openai": 13101, "llama meta": 18124, "number users": 23173, "stateoftheart large": 30939, "testing llms": 32806, "llms diverse": 18544, "diverse sizes": 8463, "finetuning evaluation": 11399, "deployment llms": 7655, "using recent": 34899, "stateoftheart techniques": 30997, "tuning using": 34019, "llama using": 18149, "align model": 1734, "behaviors human": 3327, "instructiontuned model": 15298, "responses paper": 28503, "instructiontuned llm": 15295, "ranking approaches": 27230, "teacher llm": 32582, "allows model": 1814, "using contextual": 34759, "contextual understanding": 5955, "stronger llms": 31198, "llms furthermore": 18622, "furthermore apply": 11987, "super natural": 31637, "natural instructions": 22506, "test tasks": 32791, "obtain better": 23247, "baselines code": 3263, "teaching language": 32591, "models selfimprove": 21960, "significant recent": 30018, "learn smaller": 17513, "ability approach": 656, "approach improve": 2296, "performance math": 24672, "contrast prior": 6015, "collect feedback": 4916, "model experiments": 20501, "mt5 shown": 22257, "face difficulties": 10823, "particularly lowresource": 24350, "effective crosslingual": 8863, "address limitations": 1343, "limitations present": 17930, "present new": 25541, "new powerful": 22832, "universal dependencies": 34371, "able learn": 747, "syntactic tree": 31827, "method consistently": 19892, "different language": 8087, "performance advantage": 24520, "holds true": 13742, "distribution shifts": 8397, "test datasets": 32765, "generalization capacity": 12210, "model especially": 20493, "especially important": 9738, "wide adoption": 35545, "adoption pretrained": 1413, "pretrained foundational": 25646, "remains poorly": 28008, "learning tl": 17664, "present case": 25517, "pretrained foundation": 25644, "models encode": 21198, "different representations": 8132, "labeled training": 15958, "model interpretation": 20592, "generating instructiontuning": 12432, "instructiontuning data": 15302, "using incontext": 34796, "generation techniques": 12619, "techniques selfinstruct": 32663, "wang et": 35415, "limitation approaches": 17910, "models 175b": 20924, "application techniques": 2138, "models smaller": 21989, "permissive licenses": 24864, "approach effective": 2265, "lm outputs": 19058, "select highquality": 29378, "highquality synthetic": 13700, "algorithm leverages": 1709, "empirical investigations": 9229, "method yields": 19986, "higherquality instruction": 13617, "improves performances": 14390, "significant margins": 29995, "lms generate": 19086, "generate useful": 12337, "models biased": 21027, "gpt4 various": 13127, "prompting technique": 26397, "used llms": 34609, "furthermore work": 12016, "insights potential": 15081, "biases induced": 3674, "spatial understanding": 30643, "understanding large": 34239, "llms remarkable": 18908, "capabilities variety": 4079, "text training": 32957, "navigation tasks": 22597, "llms particular": 18844, "represent reason": 28134, "reason spatial": 27358, "aspects spatial": 2580, "tuned large": 33960, "demonstrate remarkable": 7488, "despite numerous": 7797, "performance instructiontuned": 24633, "remains lack": 27998, "lack comprehensive": 15979, "comprehensive investigation": 5382, "gap present": 12102, "benchmark specifically": 3411, "covering 13": 6323, "primary categories": 25917, "language detection": 16062, "emotion recognition": 9202, "12 language": 91, "writing scripts": 35856, "various multilingual": 35122, "finetuning zeroshot": 11557, "learning comprehensive": 17554, "comprehensive analysis": 5353, "reveals existing": 28815, "opensource instruction": 23504, "tuned llms": 33961, "llms struggle": 18972, "struggle understand": 31246, "close random": 4673, "baseline cases": 3243, "chatgpt outperforms": 4492, "benchmark available": 3356, "content using": 5875, "data paper": 6791, "powerful pretrained": 25351, "information target": 14916, "content information": 5863, "information input": 14873, "sentence respectively": 29542, "respectively compared": 28456, "embeddings used": 9148, "used previous": 34618, "richer information": 28877, "furthermore adopt": 11985, "provides effective": 26750, "model construct": 20441, "informative prefixes": 14933, "performance evaluations": 24586, "subjective evaluations": 31425, "benchmark evaluating": 3385, "modeling evaluation": 20892, "current landscape": 6496, "llama mistral": 18126, "benchmarks focus": 3442, "fundamental linguistic": 11979, "paper advocate": 24007, "valuable tool": 35020, "findings shed": 11253, "word representations": 35647, "representations learning": 28167, "learning mechanisms": 17600, "new opportunities": 22827, "approach provide": 2329, "pretraining complex": 25788, "understand reason": 34201, "require reasoning": 28224, "temporal dependencies": 32695, "make use": 19487, "graph structure": 13230, "relations sentences": 27870, "t5 multiple": 31958, "various settings": 35143, "settings analysis": 29730, "code pretrained": 4796, "data learning": 6755, "open information": 23395, "involves extracting": 15629, "techniques offer": 32653, "offer unique": 23294, "original sentence": 23720, "require significant": 28225, "task form": 32127, "model reducing": 20747, "extensive training": 10715, "data furthermore": 6719, "introduce innovative": 15510, "reducing training": 27759, "time experimental": 33123, "previous sota": 25878, "sota methods": 30534, "comparable results": 5089, "design automated": 7697, "task automatic": 32082, "realworld dataset": 27337, "discourse structure": 8265, "extensive automatic": 10679, "automatic human": 2884, "human experiments": 13814, "framework outperforms": 11886, "target audience": 32046, "producing coherent": 26165, "improves large": 14380, "evaluation generation": 9956, "llms frequently": 18621, "multiple aspects": 22378, "lack coherence": 15978, "challenging natural": 4388, "base llm": 3121, "task multiple": 32162, "tasks llm": 32407, "llm response": 18362, "generation evaluate": 12493, "correctness consistency": 6207, "outperform gpt4": 23775, "constraint satisfaction": 5786, "retrieval augmented": 28733, "augmented large": 2819, "cost reduction": 6253, "commercial large": 4984, "ability generating": 677, "retrieval augmentation": 28732, "retrievalaugmented llms": 28764, "input token": 15034, "size llms": 30261, "llms mitigate": 18801, "mitigate propose": 20258, "finetuned datasets": 11306, "datasets generated": 7121, "varying lengths": 35175, "size removing": 30280, "adequately evaluate": 1383, "effectiveness proposed": 8964, "methods propose": 20080, "propose utilize": 26585, "dataset called": 6945, "improvement accuracy": 14325, "provides flexible": 26753, "size performance": 30270, "factual recall": 10889, "memorized pretraining": 19798, "pretraining new": 25826, "new information": 22808, "using counterfactual": 34761, "data method": 6766, "method increase": 19934, "increase rate": 14604, "rate generating": 27266, "simply scaling": 30183, "work contributes": 35683, "body evidence": 3804, "proof concept": 26460, "control model": 6054, "excellent generalization": 10161, "abilities pretrained": 636, "direct training": 8218, "data making": 6765, "making better": 19498, "better foundation": 3604, "transfer knowledge": 33674, "source domain": 30557, "domain target": 8596, "fail account": 10899, "root cause": 28970, "source data": 30556, "data distribution": 6679, "domains study": 8641, "study proposes": 31383, "plms finetuning": 25046, "model feature": 20517, "feature extractor": 11024, "adversarial loss": 1516, "loss designed": 19243, "designed improve": 7734, "representation learning": 28141, "training compared": 33454, "extracted features": 10749, "processing computer": 26099, "vision downstream": 35293, "existing instructiontuning": 10279, "instructiontuning datasets": 15304, "datasets suffer": 7176, "helpful responses": 13517, "specific fields": 30694, "question ensure": 27067, "ensure comprehensive": 9602, "comprehensive coverage": 5362, "balanced distribution": 3084, "set covering": 29680, "realworld questions": 27343, "finetune llama": 11288, "gpt4 human": 13084, "win rate": 35610, "performance generative": 24617, "generative modeling": 12675, "tasks diffusion": 32298, "diffusion models": 8184, "models rely": 21924, "work bridge": 35672, "gap proposing": 12107, "integrates seamlessly": 15329, "significantly boosts": 30040, "boosts performance": 3829, "test score": 32783, "language diffusion": 16064, "generates faithful": 12400, "techniques like": 32647, "temperature scaling": 32687, "enables controllable": 9295, "left right": 17692, "pretraining architectures": 25785, "encompass various": 9386, "including autoencoding": 14456, "autoencoding models": 2847, "model long": 20630, "vector quantization": 35195, "seamlessly integrates": 29305, "point cloud": 25063, "model versatile": 20860, "tasks leading": 32395, "leading improved": 17475, "highly competitive": 13660, "results unconditional": 28700, "achieves superior": 1076, "different downstream": 8073, "tasks boost": 32255, "lms generation": 19088, "coherent contextually": 4891, "contextually relevant": 5970, "generated outputs": 12377, "outputs lack": 23892, "finetuning entire": 11396, "specifically construct": 30732, "benchmarks human": 3447, "consistently leads": 5753, "outputs language": 23893, "general mechanism": 12178, "sufficiently large": 31564, "llama families": 18099, "using causal": 34748, "causal interventions": 4239, "id vectors": 13982, "vectors corresponding": 35198, "symbolic knowledge": 31801, "knowledge incontext": 15864, "providing step": 26783, "step understanding": 31050, "understanding general": 34223, "generalpurpose ai": 12246, "llm evaluations": 18298, "ability ai": 655, "ai agent": 1594, "plays important": 25028, "role human": 28957, "2023 work": 237, "asks llm": 2561, "llm produce": 18352, "produce text": 26155, "skills number": 30314, "high probability": 13578, "text significantly": 32939, "different text": 8150, "paper develops": 24035, "llama2 70b": 18160, "70b model": 505, "version popular": 35233, "popular llm": 25122, "llm leaderboards": 18332, "reasonable performance": 27360, "ecosystem open": 8816, "future models": 12039, "challenging existing": 4384, "benchmarks metrics": 3462, "address problem": 1349, "llms efficiently": 18554, "benchmarks propose": 3468, "propose comprehensive": 26500, "scales 7b": 29151, "7b 13b": 525, "13b 33b": 120, "parameters conduct": 24233, "conduct systematic": 5623, "capabilities behaviors": 4003, "analyze key": 1996, "finetuning llm": 11447, "position bias": 25181, "techniques including": 32645, "obtains stateoftheart": 23263, "proposed new": 26615, "a100 gpus": 618, "high agreement": 13550, "answer multimodal": 2047, "multiturn chat": 22461, "targeted data": 32064, "models rapid": 21892, "rapid advancement": 27239, "advancement large": 1454, "data synthesis": 6886, "synthetic datasets": 31855, "datasets synthetic": 7178, "suffer lack": 31551, "lack diversity": 15983, "datasets utilizing": 7188, "various language": 35105, "encoderonly encoderdecoder": 9376, "encoderdecoder decoderonly": 9365, "decoderonly models": 7263, "original training": 23723, "data vs": 6910, "dataset compared": 6952, "dataset demonstrates": 6971, "complexity diversity": 5301, "yields impressive": 35923, "human efforts": 13804, "benchmarks large": 3452, "representative models": 28185, "including open": 14509, "specifically consider": 30731, "feasibility using": 11017, "llms estimate": 18569, "public opinion": 26841, "introduction new": 15555, "survey existing": 31773, "practical implementation": 25366, "potential risks": 25296, "retrieval knowledge": 28743, "graph construction": 13219, "entities texts": 9641, "face challenges": 10822, "challenges like": 4357, "manual effort": 19557, "poor generalization": 25103, "pressing need": 25617, "efficiently extract": 9071, "study explores": 31331, "potential pretrained": 25289, "articles using": 2525, "prompts propose": 26435, "strategy called": 31116, "prompts based": 26405, "construct datasets": 5796, "prompts test": 26444, "llms experimental": 18586, "llms significant": 18947, "furthermore analyze": 11986, "factors influence": 10872, "influence performance": 14839, "llms know": 18733, "method large": 19937, "reveals llms": 28816, "method detect": 19900, "questions llm": 27121, "llm does": 18292, "prone generate": 26453, "corresponding answers": 6225, "generated answers": 12342, "questions model": 27124, "released llms": 27925, "prompts tasks": 26443, "tasks remains": 32480, "task context": 32100, "context representation": 5913, "improving llms": 14413, "evaluate efficacy": 9834, "efficacy approach": 8986, "finetuning based": 11376, "opensource llama2": 23516, "models web": 22125, "tasks additionally": 32235, "performance prior": 24721, "stepbystep instructions": 31054, "web agents": 35472, "despite immense": 7786, "immense promise": 14116, "promise performing": 26277, "tasks theoretical": 32531, "understanding limitations": 34245, "study generalization": 31334, "unseen datasets": 34435, "datasets recent": 7167, "work shown": 35779, "randomly initialized": 27181, "closed form": 4676, "form results": 11741, "experimental evidence": 10386, "evidence corroborates": 10060, "makes approach": 19489, "motivating need": 22232, "current work": 6539, "logistic regression": 19160, "certain cases": 4272, "shown superior": 29918, "theoretical grounding": 33050, "framework suggests": 11896, "performance classification": 24543, "using conventional": 34760, "used improve": 34605, "regression tasks": 27823, "evaluation question": 9998, "numerous applications": 23182, "model aid": 20360, "model prompt": 20731, "research finetuned": 28316, "finetuned pretrained": 11351, "distilbert model": 8331, "training transformer": 33640, "applied generate": 2189, "using llama": 34820, "questions squad": 27133, "squad dataset": 30842, "effectiveness different": 8942, "achieved high": 1008, "exhibit impressive": 10221, "impressive reasoning": 14246, "reasoning data": 27400, "tasks small": 32508, "surpassing models": 31757, "models 100b": 20918, "augmentation ability": 2796, "nlp datasets": 22929, "student models": 31256, "brought significant": 3895, "structure transformer": 31216, "lack explicit": 15989, "syntactic generalization": 31816, "selfattention layer": 29408, "syntactic language": 31819, "new tokens": 22859, "replacement standard": 28102, "tasks building": 32256, "summarization systems": 31624, "practical perspective": 25368, "perspective paper": 24897, "paper studies": 24136, "effectively build": 8913, "realworld usage": 27350, "gpt 35": 12842, "closedsource llms": 4687, "generally better": 12241, "terms performance": 32748, "smaller opensource": 30392, "llama 7b": 18066, "13b achieve": 123, "comparable large": 5080, "associated using": 2653, "finetuned versions": 11363, "achieve competitive": 954, "balancing performance": 3087, "llama27b model": 18209, "paper offers": 24082, "practical insights": 25367, "insights using": 15084, "processing task": 26125, "tackle task": 32002, "llms solve": 18959, "using diverse": 34769, "range llms": 27197, "gpt4 opt": 13105, "experiments encompass": 10439, "learning settings": 17654, "settings evaluate": 29732, "critical challenge": 6383, "human value": 13874, "frequently overlooked": 11928, "online platforms": 23367, "leverage user": 17762, "online sources": 23370, "google play": 12829, "end users": 9422, "users using": 34704, "theory approach": 33057, "major categories": 19438, "human values": 13875, "stateoftheart pretrained": 30977, "depending data": 7620, "performed best": 24827, "recommendations used": 27653, "software developers": 30453, "evolving needs": 10082, "metrics measuring": 20143, "optimize quantization": 23643, "quantization large": 27004, "raised concerns": 27165, "deployment need": 7657, "need llm": 22636, "study introduces": 31344, "compressed llms": 5405, "deeper insights": 7348, "llama2 model": 18186, "model family": 20515, "evaluations indicate": 10031, "analysis method": 1940, "aimed identifying": 1653, "related specific": 27856, "specific aspects": 30683, "framework successfully": 11895, "learning prompting": 17636, "prompting approach": 26372, "approach enhance": 2270, "enhance model": 9519, "application approach": 2126, "research aims": 28289, "models study": 22019, "model developed": 20466, "model utilizing": 20857, "extraction task": 10773, "aspect opinion": 2567, "aspect term": 2568, "model specifically": 20805, "learning train": 17665, "steering llms": 31029, "llms similar": 18952, "userspecified information": 34706, "method allows": 19876, "small subset": 30369, "model attention": 20379, "changing model": 4415, "user instructions": 34655, "instructions integrate": 15255, "new knowledge": 22810, "user inputs": 34654, "inputs leading": 15049, "improvement variety": 14351, "tasks average": 32249, "improvement 22": 14324, "llama7b code": 18232, "finetuning code": 11381, "coding capabilities": 4866, "finetuning approaches": 11373, "approaches typically": 2399, "tailored specific": 32018, "specific downstream": 30691, "finetuning task": 11543, "requiring extensive": 28270, "posing challenges": 25178, "challenges terms": 4377, "deployment maintenance": 7656, "coderelated tasks": 4847, "overcome limitations": 23923, "tasks incorporating": 32372, "varying difficulty": 35172, "difficulty levels": 8177, "convergence speeds": 6086, "finetuning single": 11526, "efficient training": 9061, "capabilities including": 4025, "resulting significantly": 28561, "achieves impressive": 1049, "benchmark surpassing": 3415, "surpassing gpt4": 31755, "gpt4 performance": 13111, "make recommendations": 19481, "user satisfaction": 34671, "task detecting": 32110, "facilitate development": 10837, "manually annotate": 19562, "use evaluate": 34526, "rapidly growing": 27257, "innovative solution": 14998, "leverages opensource": 17771, "llms llama2": 18774, "ensure data": 9603, "augmented generation": 2815, "generation rag": 12587, "optimization dpo": 23624, "extensive experimentation": 10692, "comprising 10000": 5434, "qa pairs": 26913, "pairs preference": 23982, "preference data": 25467, "data demonstrate": 6671, "improvement quality": 14345, "quality answers": 26940, "contributions include": 6040, "development novel": 7965, "human assessments": 13795, "challenges future": 4346, "qa platform": 26914, "free lunch": 11910, "models retraining": 21942, "pretrained parameters": 25741, "versatile plugandplay": 35228, "models mitigating": 21730, "model parameter": 20687, "encoder decoderbased": 9347, "parameter value": 24204, "multiple taskspecific": 22424, "zeroshot accuracy": 35951, "performance merged": 24674, "llms proposed": 18877, "proposed recent": 26618, "opensource ones": 23538, "new records": 22838, "development llms": 7961, "continual pretraining": 5979, "forgetting issues": 11731, "llms important": 18684, "enlarging model": 9583, "model 13": 20332, "llama2 foundation": 18177, "different stages": 8142, "work language": 35730, "models little": 21463, "little understanding": 18053, "new models": 22825, "reflect differences": 27789, "differences model": 8037, "wild work": 35608, "models revealing": 21945, "revealing shared": 28811, "input perturbations": 15019, "designed target": 7745, "specific linguistic": 30702, "framework offers": 11885, "increase size": 14606, "size pretraining": 30279, "relatively better": 27885, "better understood": 3635, "gpt2 experiments": 12890, "experiments observe": 10464, "observe large": 23230, "encoded large": 9340, "key reason": 15784, "samples large": 29080, "increasingly trained": 14645, "finetuning datasets": 11386, "datasets data": 7089, "benchmark data": 3370, "data methods": 6767, "test data": 32763, "benchmark achieve": 3351, "used benchmarks": 34587, "used pretraining": 34617, "revealing significant": 28812, "previously unknown": 25903, "humaneval benchmark": 13897, "suggesting potential": 31584, "potential risk": 25295, "urge community": 34493, "approaches using": 2402, "community actively": 5057, "generation approach": 12458, "labelled data": 15964, "dataset extracted": 6989, "diversity metrics": 8480, "balance diversity": 3078, "diversity selected": 8483, "manual curation": 19556, "expected output": 10352, "different strategies": 8143, "evaluated performance": 9881, "open large": 23400, "addition evaluation": 1239, "evaluated models": 9880, "exhibited substantial": 10239, "noisy data": 22987, "data provide": 6816, "provide best": 26686, "model endtoend": 20488, "generated synthetic": 12390, "humanauthored text": 13888, "applicability large": 2120, "text remains": 32931, "remains unexplored": 28021, "unexplored study": 34303, "study addresses": 31295, "models conduct": 21088, "pubmed abstracts": 26874, "using different": 34767, "parameter sizes": 24199, "size grows": 30251, "outputs future": 23889, "enhancing model": 9568, "boosting large": 3820, "t0 flan": 31932, "exhibit remarkable": 10226, "remarkable generalization": 28042, "abilities unseen": 644, "sizes ranging": 30303, "ranging billion": 27219, "substantial computational": 31460, "resources making": 28439, "models downstream": 21172, "applications particularly": 2171, "approaches prompt": 2386, "potential address": 25236, "challenges introduce": 4352, "tasks serve": 32497, "boosting performance": 3825, "11 language": 72, "magnitude larger": 19383, "margin furthermore": 19585, "including finetuning": 14477, "finetuning incontext": 11418, "performance enhancement": 24581, "demonstrated superior": 7551, "understanding abilities": 34206, "abilities including": 626, "including zeroshot": 14530, "capabilities similar": 4069, "human ones": 13848, "ones study": 23349, "text conducted": 32834, "selfpaced reading": 29428, "significantly longer": 30067, "reading times": 27306, "humans easily": 13922, "tested variety": 32798, "extent models": 10723, "recent llms": 27531, "gpt3 vicuna": 13010, "correlate human": 6212, "fail predict": 10904, "knowledge code": 15824, "languages modalities": 16897, "resulting significant": 28560, "progress natural": 26218, "tasks consequently": 32275, "evaluation research": 9999, "english language": 9482, "relatively unexplored": 27896, "new llms": 22819, "languages study": 16915, "aims expand": 1663, "including new": 14506, "new datasets": 22791, "languages including": 16878, "evaluate stateoftheart": 9865, "gpt4 palm2": 13110, "additionally include": 1289, "multimodal datasets": 22341, "datasets benchmark": 7069, "benchmark assess": 3355, "tasks notably": 32432, "vice versa": 35244, "data contamination": 6659, "obtain accurate": 23246, "assessment llm": 2618, "languages using": 16920, "improve robustness": 14295, "robustness incontext": 28947, "inference recent": 14804, "studies demonstrated": 31265, "demonstrated large": 7532, "taskspecific prompts": 32568, "examples existing": 10123, "existing literature": 10288, "adversarial inputs": 1515, "enhanced performance": 9535, "performance observed": 24699, "explanations nles": 10542, "robustness llms": 28948, "datasets introduce": 7134, "prompting llm": 26386, "llm chatgpt": 18281, "evaluate popular": 9859, "llms gpt35turbo": 18653, "llama2 vicuna": 18196, "yields improvement": 35924, "improvement icl": 14341, "prompt selection": 26341, "shown significantly": 29916, "improve icl": 14269, "llms given": 18641, "labeled examples": 15956, "examples input": 10129, "llm learns": 18333, "learns perform": 17679, "models supervised": 22031, "represent underlying": 28136, "icl using": 13979, "using test": 34927, "test case": 32761, "understanding experiments": 34222, "based simple": 3223, "syntactic transformations": 31826, "requires accurate": 28246, "improved chainofthought": 14307, "model provided": 20735, "intermediate computation": 15425, "performed experiments": 24829, "gpt palm": 12861, "linguistic phenomenon": 18018, "pretraining corpus": 25790, "pretrained code": 25637, "greater extent": 13269, "languages recent": 16910, "proliferation large": 26258, "widely adopted": 35569, "present analysis": 25511, "analysis popular": 1947, "popular large": 25119, "llama gpt4": 18111, "news topic": 22889, "topic classification": 33282, "highresource languages": 13707, "like english": 17860, "tasks gpt4": 32351, "gpt4 average": 13057, "generative tasks": 12706, "stateoftheart supervised": 30994, "findings present": 11244, "languages represented": 16913, "growing popularity": 13317, "popularity large": 25142, "model temporal": 20826, "tasks reflecting": 32477, "gap limited": 12095, "contrary expectations": 6008, "does guarantee": 8527, "temporal information": 32697, "information sentence": 14912, "available pretraining": 2997, "tasks conclude": 32271, "llms lack": 18740, "llm outputs": 18343, "advances transformerbased": 1488, "transformerbased large": 33751, "models great": 21340, "great strides": 13259, "strides natural": 31148, "models nonautoregressive": 21756, "benchmarks work": 3477, "study scientific": 31394, "domains large": 8623, "incontext demonstrations": 14543, "learn new": 17511, "groundtruth labels": 13294, "labels address": 15967, "llms follow": 18618, "present different": 25525, "types factual": 34061, "prompts zeroshot": 26448, "sentence classification": 29528, "performance larger": 24650, "70b parameters": 506, "parameters limited": 24268, "alignment methods": 1772, "methods finally": 20038, "evaluation method": 9971, "models leading": 21438, "leading proprietary": 17483, "augmenting language": 2824, "model lm": 20629, "underlying reasons": 34162, "elusive work": 9117, "mlp layer": 20304, "advanced model": 1431, "information training": 14920, "gpt2 117m": 12867, "performance setting": 24749, "datasets provide": 7163, "support downstream": 31706, "grounded given": 13288, "knowledge introduce": 15867, "knowledge grounded": 15861, "model t5large": 20822, "novel challenges": 23066, "human experts": 13817, "educational domain": 8841, "samples prompt": 29086, "prompt inputs": 26330, "inputs exploring": 15048, "effective incontext": 8874, "sampling llm": 29092, "llm fewshot": 18304, "fewshot prompt": 11118, "set data": 29681, "data samples": 6845, "inside single": 15063, "single prompt": 30220, "design leverage": 7709, "multiple prompt": 22412, "improve llm": 14273, "prediction results": 25434, "icl prompt": 13978, "sota llms": 30533, "consistently enhance": 5748, "study suggests": 31400, "strategy improve": 31123, "sheds light": 29800, "light new": 17830, "new promising": 22834, "promising future": 26288, "political bias": 25094, "llms extensive": 18596, "llms learned": 18750, "offensive toxic": 23284, "language recent": 16816, "gpt language": 12849, "models recognize": 21912, "generated content": 12348, "algorithm allows": 1701, "generating harmful": 12426, "syntactic properties": 31822, "aim contribute": 1638, "ongoing effort": 23357, "humanai interaction": 13883, "multitask model": 22452, "handle multiple": 13410, "training commonly": 33452, "diverse contexts": 8417, "long sequences": 19178, "length usually": 17713, "computation efficient": 5447, "enable efficient": 9286, "using dynamic": 34770, "approach handle": 2292, "execution time": 10201, "enabling highly": 9322, "training extensive": 33519, "training t5": 33627, "training gpt": 33524, "augmented language": 2817, "models increasing": 21389, "models computation": 21081, "learning capacity": 17549, "style models": 31413, "approach dubbed": 2264, "large set": 17276, "play role": 25019, "t5 family": 31944, "tasks similar": 32505, "approaches require": 2391, "languages llms": 16892, "processes llms": 26092, "train new": 33370, "datasets metrics": 7147, "metrics used": 20150, "settings paper": 29741, "aforementioned challenges": 1552, "introduce multilingual": 15516, "languages propose": 16908, "llms new": 18817, "model performed": 20708, "highresource language": 13706, "performance instruction": 24632, "promising method": 26289, "method creating": 19896, "multilingual llms": 22318, "llms lowresource": 18787, "model adapters": 20356, "lora adapters": 19228, "task generalization": 32129, "generalization paper": 12225, "models arbitrary": 20987, "increasing compute": 14620, "requirements training": 28243, "inference results": 14806, "outperforms base": 23805, "individual models": 14717, "finetuned tasks": 11357, "tasks best": 32253, "inference code": 14764, "code study": 4818, "study available": 31304, "word representation": 35646, "representation integrates": 28140, "pretrained word": 25781, "drawing recent": 8728, "construct novel": 5804, "eliminates need": 9108, "need backpropagation": 22621, "leveraging contextual": 17780, "dimensionality reduction": 8198, "techniques based": 32629, "based unigram": 3236, "providing strong": 26784, "strong interpretability": 31176, "twostep process": 34050, "critically relies": 6400, "contextually rich": 5971, "representations word": 28179, "partofspeech pos": 24366, "assess competitiveness": 2590, "explore applicability": 10572, "lm training": 19063, "training finetuning": 33522, "experiments illustrate": 10448, "conventional training": 6080, "t5 opt": 31959, "enhancement transfer": 9542, "teaching small": 32594, "outperform conventional": 23770, "conventional instructiontuned": 6074, "models benchmarks": 21013, "improved training": 14319, "training signals": 33615, "capable models": 4113, "teach small": 32580, "strategies different": 31103, "potentially different": 25311, "provide direct": 26695, "direct answer": 8210, "teach model": 32579, "model various": 20859, "various reasoning": 35139, "aim help": 1644, "model learn": 20607, "task evaluate": 32114, "15 diverse": 141, "100 tasks": 41, "unique prompts": 34363, "significantly surpasses": 30088, "performance levels": 24655, "better models": 3612, "advanced reasoning": 1441, "abilities zeroshot": 649, "weights publicly": 35513, "support research": 31711, "evaluation alignment": 9917, "demonstrated exceptional": 7520, "designed specifically": 7744, "continual training": 5980, "model derived": 20460, "extensive data": 10681, "academic benchmarks": 785, "demonstrate ability": 7433, "ability general": 670, "abstract generation": 768, "highperformance computing": 13675, "computing large": 5514, "model exhibited": 20498, "efficacy various": 8994, "computing hpc": 5513, "interpret model": 15455, "model responses": 20755, "responses response": 28510, "response challenge": 28472, "challenge propose": 4327, "using generated": 34784, "generated qa": 12379, "qa questionanswer": 26915, "questionanswer instances": 27079, "hpc tasks": 13771, "demonstrate comparable": 7439, "experiments opensource": 10465, "extensive results": 10712, "bridge performance": 3869, "gap llms": 12096, "pave way": 24417, "way llms": 35443, "utilization language": 34953, "computing applications": 5512, "models model": 21735, "model merging": 20638, "models continually": 21106, "result significant": 28547, "overcome problem": 23924, "enables finetuned": 9299, "method conducted": 19891, "form model": 11740, "finetuned language": 11321, "pretrained base": 25628, "models domains": 21169, "despite simplicity": 7814, "surprisingly effective": 31767, "able achieve": 741, "strong empirical": 31169, "empirical performance": 9231, "domain conduct": 8557, "experiments llama": 10458, "results validate": 28704, "method code": 19888, "code checkpoints": 4725, "checkpoints available": 4522, "model inversion": 20594, "prompt tokens": 26350, "nexttoken probabilities": 22896, "surprising information": 31765, "preceding text": 25387, "prompts given": 26421, "model access": 20340, "llama2 7b": 18162, "code reproducing": 4813, "aims improve": 1668, "using prefix": 34877, "lora finetuning": 19231, "methods create": 20015, "qa data": 26907, "data based": 6621, "based prompt": 3211, "words given": 35657, "quickly obtain": 27136, "field provide": 11152, "provide data": 26692, "support finetuning": 31707, "training method": 33563, "tasks compared": 32269, "compared lora": 5148, "improves bleu": 14371, "bleu rouge": 3766, "rouge metrics": 28980, "compared model": 5149, "demonstrates effectiveness": 7557, "knowledge qa": 15895, "tasks provides": 32466, "provides new": 26759, "llms enhanced": 18565, "chat corpus": 4442, "corpus generation": 6183, "evaluation study": 10014, "introduces novel": 15544, "generator llm": 12717, "new samples": 22840, "quality assessment": 26941, "metric proposed": 20125, "sentence transformer": 29545, "translated english": 33814, "selfchat data": 29412, "processing techniques": 26130, "quality evaluation": 26957, "demonstrates significantly": 7570, "language comprehension": 16052, "resultant model": 28550, "establishes new": 9776, "substantial advancement": 31459, "special emphasis": 30656, "underrepresented languages": 34171, "learning assessment": 17541, "science requires": 29244, "solving programming": 30517, "developed using": 7935, "ai capability": 1601, "accuracy dramatically": 870, "academic integrity": 786, "achieving desired": 1090, "existing detection": 10269, "detection methods": 7871, "based similarity": 3222, "similarity metrics": 30131, "ai detection": 1606, "mixed success": 20271, "ai code": 1604, "need adapting": 22619, "models built": 21036, "built chatglm": 3931, "various ai": 35073, "social relationships": 30430, "outperforms mainstream": 23832, "large langauge": 16957, "langauge models": 16030, "including gpt": 14481, "especially terms": 9749, "subset training": 31453, "data facilitate": 6708, "dialogue generation": 8015, "falcon series": 10942, "open language": 23397, "180b parameters": 186, "trained diverse": 33393, "developed models": 7931, "cost making": 6248, "report detailed": 28113, "deep dive": 7317, "models permissive": 21812, "development open": 7966, "human cognition": 13800, "studies typically": 31289, "covers broad": 6331, "broad spectrum": 3887, "provides thorough": 26764, "experiments popular": 10466, "llama2 mistral": 18184, "indicate significant": 14695, "reasoning llms": 27420, "aviation domain": 3035, "llms demonstrating": 18531, "demonstrating exceptional": 7581, "domain resulting": 8591, "resulting low": 28555, "llms presents": 18863, "domain address": 8554, "built opensource": 3935, "continuously trained": 6002, "datasets experimental": 7110, "offers users": 23316, "users multiple": 34695, "provides accurate": 26747, "accurate contextually": 921, "research problems": 28348, "enhance efficiency": 9512, "llms crosslingual": 18499, "model input": 20584, "input layer": 15015, "language tokens": 16835, "different writing": 8160, "writing systems": 35860, "token represent": 33200, "effect pretraining": 8855, "multimodal language": 22349, "autonomous vehicles": 2932, "navigating complex": 22595, "complex realworld": 5288, "humanlike understanding": 13912, "novel visionlanguage": 23124, "visionlanguage model": 35313, "humanlike abilities": 13907, "multimodal inputs": 22346, "video image": 35265, "data text": 6892, "control signals": 6055, "provided instructions": 26740, "pretrained visionlanguage": 25777, "capabilities innovative": 4027, "dataset designed": 6973, "understanding intricate": 34236, "driving scenarios": 8738, "ability provide": 718, "comprehensive understanding": 5395, "understanding complex": 34216, "despite remarkable": 7809, "remarkable achievements": 28027, "linguistic bias": 18005, "regional languages": 27820, "series language": 29639, "specifically focuses": 30743, "sea languages": 29301, "built llama2": 3934, "model advanced": 20359, "continued pretraining": 5990, "better capture": 3596, "evaluation demonstrates": 9940, "large margins": 17230, "advancements generative": 1463, "showcasing effectiveness": 29848, "utilizing pretrained": 34976, "diverse applications": 8411, "applications despite": 2148, "despite potential": 7801, "capabilities lack": 4028, "lack adequate": 15975, "comprehensive benchmarks": 5358, "benchmarks particularly": 3467, "generalization performance": 12226, "performance multiple": 24683, "gaps introduce": 12117, "tailored evaluating": 32016, "study explore": 31330, "understanding instruction": 34234, "finetuning toxicity": 11549, "bias evaluation": 3644, "highquality humanannotated": 13689, "humanannotated datasets": 13885, "datasets instruction": 7133, "dataset covering": 6964, "cultures idioms": 6463, "classification question": 4606, "evaluations proposed": 10038, "proposed benchmark": 26595, "advancing language": 1493, "novel finetuning": 23080, "finetuning technique": 11545, "models involves": 21408, "method aims": 19875, "aims enhance": 1662, "enhance models": 9521, "demonstrating superior": 7590, "techniques yield": 32673, "improvement stateoftheart": 14347, "stateoftheart method": 30953, "models stronger": 22014, "stronger baseline": 31197, "baseline instruction": 3249, "current literature": 6509, "literature including": 18042, "research application": 28290, "strategies finetuning": 31106, "models approach": 20985, "significant step": 30026, "step direction": 31041, "improvement existing": 14338, "impact tokenization": 14139, "reason lies": 27357, "data hinders": 6727, "limiting potential": 17978, "investigate possibility": 15592, "addressing issue": 1374, "russian language": 29021, "language adaptation": 16035, "improves models": 14386, "models quality": 21880, "models demonstrates": 21138, "generate answers": 12263, "higher user": 13613, "user preference": 34663, "comprehensive survey": 5393, "survey large": 31774, "llms mainly": 18790, "textbased reasoning": 32975, "ability generalized": 673, "systematic review": 31874, "textattributed graphs": 32970, "utilizing llms": 34975, "encoder llm": 9351, "advantages disadvantages": 1504, "furthermore discuss": 11996, "applications methods": 2168, "datasets finally": 7116, "models additional": 20959, "training additional": 33438, "training explore": 33518, "llm key": 18326, "key findings": 15769, "effective knowledge": 8878, "knowledge integration": 15866, "models 7b": 20928, "13b 70b": 122, "knowledge study": 15912, "study highlights": 31338, "limitations incorporating": 17921, "information llms": 14884, "multimodal llms": 22361, "inference explicit": 14777, "llms empower": 18560, "multimodality understanding": 22370, "understanding capability": 34214, "capability semantic": 4103, "semantic generation": 29457, "reliance prompt": 27962, "generative nature": 12681, "tackle issue": 31997, "issue introduce": 15654, "inference method": 14792, "method prompt": 19959, "based highlighted": 3172, "autoregressive generation": 2939, "models highlighted": 21356, "attention weights": 2744, "weights leads": 35509, "llms vlms": 19042, "achieving impressive": 1095, "generation results": 12596, "training experiments": 33517, "experiments confirm": 10429, "confirm effectiveness": 5660, "input contexts": 15006, "llms recent": 18893, "recent surge": 27563, "falcon mistral": 10940, "provides diverse": 26749, "practitioners researchers": 25382, "code technical": 4821, "technical reports": 32612, "progress field": 26211, "training code": 33449, "intermediate results": 15432, "available community": 2969, "research making": 28336, "parameter llms": 24188, "pretrained scratch": 25745, "including training": 14522, "continually pushing": 5982, "llms opensource": 18832, "effort largescale": 9079, "stronger models": 31200, "addition introduce": 1241, "introduce contrastive": 15502, "innovative method": 14997, "responses inference": 28497, "token positions": 33197, "precise control": 25389, "gain deeper": 12056, "steers model": 31032, "highlevel concepts": 13623, "concepts represented": 5532, "era advanced": 9692, "experimental setup": 10409, "statistical model": 31019, "impact findings": 14122, "llms consistently": 18486, "forecasting models": 11723, "performance human": 24622, "human llm": 13842, "errors particularly": 9725, "careful consideration": 4169, "integrating llms": 15334, "llms practical": 18860, "llms useful": 19024, "best opensource": 3566, "having 50": 13473, "50 billion": 419, "llms comparing": 18477, "llm efficiently": 18294, "perform inference": 24493, "llama 70b": 18065, "base chat": 3114, "tools models": 33272, "models yield": 22139, "sota opensource": 30537, "models llama2": 21466, "leading performance": 17482, "performance major": 24670, "benchmarks leaderboards": 3453, "publicly releasing": 26865, "releasing models": 27931, "approach additional": 2231, "way making": 35444, "llms use": 19020, "annotations paper": 2032, "present innovative": 25537, "model called": 20406, "math problem": 19669, "achieved using": 1021, "automatically constructed": 2907, "manual annotation": 19554, "proximal policy": 26794, "policy optimization": 25086, "optimization ppo": 23633, "series opensource": 29643, "demonstrates exceptional": 7558, "accuracy enhanced": 874, "process supervision": 26085, "evolution llms": 10075, "chatgpt bard": 4458, "shown impressive": 29887, "meaningful responses": 19725, "propose lightweight": 26524, "specifically finetuned": 30740, "model utilizes": 20856, "embedding based": 9128, "retrieval mechanism": 28744, "inference validate": 14823, "qualitative evaluations": 26933, "surpasses baseline": 31738, "evaluation furthermore": 9954, "human expert": 13815, "expert evaluation": 10508, "evaluation reveals": 10003, "responses multiple": 28502, "popular opensource": 25133, "opensource demos": 23499, "gpt4 surpassing": 13122, "llms increasingly": 18711, "increasingly integrated": 14639, "llms comprehend": 18479, "comprehend interpret": 5335, "responses various": 28516, "findings revealed": 11251, "llms particularly": 18845, "particularly gpt4": 24347, "indicating potential": 14703, "using human": 34795, "scores models": 29280, "improvement models": 14343, "gpt4 achieving": 13054, "future studies": 12051, "significant implications": 29988, "education research": 8837, "research study": 28363, "development deployment": 7952, "leveraging capabilities": 17779, "gpt4 model": 13099, "tool designed": 33257, "designed quantify": 7741, "context analysis": 5882, "critical data": 6385, "study methods": 31361, "providing valuable": 26785, "educational outcomes": 8843, "novel dataset": 23071, "specific groups": 30695, "language field": 16077, "used create": 34593, "systems research": 31918, "objective develop": 23202, "pairs using": 23985, "order evaluate": 23673, "dataset findings": 6990, "systems dataset": 31893, "linguistic models": 18015, "capture complex": 4146, "complex contextual": 5269, "contextual relationships": 5953, "model meta": 20639, "advancement field": 1447, "improve natural": 14280, "70 billion": 495, "models obtain": 21764, "models openai": 21768, "openai chatgpt": 23433, "code research": 4814, "research commercial": 28298, "addressing challenge": 1369, "approach explore": 2276, "ensure highquality": 9604, "underrepresented language": 34170, "models strong": 22013, "strong linguistic": 31180, "linguistic properties": 18019, "generalpurpose llms": 12255, "llms leveraging": 18755, "study contributes": 31310, "adaptation strategies": 1192, "introducing novel": 15553, "publications automatic": 26847, "important type": 14215, "type information": 34053, "covered existing": 6321, "falcon vicuna": 10943, "models develop": 21151, "extraction approach": 10763, "approach achieves": 2228, "achieves improvement": 1050, "approach leveraging": 2310, "output structured": 23882, "information large": 14877, "text makes": 32910, "text previous": 32920, "previous efforts": 25868, "window models": 35612, "limited address": 17938, "analyze effectiveness": 1992, "data simply": 6867, "studies propose": 31279, "adding original": 1233, "enhance effectiveness": 9511, "effectiveness data": 8941, "reasoning knowledge": 27413, "advancements pretraining": 1474, "techniques models": 32652, "manually designed": 19570, "prompts work": 26447, "work evaluate": 35699, "graphs kgs": 13239, "llms constrained": 18488, "grounded kg": 13290, "reasoning agent": 27378, "textual environment": 33028, "state information": 30910, "information reasoning": 14901, "policy gradient": 25080, "gradient reinforcement": 13190, "algorithm model": 1710, "additionally conduct": 1275, "dataset experimental": 6986, "percentage points": 24460, "performance rate": 24731, "models exploring": 21242, "log probability": 19152, "increase compute": 14595, "inner products": 14989, "base methods": 3125, "llama7b llama13b": 18233, "understanding mechanism": 34250, "code github": 4765, "instruction set": 15176, "building llms": 3925, "llms languages": 18742, "llms understanding": 19018, "context problem": 5907, "languages need": 16901, "instruction sets": 15177, "need llms": 22637, "indic languages": 14685, "provide generative": 26704, "presents approach": 25573, "knowledge data": 15827, "model tailored": 20823, "proposed work": 26623, "work help": 35716, "set llm": 29694, "chinese chat": 4542, "sparse mixtureofexperts": 30617, "research demonstrated": 28301, "refining large": 27786, "machinegenerated instructionfollowing": 19369, "empowers models": 9273, "instructions paper": 15263, "paper systematically": 24139, "chinese instructionfollowing": 4544, "enhancing chinese": 9558, "conversational capabilities": 6096, "widely recognized": 35575, "effectiveness instruction": 8949, "finetuning sparse": 11530, "marking significant": 19601, "significant breakthrough": 29963, "architecture code": 2436, "digital forensics": 8190, "local large": 19129, "valuable tools": 35021, "studies explored": 31268, "potential chatgpt": 25249, "extent llms": 10722, "remains unresolved": 28023, "report evaluate": 28115, "evaluate strengths": 9866, "limitations llms": 17926, "different parts": 8119, "using case": 34747, "tasks inspired": 32375, "inspired recent": 15099, "present method": 25539, "llms called": 18455, "methods use": 20106, "available apache": 2965, "20 license": 211, "llm field": 18305, "era marked": 9703, "topic modeling": 33285, "modeling framework": 20893, "framework improve": 11865, "crafting prompts": 6343, "guide llm": 13348, "generation translation": 12626, "lexical semantic": 17801, "similarity generated": 30128, "aims reduce": 1672, "number topics": 23166, "validated effective": 34999, "novel insights": 23090, "research areas": 28294, "datasets specialized": 7173, "evaluate impact": 9840, "adaptation results": 1190, "incontext learners": 14547, "learners large": 17526, "factuality llms": 10892, "llms natural": 18810, "understanding question": 34263, "underexplored previous": 34143, "learning research": 17645, "models adhere": 20964, "users specific": 34703, "instructions quality": 15267, "explored use": 10610, "llms incontext": 18708, "inference stage": 14810, "effective framework": 8871, "framework enhances": 11849, "reliability llms": 27951, "outofdistribution data": 23747, "discriminative models": 8287, "method enhanced": 19913, "versions llama": 35236, "resources including": 28437, "prompts model": 26432, "tasks empirical": 32307, "analysis sheds": 1962, "llms highlights": 18674, "highlights potential": 13655, "methodology fostering": 19993, "models goal": 21321, "various scales": 35141, "scales large": 29153, "enhancing user": 9575, "behaviors different": 3326, "prompts extensive": 26418, "instructions prompts": 15265, "provide better": 26687, "guide researchers": 13351, "models project": 21859, "project page": 26245, "page available": 23965, "space recent": 30581, "work high": 35717, "mutual information": 22472, "information learned": 14882, "causal effects": 4238, "findings mere": 11242, "study focused": 31332, "discovered potential": 8270, "representational similarity": 28154, "similarity analysis": 30127, "experiments showed": 10480, "suggested llms": 31581, "trend large": 33887, "models involve": 21407, "method constructing": 19893, "strong model": 31182, "llms rarely": 18888, "problem based": 25987, "models usually": 22106, "function introduced": 11962, "used enhance": 34597, "approach significantly": 2337, "effective enhancing": 8868, "carefully designed": 4178, "new efficient": 22797, "efficient model": 9050, "conducted using": 5643, "dataset training": 7049, "accuracy efficiency": 873, "llm named": 18340, "practical application": 25360, "languagebased reasoning": 16857, "researchers develop": 28373, "performance hand": 24621, "scenarios require": 29217, "possibility leveraging": 25208, "generate plans": 12312, "novel hybrid": 23087, "complex scenarios": 5292, "rulebased approach": 29008, "performance outperforming": 24706, "outperforming existing": 23796, "metrics code": 20132, "evaluation need": 9981, "annotation tasks": 2027, "using open": 34863, "use open": 34557, "evaluates performance": 9890, "different prompting": 8127, "strategies models": 31111, "indicate need": 14692, "privacy reproducibility": 25954, "huge success": 13781, "ability solve": 722, "solve wide": 30499, "tasks natural": 32427, "applications foster": 2154, "domain using": 8603, "nlp techniques": 22965, "extraction document": 10766, "document classification": 8502, "work initial": 35722, "initial step": 14966, "straightforward approach": 31092, "30 billion": 306, "curated extensive": 6470, "data consisting": 6655, "knowledge answer": 15811, "including data": 14469, "collection data": 4927, "pretraining sft": 25838, "evaluation opensource": 9983, "opensource data": 23496, "exhibited impressive": 10235, "capabilities unclear": 4074, "various instructions": 35101, "llm alignment": 18267, "formulate specialized": 11771, "set instructions": 29690, "behavior llms": 3319, "llms address": 18426, "systematically comprehensively": 31877, "comprehensively evaluate": 5398, "llms responses": 18917, "instructions various": 15281, "various constraints": 35082, "instructions test": 15276, "test suite": 32790, "diverse forms": 8429, "different existing": 8076, "existing studies": 10316, "time provide": 33138, "provide extensive": 26699, "gap opensource": 12100, "opensource commercial": 23493, "research improving": 28326, "instructions data": 15248, "errors large": 9724, "extensive knowledge": 10709, "finetuning despite": 11388, "methods evaluating": 20029, "limited test": 17969, "testing framework": 32803, "factual inaccuracies": 10884, "llms framework": 18620, "approach generates": 2288, "types questions": 34070, "questions models": 27125, "llms factual": 18600, "factual accuracy": 10877, "accuracy increase": 892, "data results": 6842, "research endeavors": 28311, "study language": 31351, "language capability": 16047, "recent times": 27564, "mainstream llms": 19410, "question conduct": 27063, "analyze impact": 1994, "key factors": 15766, "vocabulary extension": 35382, "pretraining instruction": 25801, "accurately assess": 932, "assess models": 2599, "testing benchmarks": 32801, "response quality": 28480, "instruction tasks": 15179, "furthermore experimental": 12000, "exhibit similar": 10228, "community developing": 5058, "presents development": 25579, "llama2 language": 18181, "continuing pretraining": 5993, "research articles": 28295, "science domain": 29241, "methodology involves": 19994, "initial pretraining": 14961, "pretraining phase": 25831, "instructiontuning process": 15309, "process refine": 26082, "designed assist": 7723, "responses queries": 28507, "field materials": 11141, "trained checkpoints": 33384, "13b chat": 124, "effectiveness limited": 8955, "specialized areas": 30666, "15 million": 142, "scholarly articles": 29237, "specific datasets": 30687, "improves understanding": 14400, "plays crucial": 25026, "crucial role": 6446, "verifying accuracy": 35221, "development models": 7962, "community resources": 5060, "datasets explore": 7113, "enhancing llm": 9565, "achieve notable": 976, "notable improvements": 23026, "superior reasoning": 31656, "suggest continual": 31567, "performance specialized": 24762, "present extension": 25530, "7b llama": 535, "conversational dataset": 6098, "comprehensive quantitative": 5389, "ai tool": 1621, "era generative": 9695, "daily lives": 6579, "lives recent": 18057, "hold immense": 13734, "applications generative": 2155, "complex challenge": 5267, "identify critical": 14005, "challenges including": 4351, "high resource": 13581, "models prompt": 21863, "ondevice inference": 23340, "finetuning federated": 11403, "discuss current": 8292, "opensource small": 23543, "model present": 20719, "achieving better": 1086, "efficiency despite": 9001, "despite relatively": 7808, "demonstrates remarkable": 7564, "performance series": 24748, "llama codellama": 18088, "method llms": 19943, "llms expansion": 18584, "transformer blocks": 33712, "using new": 34857, "new corpus": 22788, "effectively improving": 8922, "improving models": 14416, "knowledge catastrophic": 15822, "corpus code": 6175, "model initialized": 20583, "existing open": 10303, "intelligent agent": 15363, "natural programming": 22578, "laying solid": 17452, "solid foundation": 30466, "developing advanced": 7940, "advanced language": 1423, "language agents": 16041, "effectively various": 8936, "rapid development": 27247, "development opensource": 7967, "llms truly": 19012, "study scaling": 31392, "facilitate scaling": 10846, "advancing opensource": 1494, "developed dataset": 7924, "conduct supervised": 5621, "sft direct": 29760, "models resulting": 21940, "resulting creation": 28553, "surpasses llama2": 31746, "exhibits superior": 10255, "compared gpt35": 5137, "gpt35 mixtral": 13029, "experts introduce": 10519, "mistral 7b": 20228, "token layer": 33193, "process current": 26054, "parameters inference": 24257, "trained context": 33386, "context size": 5919, "32k tokens": 328, "evaluated benchmarks": 9874, "benchmarks particular": 3466, "mathematics code": 19687, "generation multilingual": 12558, "finetuned follow": 11310, "instruct surpasses": 15130, "surpasses gpt35": 31745, "gpt35 turbo": 13036, "pro llama": 25962, "chat model": 4443, "model human": 20566, "base instruct": 3117, "instruct models": 15129, "models released": 21918, "released apache": 27919, "hierarchical spatial": 13543, "questions designed": 27107, "challenge llms": 4318, "llms scenarios": 18928, "scenarios potentially": 29215, "followed gpt35": 11683, "models showed": 21967, "significantly reduced": 30082, "models identified": 21366, "discuss potential": 8295, "textbased data": 32972, "multimodal large": 22351, "llms multimodal": 18805, "models mllms": 21731, "mllms shown": 20300, "shown excellent": 29873, "domainspecific benchmarks": 8646, "performance mllms": 24679, "modern society": 22172, "reliably perform": 27958, "tasks address": 32236, "understanding applying": 34210, "results models": 28647, "serve foundation": 29647, "foundation future": 11791, "models mental": 21716, "health challenges": 13485, "models facilitated": 21255, "applications significant": 2177, "significant research": 30020, "understanding enhancing": 34219, "models domain": 21168, "question involves": 27071, "capacity large": 4126, "models comprehend": 21077, "study presents": 31377, "models addressing": 20962, "addressing gap": 1371, "performance llama2": 24661, "llama2 chatgpt": 18168, "individual preferences": 14719, "shown llms": 29900, "finetuned generate": 11316, "reward functions": 28858, "generation improve": 12519, "demonstrate great": 7460, "llms suffering": 18980, "propose inferencetime": 26519, "help llms": 13507, "llms decode": 18507, "information theory": 14918, "tokens predicted": 33242, "lower probabilities": 19290, "analysis shows": 1966, "closely related": 4693, "original context": 23702, "forcing model": 11720, "requiring additional": 28268, "additional data": 1254, "improvements achieved": 14354, "llama27b mistral7b": 18208, "datasets included": 7131, "phenomenon known": 24923, "performance little": 24659, "understanding potential": 34261, "stage pretraining": 30858, "text evaluation": 32854, "evaluation samples": 10005, "data investigate": 6743, "current llm": 6510, "offer new": 23290, "new insights": 22809, "insights data": 15070, "effects language": 8981, "underscore need": 34175, "mixtureofexperts language": 20285, "costs scaling": 6274, "knowledge response": 15903, "response propose": 28479, "allowing flexible": 1805, "15 times": 144, "parameters set": 24286, "16b parameters": 165, "architecture performance": 2450, "llms hold": 18676, "investigates potential": 15606, "sequential data": 29625, "complex data": 5271, "llm study": 18371, "study focuses": 31333, "scenarios findings": 29206, "demonstrate models": 7476, "models proficiency": 21858, "token length": 33194, "length limitations": 17707, "open new": 23410, "new avenues": 22778, "models search": 21957, "tuning large": 33987, "ir tasks": 15641, "promptbased methods": 26363, "facilitating comprehensive": 10852, "understanding execution": 34221, "gap work": 12115, "document understanding": 8509, "analyze effects": 1993, "fewshot demonstrations": 11100, "make dataset": 19465, "domain use": 8602, "acquire ability": 1115, "answering training": 2079, "domainspecific questions": 8655, "users queries": 34701, "frequently asked": 11926, "asked questions": 2557, "embedding model": 9130, "model terms": 20827, "generate answer": 12262, "llm optimize": 18341, "model external": 20508, "policy optimize": 25089, "using policy": 34873, "multiple training": 22426, "significant cost": 29975, "improved accuracy": 14305, "rl approach": 28900, "approach generic": 2290, "existing rag": 10312, "model commonsense": 20430, "intermediate steps": 15433, "accomplish task": 841, "series modifications": 29642, "effectively reason": 8927, "understand inputs": 34192, "presents challenging": 25576, "procedural text": 26043, "data natural": 6780, "evidence supporting": 10066, "using multiple": 34848, "tasks sequencetosequence": 32496, "metrics particular": 20146, "crosstask knowledge": 6428, "reusing data": 28788, "data different": 6676, "lead higher": 17465, "optimization strategy": 23635, "does yield": 8543, "yield significant": 35913, "improvement model": 14342, "t5small model": 31979, "model synthetic": 20820, "account model": 851, "size decreases": 30245, "multilingual evaluation": 22307, "models parameter": 21800, "viable solution": 35242, "solution improving": 30475, "llms requiring": 18914, "shown large": 29893, "models equitable": 21211, "work finetune": 35710, "finetune llama27b": 11290, "tuning datasets": 33972, "tasks covering": 32280, "various parameters": 35132, "effects downstream": 8978, "bridges gap": 3872, "ones english": 23346, "performance lowresource": 24668, "degrading performance": 7385, "importance data": 14186, "pretraining monolingual": 25823, "paper conduct": 24023, "comprehensive study": 5392, "performance suite": 24774, "suite stateoftheart": 31601, "performance leading": 24652, "suggests pretraining": 31591, "performance surpassing": 24776, "training better": 33445, "performance reasoning": 24733, "tasks tend": 32524, "data languages": 6748, "languages train": 16916, "incurs high": 14664, "translated data": 33813, "reasoning questions": 27443, "english finetuning": 9479, "alignment makes": 1770, "project available": 26244, "excel tasks": 10154, "important measure": 14204, "reflect models": 27791, "models behavior": 21011, "measure called": 19733, "llms inference": 18718, "successfully applied": 31536, "falcon 40b": 10938, "numerical calculations": 23178, "scientific reasoning": 29256, "central approach": 4267, "approach novel": 2319, "address data": 1320, "stepbystep reasoning": 31055, "dataset encompassing": 6980, "largerscale models": 17341, "capabilities base": 4002, "model makes": 20634, "wider research": 35586, "framework finetuning": 11855, "finetuning pipelines": 11484, "llms retrievalaugmented": 18920, "rag augments": 27156, "external data": 10727, "understood paper": 34281, "propose pipeline": 26559, "pipeline finetuning": 24967, "including llama213b": 14502, "extracting information": 10757, "generating questions": 12440, "answers using": 2087, "metrics assess": 20131, "pipeline conduct": 24965, "conduct indepth": 5612, "indepth study": 14678, "study potentially": 31375, "disruptive application": 8321, "dataset generation": 6997, "finetuning accuracy": 11367, "demonstrate finetuned": 7455, "model leverages": 20612, "specific questions": 30712, "questions increasing": 27114, "47 72": 403, "results point": 28655, "paving way": 24421, "llms industrial": 18717, "despite general": 7777, "models consistently": 21100, "consistently benefit": 5746, "achieve desired": 960, "blackbox lms": 3755, "prediction output": 25431, "smaller lm": 30379, "larger scale": 17336, "pretraining experiments": 25796, "knowledge reasoning": 15897, "reasoning safety": 27450, "tuned models": 33962, "models factual": 21258, "knowledge demonstrate": 15828, "demonstrate generality": 7458, "finetuning questionanswering": 11501, "promise using": 26278, "novel adaptive": 23052, "learning proposed": 17638, "tasks train": 32534, "validation performance": 35006, "optimization framework": 23626, "finally provide": 11203, "analysis interpolation": 1931, "aimed enhancing": 1652, "addresses key": 1365, "offers solution": 23313, "approach includes": 2299, "scenarios framework": 29207, "dialogues accurately": 8024, "boosting user": 3826, "marks significant": 19605, "models synthesize": 22036, "300b tokens": 311, "tokens model": 33240, "tokens included": 33233, "pretrained llama2": 25704, "domainspecific dataset": 8649, "finetuned highquality": 11319, "retrieval strategy": 28755, "perform comparably": 24474, "scale large": 29137, "number languages": 23149, "different research": 8133, "focusing different": 11671, "answer propose": 2048, "performs par": 24850, "results general": 28618, "benchmarks models": 3464, "trained evaluated": 33397, "train reward": 33372, "performance level": 24654, "learn improve": 17508, "prompting provide": 26393, "dpo training": 8708, "training does": 33502, "does instruction": 8531, "following ability": 11687, "provide highquality": 26705, "iterations approach": 15683, "yields model": 35925, "alpacaeval 20": 1838, "work opens": 35739, "possibility models": 25209, "semantic content": 29453, "tools like": 33271, "like wikipedia": 17897, "product descriptions": 26168, "produce structured": 26154, "offering practical": 23299, "practical solution": 25372, "focus improving": 11649, "models applied": 20983, "instructions results": 15271, "llms task": 18995, "generation generating": 12510, "generating coherent": 12414, "data avoid": 6619, "novel structured": 23111, "public apis": 26831, "mistral zephyr": 20235, "generate fluent": 12278, "standard data": 30871, "data formats": 6718, "semantic accuracy": 29446, "major issue": 19442, "knowledge fusion": 15853, "fusion large": 12022, "models distinct": 21162, "varying architectures": 35168, "introduce notion": 15523, "combining capabilities": 4962, "capabilities existing": 4015, "single llm": 30211, "source llms": 30566, "unique strengths": 34364, "llms improve": 18686, "performance target": 24778, "capabilities reasoning": 4066, "generation code": 12472, "weights data": 35504, "data public": 6818, "simple framework": 30149, "english nonenglish": 9488, "llama trained": 18147, "especially pronounced": 9746, "generation address": 12452, "framework designed": 11838, "linguistic units": 18024, "tailored target": 32019, "reducing number": 27758, "compared standard": 5170, "standard decoding": 30875, "maintaining performance": 19430, "benchmark language": 3395, "target word": 32061, "word context": 35634, "context sentence": 5916, "designed assess": 7722, "generate appropriate": 12264, "propose models": 26532, "models automatically": 20999, "finetuned taskspecific": 11358, "training memory": 33561, "updating small": 34479, "lm parameters": 19059, "does improve": 8530, "structured pruning": 31228, "improves lm": 14383, "memory time": 19831, "efficiency introduce": 9004, "parameters lms": 24271, "tuning parameters": 34003, "efficiency compared": 8998, "performance pruning": 24727, "70 parameters": 497, "lms finetuning": 19085, "opensource multilingual": 23537, "study introduce": 31342, "diverse corpus": 8420, "tokens sourced": 33246, "english chinese": 9476, "specific use": 30723, "performance broad": 24537, "tasks make": 32416, "associated code": 2643, "inspire future": 15091, "research practical": 28342, "commonly employ": 5024, "high memory": 13574, "decoding models": 7278, "plugin module": 25058, "memory costs": 19811, "applying proposed": 2222, "mtbench benchmark": 22260, "surpasses stateoftheart": 31750, "explainability large": 10526, "llms critical": 18498, "aspect natural": 2565, "processing llms": 26111, "increasingly integral": 14638, "blackbox nature": 3757, "ethical use": 9807, "focus primarily": 11653, "transformerbased llms": 33757, "challenges scale": 4375, "terms existing": 32745, "model editing": 20478, "control generation": 6050, "advantages limitations": 1507, "span corruption": 30590, "models known": 21412, "resource intensive": 28412, "sequences paper": 29615, "empirically effectiveness": 9248, "twostage pretraining": 34045, "analysis case": 1911, "architectures t5": 2473, "pretraining enabling": 25795, "40 reduction": 374, "performance research": 24738, "ability llm": 696, "emerged powerful": 9163, "detection llms": 7869, "assess capabilities": 2588, "collected different": 4923, "performance detecting": 24566, "content aigc": 5850, "test ability": 32758, "ability distinguish": 662, "llms identify": 18682, "generated ai": 12341, "long way": 19190, "fundamental task": 11982, "task information": 32139, "information systems": 14915, "heavily rely": 13494, "collecting annotating": 4925, "newly emerging": 22870, "timeconsuming laborintensive": 33149, "recent advanced": 27487, "inspiring explore": 15104, "explore alternative": 10571, "propose zeroshot": 26586, "data retrieval": 6844, "prompt guide": 26328, "chatgpt generate": 4472, "data step": 6881, "step improve": 31047, "knowledge leveraging": 15878, "public datasets": 26835, "results illustrate": 28626, "model integration": 20591, "integration paper": 15345, "knowledge multiple": 15883, "core framework": 6151, "task execution": 32116, "query generation": 27027, "generate training": 12335, "mmlu benchmark": 20314, "13b 34b": 121, "demonstrate new": 7477, "mixtral model": 20274, "illustrate potential": 14047, "architecture creating": 2438, "benchmark chinese": 3357, "chinese multimodal": 4548, "reasoning multimodal": 27425, "language modelsmllms": 16763, "progress demonstrated": 26209, "comprehension reasoning": 5349, "challenge current": 4308, "current multimodal": 6517, "multimodal benchmarks": 22337, "benchmark multimodal": 3400, "greater challenges": 13268, "opensource mllms": 23526, "mllms gpt4v": 20297, "gpt4v geminipro": 13136, "poses significant": 25173, "extreme compression": 10791, "llama advancing": 18072, "size poses": 30271, "huge training": 13782, "compression methods": 5420, "network quantization": 22701, "keeping number": 15746, "compression approach": 5412, "benchmark demonstrate": 3377, "addresses challenge": 1362, "challenge extending": 4312, "extending large": 10663, "propose approach": 26496, "shared tokens": 29786, "tokens english": 33224, "alignment approach": 1754, "text reduces": 32930, "mt tasks": 22251, "closer alignment": 4695, "leveraging power": 17791, "english llms": 9485, "encoderdecoder language": 9366, "model enhanced": 20491, "advances natural": 1483, "languages work": 16922, "pretrained encoderdecoder": 25640, "based unified": 3235, "tasks understanding": 32537, "outperforms multilingual": 23837, "rows columns": 28998, "processing use": 26134, "comes substantial": 4975, "costs terms": 6275, "resource constraints": 28409, "challenges need": 4363, "need additional": 22620, "hardware paper": 13431, "reducing embedding": 27746, "zeroshot task": 35997, "models run": 21950, "gpus reduce": 13180, "40gb a100": 381, "hope inspire": 13754, "reduce memory": 27718, "memory computation": 19806, "makes inference": 19491, "timeconsuming paper": 33150, "key observations": 15781, "token level": 33195, "inherent uncertainty": 14951, "based insights": 3179, "insights introduce": 15078, "simple highly": 30152, "enabling precise": 9328, "conducted comprehensive": 5631, "tasks dialogue": 32296, "dialogue code": 8011, "llama2chat 70b": 18217, "distribution generated": 8393, "tool use": 33260, "data analysis": 6596, "finance large": 11210, "error propagation": 9714, "mitigate limitations": 20255, "certain reasoning": 4278, "task instead": 32141, "llms inherent": 18721, "inherent abilities": 14946, "using financial": 34778, "financial domain": 11218, "questionanswering datasets": 27084, "apply supervised": 2213, "finetuning llama2": 11443, "task solver": 32193, "right tool": 28880, "demonstrates improvement": 7561, "results best": 28576, "augmentation language": 2800, "models finance": 21271, "finance domain": 11209, "human learning": 13840, "continuous feedback": 5996, "inspired paper": 15097, "novel teacherstudent": 23115, "agent provides": 1563, "feedback forms": 11061, "posed questions": 25164, "reasoning testbed": 27460, "training llama2": 33552, "llama2 data": 18170, "training curriculum": 33464, "learning robustness": 17648, "finetuning variety": 11553, "imagetext instruction": 14093, "versatile multimodal": 35224, "model mllm": 20643, "different capabilities": 8055, "distinct domains": 8365, "tasks specific": 32512, "propose apply": 26495, "lowrank adaption": 19304, "adaption lora": 1219, "lora method": 19232, "set lora": 29695, "original lora": 23713, "effectively mitigates": 8925, "multiple distinct": 22388, "various configurations": 35081, "achieves consistent": 1045, "consistent performance": 5741, "claim verification": 4577, "automated factchecking": 2861, "evidence work": 10067, "limited data": 17948, "supervision propose": 31698, "pioneering approach": 24960, "novel semantic": 23106, "leverages unlabelled": 17775, "data annotations": 6598, "computing resources": 5518, "improvements sota": 14364, "sota baselines": 30532, "factchecking datasets": 10859, "methods neural": 20069, "explore challenges": 10578, "computational storage": 5482, "tokens following": 33228, "benchmarks additionally": 3430, "additionally release": 1301, "trained supervised": 33430, "finetuning followed": 11406, "generation text": 12621, "generate humanreadable": 12290, "used text": 34629, "major computational": 19441, "generation unlike": 12628, "tokens parallel": 33241, "paper proposed": 24119, "architecture named": 2448, "architecture utilizes": 2458, "integrating multiple": 15338, "optimized data": 23645, "accelerates endtoend": 797, "endtoend inference": 9434, "generation furthermore": 12508, "furthermore validate": 12015, "input size": 15030, "achieves maximum": 1051, "times speedup": 33166, "llms evaluating": 18572, "aligning large": 1745, "models news": 21752, "challenge especially": 4311, "llms enhance": 18564, "llms evaluation": 18573, "metrics account": 20130, "biases generated": 3672, "unclear models": 34126, "tasks specifically": 32513, "impacts models": 14147, "news articles": 22876, "online news": 23366, "models mistral7b": 21727, "gpt3 using": 13009, "sample baseline": 29064, "instructionbased models": 15215, "comparison finetuned": 5195, "smaller llms": 30378, "better reflect": 3623, "open corpus": 23392, "tokens language": 33236, "models critical": 21115, "models rarely": 21894, "data open": 6787, "datasets trained": 7183, "result challenging": 28543, "english corpus": 9477, "corpus built": 6174, "built diverse": 3932, "web content": 35475, "work report": 35773, "including design": 14470, "design principles": 7714, "content quality": 5870, "data architectures": 6602, "biases potential": 3681, "access powerful": 825, "open lms": 23407, "framework build": 11833, "code release": 4805, "framework including": 11867, "new wave": 22865, "tasks explicitly": 32324, "requires substantial": 28263, "resources paper": 28442, "compact llms": 5065, "task realworld": 32184, "llama2 gpt35": 18178, "observe smaller": 23234, "summarization datasets": 31610, "parameters performs": 24275, "better zeroshot": 3637, "7b 70b": 530, "like flant5": 17862, "robustness data": 28945, "data compression": 6648, "compression existing": 5414, "models face": 21253, "compression based": 5413, "models predictive": 21833, "specifically collect": 30729, "data spanning": 6876, "data cutoff": 6668, "compression performance": 5422, "performance testing": 24782, "unseen data": 34434, "measure robustness": 19737, "experiments test": 10491, "representative large": 28181, "sources including": 30575, "wikipedia news": 35604, "multimodal data": 22340, "models mistral": 21726, "mistral llama2": 20232, "llama2 demonstrate": 18171, "good balance": 12818, "balance performance": 3080, "performance robustness": 24743, "struggle generalize": 31239, "capable performing": 4116, "difficult deploy": 8170, "gpt4 smaller": 13119, "using zeroshot": 34942, "prompting generate": 26374, "near 100": 22599, "100 success": 39, "previous methods": 25869, "gpt4 finetune": 13076, "sizes gpt2": 30299, "holdout test": 13738, "set gpt2": 29688, "achieves 90": 1026, "90 success": 591, "success gpt4": 31510, "task evaluating": 32115, "evaluating quality": 9912, "distilled models": 8354, "zeroshot classifier": 35963, "classifier achieves": 4624, "smaller draft": 30375, "draft model": 8711, "target llm": 32054, "depends choice": 7623, "provides high": 26755, "generated token": 12396, "llm achieve": 18262, "throughput experiments": 33099, "understand phenomenon": 34198, "factors affect": 10867, "analytical model": 1983, "higher throughput": 13608, "draft models": 8712, "forms foundation": 11767, "work directly": 35695, "data users": 6905, "users device": 34685, "utilizing large": 34973, "ondevice deployment": 23339, "novel lightweight": 23092, "lightweight framework": 17839, "framework enhanced": 11848, "related text": 27858, "effectiveness leveraging": 8954, "significantly achieves": 30030, "new sota": 22845, "improvement bleu": 14334, "bleu meteor": 3765, "train release": 33371, "moe llms": 22197, "llms ranging": 18887, "llms offer": 18824, "llms highlighting": 18673, "llm development": 18289, "contribution study": 6038, "models predominantly": 21834, "based token": 3231, "token ids": 33192, "early pretraining": 8779, "llms simulate": 18954, "gpt4 mixtral": 13098, "humancomputer interaction": 13893, "human voting": 13876, "baseline human": 3248, "inherent biases": 14947, "humans llms": 13927, "llms observed": 18823, "diverse preferences": 8448, "llms lead": 18747, "underscoring need": 34185, "integration llms": 15344, "use generative": 34532, "ai chatbots": 1603, "learning paper": 17625, "includes investigation": 14451, "using blooms": 34742, "initial results": 14963, "lays foundation": 17457, "paper concludes": 24022, "faster lighter": 11001, "way forward": 35432, "computational memory": 5470, "requirements inference": 28238, "methods aim": 20005, "enhance llm": 9516, "overview methods": 23955, "providing practical": 26782, "llm deployment": 18286, "unified setting": 34336, "highlights effectiveness": 13650, "identify current": 14006, "limitations discuss": 17917, "directions improve": 8230, "presented paper": 25567, "guardrails large": 13335, "crucial identify": 6441, "identify mitigate": 14012, "mitigate risks": 20259, "human users": 13873, "outputs llms": 23895, "position paper": 25184, "paper takes": 24141, "current opensource": 6521, "llama guard": 18112, "approach construct": 2253, "applications propose": 2172, "transformers pretrained": 33793, "finetuning parameters": 11473, "parameters challenging": 24230, "gained popularity": 12064, "intermediate outputs": 15429, "enables efficient": 9297, "inference sparsityaware": 14807, "building insight": 3924, "approach utilizing": 2359, "lora adapter": 19227, "facilitate efficient": 10838, "experiments proposed": 10467, "reduce activation": 27699, "benchmarks respectively": 3470, "tasks showcase": 32499, "pruned models": 26804, "capture semantics": 4150, "reasoning reading": 27444, "opensource instructiontuned": 23505, "instructiontuned llama": 15292, "stateoftheart multitask": 30961, "multitask finetuned": 22445, "compared llama": 5145, "including code": 14468, "model dataset": 20451, "relatively new": 27891, "new decoding": 22792, "leverages small": 17774, "models reduce": 21913, "reduce latency": 27716, "frozen llm": 11938, "method uses": 19982, "models confidence": 21093, "scores help": 29279, "benchmarks demonstrate": 3434, "data trained": 6895, "models enhancing": 21207, "approach applicable": 2236, "method involves": 19936, "interpret context": 15454, "addressing inherent": 1373, "historical information": 13726, "single hidden": 30204, "hidden state": 13538, "improvement achieved": 14326, "increase number": 14601, "parameters little": 24269, "original number": 23715, "additional parameters": 1262, "minimal computational": 20184, "pretraining resulting": 25834, "linear computational": 17987, "approach showcasing": 2336, "showcasing improved": 29852, "benchmarks code": 3432, "weights datasets": 35506, "datasets opensourced": 7158, "lottery ticket": 19263, "ticket hypothesis": 33103, "hypothesis posits": 13965, "method identify": 19929, "llm parameters": 18346, "highly effective": 13662, "idea use": 13985, "parameters finetuning": 24246, "theoretically prove": 33054, "set parameters": 29701, "embedding llama": 9129, "performance code": 24546, "model released": 20751, "released public": 27927, "semantic representations": 29468, "malaysian language": 19521, "specifically llama2": 30748, "pairs release": 23984, "outperforms openai": 23839, "rag models": 27159, "context notably": 5904, "underscore effectiveness": 34173, "text comprehension": 32832, "work studies": 35789, "premises important": 25496, "complex multihop": 5280, "datasets contain": 7084, "contain short": 5829, "challenges address": 4335, "benchmark includes": 3390, "includes datasets": 14450, "datasets nlp": 7155, "nlp domains": 22932, "extended contexts": 10660, "humans perform": 13929, "deductive reasoning": 7310, "obtain strong": 23254, "strong opensource": 31184, "outperforms gpt35": 23826, "gpt4 finally": 13075, "use model": 34550, "model filter": 20520, "improvement average": 14330, "llms proven": 18878, "hallucination responses": 13384, "responses lack": 28498, "intuitive solution": 15559, "works directly": 35812, "llms work": 19048, "propose effective": 26506, "effective training": 8903, "generate highly": 12284, "ensuring correctness": 9610, "correctness responses": 6209, "responses conduct": 28488, "conventional practices": 6078, "models generalizability": 21304, "answering task": 2076, "task large": 32148, "task artificial": 32079, "data previous": 6806, "research significantly": 28361, "limitations including": 17920, "inability capture": 14430, "capture contextual": 4148, "directly applying": 8233, "applying llms": 2218, "llms leads": 18748, "llm model": 18338, "model llama2": 20619, "rag architecture": 27155, "architecture outperforms": 2449, "course training": 6312, "degradation model": 7375, "quality smaller": 26979, "alternative framework": 1852, "better pretraining": 3618, "pretraining loss": 25818, "loss bert": 19242, "ul2 language": 34095, "shows better": 29923, "better downstream": 3599, "provide theoretical": 26730, "increasing complexity": 14619, "residual connections": 28390, "layer norm": 17427, "sparsity large": 30630, "high inference": 13569, "emergence activation": 9167, "sparsity llms": 30634, "llms provides": 18880, "natural approach": 22503, "reduce cost": 27707, "inference existing": 14775, "achieve introduce": 971, "furthermore unlike": 12013, "applied llms": 2195, "activation functions": 1140, "tasks outperforming": 32438, "outperforming stateoftheart": 23803, "november 2022": 23129, "training billions": 33446, "models parameters": 21803, "different ways": 8158, "including popular": 14512, "llama palm": 18139, "techniques developed": 32635, "augment llms": 2791, "used llm": 34608, "performance popular": 24715, "llms set": 18933, "benchmarks finally": 3441, "open challenges": 23386, "nlp attributed": 22922, "llm respond": 18361, "respond instructions": 28468, "finetuning ift": 11416, "annotated datasets": 2020, "datasets existing": 7106, "primary goal": 25922, "language gap": 16080, "create extensive": 6350, "date comprising": 7198, "resources develop": 28432, "develop opensource": 7921, "evaluation suite": 10015, "serves valuable": 29656, "framework future": 11858, "aim bridge": 1637, "agent framework": 1560, "emerging building": 9191, "data diverse": 6681, "heavily relies": 13493, "relies manual": 27966, "hindering potential": 13717, "extraction knowledge": 10768, "graph completion": 13218, "generation propose": 12579, "refinement module": 27782, "human gpt4": 13823, "surpass stateoftheart": 31734, "gpt4 10": 13050, "20 times": 214, "existing benchmark": 10264, "model recent": 20744, "multiple domains": 22389, "graph reasoning": 13229, "reasoning llm": 27419, "llm remains": 18357, "remains limited": 28004, "limited work": 17974, "llms graph": 18662, "reasoning performance": 27433, "significantly affects": 30034, "llms reasoning": 18890, "altering order": 1846, "order enhance": 23672, "assessing llms": 2611, "relationship llms": 27873, "abilities graph": 625, "experiments span": 10482, "models rlhf": 21947, "llm behaviors": 18276, "controllable inference": 6059, "instructing llm": 15139, "critiques revisions": 6403, "finetuning synthetic": 11540, "problem llms": 25995, "llms generative": 18639, "llms great": 18663, "potential reshape": 25293, "landscape social": 16027, "malicious actors": 19523, "developed llms": 7928, "experimental framework": 10388, "bot human": 3836, "surveyed participants": 31778, "human detection": 13801, "correctly identified": 6204, "impact human": 14124, "human perception": 13850, "received lot": 27481, "performance understanding": 24789, "human languages": 13839, "languages lowresource": 16893, "resources work": 28449, "focus enhancing": 11646, "model integrating": 20590, "model shows": 20781, "results different": 28599, "opensource dataset": 23497, "studies models": 31276, "increasingly utilized": 14649, "blackbox models": 3756, "studies sought": 31286, "llms previous": 18868, "studies provided": 31280, "study seeks": 31395, "different input": 8083, "input prompts": 15022, "prompts specifically": 26441, "prompts designed": 26410, "examine models": 10103, "models susceptible": 22035, "like humans": 17875, "based language": 3183, "lms different": 19082, "including llama2": 14501, "llama2 falcon": 18173, "gpt opt": 12860, "fine tuned": 11264, "using classifiers": 34750, "dataset results": 7034, "demonstrate high": 7461, "broader range": 3891, "text embedding": 32849, "answering question": 2070, "aims build": 1660, "despite tremendous": 7823, "tremendous potential": 33883, "texts implicit": 32994, "similar embeddings": 30101, "models abstractive": 20938, "improved instructionfollowing": 14313, "llms llama27b": 18780, "additionally qualitative": 1299, "applying different": 2217, "different instructions": 8085, "instructionfollowing capability": 15225, "prompts effective": 26412, "effective methods": 8885, "methods proposed": 20081, "constraint prompt": 5785, "novel connection": 23068, "based connection": 3145, "general framework": 12166, "harness power": 13454, "datasets finetuning": 7118, "computational demand": 5464, "adds new": 1377, "components additional": 5311, "introduce simple": 15532, "performance interesting": 24634, "interesting finding": 15407, "models enabling": 21196, "enabling use": 9329, "experiments llama2": 10459, "families models": 10969, "showcasing minimal": 29853, "understanding incontext": 34232, "processing based": 26096, "latent variable": 17411, "variable models": 35033, "framework framework": 11857, "framework introduce": 11871, "sense knowledge": 29506, "language classification": 16050, "effect choice": 8851, "possible explain": 25213, "generalization tasks": 12227, "tasks unseen": 32541, "unseen language": 34439, "framework explain": 11854, "work english": 35697, "multilingual transformers": 22334, "importance understanding": 14193, "layer layer": 17426, "layer transformers": 17433, "map input": 19577, "input embedding": 15009, "output embedding": 23866, "probabilities computed": 25969, "distinct phases": 8368, "far away": 10987, "semantically correct": 29483, "correct token": 6195, "higher probability": 13602, "input language": 15014, "conceptual model": 5535, "input space": 15031, "concept space": 5528, "output space": 23881, "evidence suggests": 10063, "languages important": 16877, "precision recall": 25393, "recall assess": 27469, "quality diversity": 26954, "novel evaluation": 23077, "framework large": 11874, "image generation": 14067, "diversity generated": 8478, "insights performance": 15080, "performance openended": 24702, "tasks adequately": 32238, "generated samples": 12387, "finetuned human": 11320, "work extends": 35709, "offering insights": 23298, "capabilities challenges": 4004, "challenges faced": 4343, "framework inspired": 11869, "answering cqa": 2058, "35 llama": 341, "llama experiments": 18096, "additional analyses": 1250, "significantly correlated": 30042, "opening opportunities": 23469, "opportunities future": 23582, "future development": 12029, "verification tools": 35211, "recurrent memory": 27679, "evaluate different": 9825, "different approaches": 8048, "evaluation includes": 9961, "benchmarks gpt4": 3444, "common methods": 5009, "methods effective": 20022, "demonstrating significant": 7587, "advanced llm": 1429, "response research": 28481, "research introduce": 28328, "approach identify": 2294, "media posts": 19761, "source large": 30564, "power natural": 25326, "focuses developing": 11667, "understand users": 34203, "benefit language": 3481, "assist people": 2633, "learnable parameters": 17517, "networks despite": 22709, "improvement achieving": 14327, "greatly reduces": 13276, "especially dealing": 9732, "longer context": 19195, "normalization parameters": 23018, "facilitates efficient": 10850, "prompts large": 26426, "prompt study": 26346, "parameters ranging": 24284, "computation time": 5451, "models compared": 21072, "optimization employing": 23625, "method enhancing": 19915, "additionally findings": 1285, "predominantly focused": 25463, "challenges large": 4354, "outdated knowledge": 23738, "single multihop": 30213, "sparql queries": 30608, "available evaluate": 2974, "direct prompting": 8216, "need new": 22640, "complex relationships": 5291, "fail represent": 10907, "reveal limitations": 28801, "longer narratives": 19198, "contexts language": 5942, "nlp recently": 22944, "skills model": 30313, "model development": 20468, "applications education": 2151, "questionanswering benchmark": 27082, "benchmark consisting": 3364, "helps measure": 13526, "freeform generation": 11913, "knowledge finetuning": 15852, "dialogue datasets": 8014, "math datasets": 19668, "build opensource": 3917, "efficient autonomous": 9028, "autonomous agent": 2929, "aim improve": 1645, "improve reasoning": 14292, "methods design": 20020, "strategy llms": 31127, "small llm": 30352, "make decisions": 19466, "integrate llm": 15321, "dataset finetune": 6991, "finetune base": 11281, "tuning llama7b": 33994, "indomain outdomain": 14725, "datasets code": 7074, "lifelong learning": 17823, "enabling efficient": 9320, "llms contrast": 18491, "contrast conventional": 6011, "conventional approaches": 6072, "effective strategy": 8897, "data settings": 6861, "newly curated": 22869, "curated dataset": 6469, "set evaluation": 29683, "experimental evaluation": 10384, "models greater": 21341, "parameters iii": 24256, "baselines tasks": 3271, "models dont": 21170, "dont learn": 8665, "language current": 16055, "gap human": 12090, "llms support": 18984, "deliberate reasoning": 7397, "reasoning chainofthought": 27391, "family llama": 10980, "13b llama": 126, "random chance": 27175, "baseline accuracy": 3240, "knowledge acquired": 15809, "reasoning poses": 27436, "llms make": 18791, "make task": 19485, "task practical": 32177, "problem solver": 26014, "use tools": 34575, "domains evaluate": 8618, "absolute accuracy": 761, "typically prompted": 34079, "prompted follow": 26368, "inference work": 14824, "work analyze": 35668, "benchmark comprehensive": 3359, "times average": 33157, "require multiple": 28222, "better tasks": 3630, "information flow": 14869, "network large": 22694, "icl capabilities": 13975, "finetuning remains": 11507, "enhance adaptability": 9504, "proves effective": 26680, "effective finetuning": 8870, "demands computing": 7414, "issue introducing": 15655, "peft approach": 24435, "label words": 15953, "anchors information": 2008, "network gnn": 22691, "experiments text": 10492, "tasks gpt2": 32350, "gpt2 llama2": 12913, "methods fewshot": 20037, "parameters compare": 24231, "prefix tuning": 25480, "efficiency analysis": 8996, "reliability challenges": 27948, "challenges hallucination": 4349, "studies reveal": 31281, "reveal highly": 28799, "capable llms": 4111, "responses query": 28508, "llms effectively": 18552, "responses propose": 28506, "method named": 19949, "unlike previous": 34397, "methods assess": 20007, "pair reference": 23970, "outperform strong": 23788, "finetuning demonstrate": 11387, "token consumption": 33187, "instructiontuned llama7b": 15294, "phi2 27b": 24930, "fewer training": 11094, "perform endtoend": 24485, "100 languages": 36, "factchecking tasks": 10860, "gpt4 gpt35turbo": 13083, "multilingual corpora": 22301, "languages compared": 16866, "approach mitigate": 2314, "languages languages": 16883, "continue training": 5988, "solely relying": 30464, "relying translation": 27981, "original capabilities": 23699, "limit performance": 17908, "crosslingual knowledge": 6414, "effectively improve": 8920, "performance leveraging": 24657, "source languages": 30563, "languages various": 16921, "comprehension generation": 5342, "enhance multilingual": 9522, "minimizing impact": 20200, "original performance": 23716, "performance resourcerich": 24739, "using lora": 34828, "improve task": 14300, "model learned": 20608, "efficient lowrank": 9047, "using lowrank": 34830, "based mistral7b": 3195, "different target": 8146, "domains finetuning": 8620, "data approach": 6601, "approach domain": 2263, "domain generalization": 8566, "models natural": 21744, "text large": 32903, "scale nli": 29145, "datasets today": 7181, "models improved": 21374, "generating synthetic": 12444, "nli data": 22912, "tokens labels": 33235, "accuracy models": 899, "new downstream": 22796, "data improves": 6733, "improves average": 14370, "average compared": 3013, "compared training": 5178, "training best": 33444, "t5 xxl": 31967, "personal experiences": 24881, "thinking allows": 33068, "focuses aspects": 11666, "information ii": 14872, "scenarios test": 29221, "results scaling": 28674, "scaling lms": 29173, "performance boosts": 24536, "scenarios ii": 29208, "recalling relevant": 27471, "finding needle": 11225, "needle haystack": 22650, "usage large": 34505, "efficient inference": 9039, "inference models": 14794, "methods limited": 20062, "ability scale": 720, "scale larger": 29140, "adapt different": 1163, "different hyperparameters": 8081, "dynamic programming": 8762, "tokens achieve": 33216, "novel sampling": 23105, "different decoding": 8068, "lms proven": 19106, "proven powerful": 26675, "powerful tools": 25354, "research model": 28337, "strands research": 31096, "tasks benchmark": 32251, "pythia models": 26901, "linear probing": 17991, "use study": 34573, "study learning": 31356, "negative polarity": 22662, "semeval2024 task": 29492, "translation paper": 33842, "asian languages": 2550, "task build": 32088, "model identify": 20567, "sentences target": 29559, "models extensively": 21249, "used machine": 34610, "using combination": 34753, "par baseline": 24150, "1st place": 205, "2nd place": 300, "massive multitask": 19627, "focus language": 11650, "knowledgeintensive tasks": 15932, "texts evaluating": 32991, "challenging limited": 4386, "limited availability": 17940, "models notably": 21758, "bloomz mt0": 3797, "struggle achieve": 31237, "score 50": 29265, "achieves score": 1061, "promising paradigm": 26291, "boost model": 3816, "efficiency large": 9005, "efforts explored": 9090, "high sparsity": 13584, "performance specifically": 24764, "activation distribution": 1139, "llama213b respectively": 18199, "llm parallel": 18345, "achieving superior": 1109, "length sequences": 17711, "conducted empirical": 5632, "computational budgets": 5455, "stochastic beam": 31069, "beam search": 3300, "reducing computational": 27744, "cost llm": 6247, "llama opt": 18136, "models showing": 21968, "methods consistently": 20012, "potential various": 25307, "data vital": 6909, "key enhancing": 15764, "datasets tend": 7180, "bilingual english": 3708, "corpus contains": 6177, "results llama": 28639, "llama baichuan": 18077, "especially zeroshot": 9751, "opensource resource": 23542, "models external": 21250, "concerns raised": 5545, "regarding behavior": 27809, "llms ways": 19043, "investigate llm": 15586, "likert scale": 17904, "scale evaluate": 29133, "questions using": 27134, "finetuned llama27b": 11336, "ask generate": 2552, "different roles": 8134, "types llms": 34067, "humans work": 13933, "choice questions": 4555, "questions llms": 27122, "cognitive abilities": 4874, "abilities knowledge": 627, "size paper": 30269, "simulated conversations": 30186, "opensourced llms": 23554, "llms families": 18603, "instructing llms": 15140, "stability models": 30847, "settings different": 29731, "personas llms": 24893, "conversation length": 6091, "need future": 22631, "paper provides": 24126, "augmentation da": 2797, "field study": 11153, "study novel": 31369, "novel techniques": 23118, "artificial data": 2529, "demonstrated great": 7523, "small data": 30337, "paper challenge": 24019, "performing better": 24834, "time finetuning": 33126, "significant contribution": 29974, "performs best": 24841, "generate data": 12269, "data close": 6633, "generation conversational": 12481, "agents chatgpt": 1568, "does work": 8542, "work classical": 35676, "model embeddings": 20485, "recent approaches": 27510, "approaches improving": 2376, "improving extraction": 14410, "largely focused": 17308, "data backbone": 6620, "backbone pretrained": 3056, "contain information": 5828, "information tokens": 14919, "tokens appear": 33218, "appear later": 2113, "input address": 15003, "address limitation": 1340, "simple approach": 30141, "extract embeddings": 10744, "tokens encode": 33222, "encode information": 9337, "later tokens": 17415, "tokens allowing": 33217, "leverage highquality": 17749, "highquality llms": 13696, "mistral7b model": 20239, "compared prior": 5165, "models leverage": 21444, "involves understanding": 15633, "core contributions": 6150, "multiple experts": 22392, "developments generative": 7979, "study utility": 31408, "setting paper": 29726, "study popular": 31373, "gpt35 llama2": 13028, "llama2 palm2": 18191, "finally perform": 11199, "llms summarize": 18981, "summarize findings": 31629, "training memoryefficient": 33562, "proposed address": 26588, "potentially explaining": 25312, "exhibits significant": 10250, "finetuning various": 11554, "inspired success": 15101, "zerothorder optimization": 36001, "optimization approach": 23623, "approach applies": 2237, "carefully chosen": 4172, "subset parameters": 31451, "parameters propose": 24281, "additionally develop": 1280, "a100 gpu": 616, "achieves absolute": 1027, "decoding method": 7276, "tokens large": 33237, "widespread application": 35595, "process address": 26049, "light limitations": 17828, "chimera novel": 4538, "framework specifically": 11894, "introduce lightweight": 15513, "previously generated": 25898, "ensure accuracy": 9601, "demonstrates impressive": 7560, "results achieving": 28567, "achieving average": 1084, "compared vanilla": 5181, "framework significantly": 11893, "improving efficiency": 14409, "demonstrating remarkable": 7586, "tasks various": 32547, "exploration knowledge": 10564, "seeks evaluate": 29361, "achieve conduct": 957, "evaluation prominent": 9995, "zephyr models": 35932, "require fewer": 28216, "fewer resources": 11091, "making suitable": 19516, "models best": 21022, "tasks domain": 32301, "levels comparable": 17739, "indicates pretraining": 14700, "pretraining extensive": 25797, "models findings": 21273, "underscore potential": 34176, "valuable resource": 35016, "resource understanding": 28417, "various aspects": 35075, "lack large": 15996, "probability target": 25973, "vicuna mistral": 35253, "comprehension capability": 5341, "incurs substantial": 14667, "lead potential": 17468, "llms robust": 18927, "expensive pretraining": 10365, "llms target": 18994, "lightweight continual": 17838, "comprises main": 5432, "main stages": 19400, "finetuning target": 11542, "parameter space": 24200, "matrices finetuning": 19690, "prominent chat": 26265, "architectures scales": 2471, "domains demonstrate": 8617, "demonstrate superiority": 7505, "models heavily": 21349, "highquality pretraining": 13697, "data order": 6789, "improve data": 14260, "data quality": 6823, "manually curate": 19567, "propose data": 26502, "probing evaluation": 25981, "data proposed": 6814, "use framework": 34531, "example use": 10112, "improving data": 14405, "quality automated": 26943, "pretraining gpt2": 25799, "benchmark evaluate": 3383, "evaluate large": 9841, "intellectual property": 15348, "limited understanding": 17972, "property ip": 26481, "domain paper": 8581, "supervised finetuned": 31673, "data evaluate": 6696, "benchmark experimental": 3386, "noticeable margin": 23040, "compared chatgpt": 5125, "specially curated": 30680, "challenging problem": 4393, "llms process": 18870, "texts paper": 32998, "detection method": 7870, "experiments representative": 10476, "subset neurons": 31450, "furthermore showcase": 12012, "output language": 23868, "language llms": 16112, "important evidence": 14200, "generalist models": 12198, "demonstrated capabilities": 7516, "llms plain": 18852, "data remains": 6835, "limited investigation": 17951, "investigation reveals": 15615, "ability process": 715, "model average": 20384, "developed comprehensive": 7923, "comprehensive instruction": 5381, "comprising 11": 5435, "11 million": 73, "train series": 33373, "generalization novel": 12224, "alignment pretrained": 1777, "text originating": 32913, "automatically construct": 2906, "containing 20k": 5834, "llama2 despite": 18172, "use recent": 34565, "recent knowledge": 27522, "investigate various": 15600, "alignment experiments": 1759, "aligning models": 1750, "finetuning models": 11455, "representations using": 28178, "attention mask": 2724, "training transformerbased": 33641, "taskspecific soft": 32569, "models attention": 20993, "easy implement": 8801, "text reasonable": 32928, "word level": 35641, "evaluate lms": 9847, "lms ability": 19067, "english speakers": 9491, "task seen": 32191, "gpt2 bloom": 12876, "bloom chatgpt": 3784, "calibration error": 3977, "variational learning": 35047, "learning effective": 17562, "effective large": 8880, "empirical evidence": 9224, "optimizer called": 23650, "networks gpt2": 22712, "generalization error": 12213, "evidence support": 10064, "model representations": 20753, "methods successfully": 20099, "disentangle roles": 8306, "models dataset": 21123, "use resulting": 34566, "conceptual framework": 5534, "define new": 7363, "distributed representations": 8387, "release benchmark": 27900, "layer dropping": 17424, "training reducing": 33597, "approach designed": 2257, "designed reduce": 7743, "efficiency training": 9018, "specifically utilizing": 30761, "loss level": 19247, "new generation": 22807, "model series": 20773, "instructiontuned versions": 15300, "thorough evaluations": 33073, "multiturn dialogues": 22464, "open model": 23408, "parameters significant": 24288, "metrics compared": 20133, "based framework": 3163, "inserting new": 15059, "models explore": 21240, "explore approach": 10573, "steps propose": 31060, "propose leverage": 26523, "plms bert": 25041, "flant5 llama": 11597, "datasets created": 7087, "created using": 6362, "entity linking": 9645, "best settings": 3579, "framework use": 11901, "use finetuned": 34530, "finetuned plm": 11350, "task propose": 32182, "shows advantages": 29921, "encouraging performance": 9403, "follow complex": 11676, "complex domainspecific": 5274, "agents despite": 1569, "despite llms": 7794, "range realworld": 27209, "opensource llama": 23515, "gemini llms": 12140, "varies different": 35053, "insights suggest": 15083, "suggest need": 31576, "human automated": 13796, "major bottleneck": 19437, "time large": 33130, "present collection": 25519, "model sets": 20777, "point improvement": 25065, "language resources": 16819, "include new": 14447, "open license": 23405, "including research": 14516, "commercial usage": 4997, "contribute advancement": 6028, "language technology": 16833, "focuses task": 11669, "generated response": 12384, "specific query": 30711, "task new": 32167, "new llm": 22818, "new query": 22836, "significantly increase": 30064, "impractical realworld": 14227, "problem paper": 26000, "observe llms": 23231, "gpt4 finetuning": 13077, "generate response": 12319, "required output": 28231, "limited certain": 17943, "llms improving": 18687, "solution problem": 30476, "used augment": 34585, "automatically generating": 2916, "problem provide": 26008, "problem inspired": 25992, "socratic questioning": 30445, "specific ways": 30725, "effectively avoid": 8912, "prompting methods": 26389, "network mechanisms": 22697, "nodes edges": 22983, "contrast existing": 6012, "activation patching": 1141, "allows efficiently": 1813, "single forward": 30201, "carefully design": 4177, "extract information": 10745, "specific types": 30722, "experiment llama": 10378, "role attention": 28953, "llms text": 19002, "llms known": 18738, "parameter counts": 24177, "limited memory": 17956, "proposed solution": 26619, "target models": 32056, "framework train": 11897, "model llama": 20618, "distillation additional": 8335, "finetuning step": 11537, "step use": 31051, "instructionresponse pairs": 15240, "gradient method": 13189, "method reinforcement": 19966, "24times speedup": 269, "tasks taskspecific": 32523, "requires identifying": 28255, "information mitigate": 14888, "systems propose": 31915, "compare multiple": 5110, "llms existing": 18583, "existing event": 10274, "demonstrates strong": 7572, "fewshot llms": 11115, "llms iteratively": 18731, "directly prompting": 8242, "inherent limitations": 14950, "operational efficiency": 23567, "design lack": 7706, "lack domainspecific": 15986, "adapt llms": 1166, "llms solving": 18960, "manner specifically": 19550, "establish comprehensive": 9768, "twophase learning": 34042, "learning strategy": 17657, "convergence behavior": 6084, "behavior model": 3320, "350m model": 344, "gpt4 turbo": 13125, "sets finetuned": 29719, "instructions available": 15243, "feedback reinforcement": 11069, "learning automatically": 17542, "systems online": 31910, "online learning": 23365, "potential improve": 25263, "feedback generation": 11062, "requires models": 28259, "understand problem": 34200, "effectively use": 8933, "humanwritten llmgenerated": 13937, "feedback second": 11073, "alignment using": 1783, "augmented dataset": 2812, "llama opensource": 18135, "areas future": 2485, "evolving field": 10081, "linguistic descriptions": 18010, "mathematical formulation": 19680, "presents formidable": 25585, "formidable challenge": 11764, "study compares": 31307, "oneshot settings": 23352, "settings task": 29744, "performance particularly": 24713, "central research": 4268, "specialized datasets": 30669, "notable gap": 23025, "capabilities smaller": 4070, "llama27b compared": 18205, "larger counterparts": 17319, "lengthy complex": 17717, "research achieving": 28286, "achieving f1score": 1091, "solely based": 30462, "problem description": 25989, "benchmark current": 3369, "current capabilities": 6486, "llms novel": 18820, "novel application": 23055, "application area": 2127, "groundwork future": 13296, "future improvements": 12033, "llms reflect": 18899, "lexical semantics": 17802, "architectures paper": 2469, "specifically investigate": 30747, "llm llama2": 18335, "contextualized word": 5963, "identification task": 13997, "lower layers": 19288, "contrast models": 6014, "increase performance": 14603, "unique model": 34361, "model design": 20461, "language abilities": 16033, "successfully improve": 31541, "generation performance": 12570, "retaining original": 28719, "adaptation large": 1180, "model foundation": 20536, "model vs": 20862, "instruction model": 15171, "model providing": 20737, "analysis present": 1948, "resources publicly": 28444, "play crucial": 25017, "information various": 14925, "types user": 34074, "final answer": 11176, "construct instruction": 5798, "diverse tabular": 8465, "generate accurate": 12261, "work underscores": 35796, "underscores importance": 34180, "abilities model": 634, "release dataset": 27906, "layers llms": 17441, "llms necessary": 18813, "inference phase": 14797, "llms expensive": 18585, "llms utilize": 19031, "generalization incontext": 12216, "paper try": 24143, "try answer": 33946, "shallow layers": 29774, "deep layers": 7322, "layers tasks": 17446, "experiments wellknown": 10502, "tasks maintaining": 32412, "maintaining comparable": 19419, "performance additionally": 24518, "additionally method": 1291, "comparable superior": 5092, "progress llms": 26216, "drawing inspiration": 8727, "llms capabilities": 18456, "significantly affect": 30033, "affect llms": 1537, "tasks particular": 32446, "gpt35 llama": 13027, "exhibit higher": 10220, "models adopt": 20965, "specific personas": 30709, "finetuned curated": 11305, "incur significant": 14659, "hindering widespread": 13718, "data contributes": 6660, "rtx 4090": 29002, "a100 40gb": 614, "single rtx": 30221, "highquality instructions": 13694, "tasks resulting": 32488, "designed address": 7719, "report provides": 28124, "provides overview": 26761, "additional pretraining": 1263, "word problem": 35644, "ambiguous contexts": 1875, "presents new": 25587, "evaluating llm": 9904, "develop dataset": 7913, "questions categories": 27100, "developed evaluation": 7925, "evaluation methodology": 9972, "text similarity": 32940, "mathematical expression": 19679, "llama claude": 18085, "avoid hallucination": 3038, "hallucination code": 13373, "models minimal": 21723, "minimal human": 20186, "serving large": 29664, "issue particularly": 15658, "particularly pronounced": 24354, "language like": 16110, "directly translating": 8245, "selfinstruct method": 29425, "based gpt4": 3170, "gpt4 translate": 13124, "quality gpt4": 26966, "construct evaluation": 5797, "benchmark containing": 3365, "80 questions": 554, "automatically assess": 2904, "gpt4 selfinstruct": 13115, "selfinstruct data": 29424, "base pretrained": 3129, "gpt35 davinci003": 13020, "benchmark released": 3408, "investigate basic": 15577, "standard benchmark": 30869, "typologically diverse": 34085, "models respond": 21937, "answering accuracy": 2056, "accuracy llms": 896, "use models": 34552, "differences models": 8039, "languages models": 16899, "explore differences": 10580, "identifying possible": 14022, "highlevel semantic": 13625, "semantic concepts": 29451, "prediction objective": 25430, "bias gradient": 3646, "linear representation": 17995, "using llama2": 34821, "simplified model": 30178, "cuttingedge large": 6571, "models employed": 21194, "specifically compare": 30730, "divideandconquer approach": 8488, "thought cot": 33079, "certain models": 4277, "gpt4 claude21": 13065, "accuracy rates": 905, "detrimental effects": 7905, "struggle accurately": 31236, "despite showing": 7811, "factors impact": 10870, "tasks extensive": 32325, "task complexity": 32097, "information density": 14858, "tasks potential": 32451, "future large": 12035, "underscores potential": 34182, "potential revolutionize": 25294, "efficiency deployment": 9000, "sophisticated models": 30526, "size computational": 30241, "models surprisingly": 22034, "compact powerful": 5067, "paper conducts": 24025, "conducts comprehensive": 5647, "intrinsic understanding": 15494, "potential limitations": 25272, "obtain significant": 23252, "decoderonly pretrained": 7264, "proved effective": 26669, "research question": 28354, "performances existing": 24820, "truly understand": 33929, "sentiment understanding": 29572, "scenarios especially": 29203, "llms shows": 18946, "tasks chat": 32261, "proposes new": 26629, "task aiming": 32075, "ability understanding": 725, "scenarios particularly": 29214, "task introduces": 32145, "auxiliary task": 2961, "factual hallucination": 10883, "hallucination problem": 13381, "hallucination issues": 13377, "error correction": 9711, "llama 2based": 18062, "synthetic errors": 31856, "akin human": 1678, "correction models": 6199, "models gains": 21302, "gpt4 results": 13114, "results synthetic": 28695, "llm queries": 18356, "help users": 13515, "product reviews": 26169, "inference highly": 14780, "queries present": 27024, "keyvalue kv": 15794, "kv cache": 15948, "inference engine": 14774, "model serving": 20775, "endtoend latency": 9435, "sql queries": 30840, "terms effectiveness": 32744, "llms transformerbased": 19008, "extraordinary capabilities": 10786, "paper test": 24142, "prompts bring": 26406, "potential task": 25301, "dataset revealed": 7035, "interesting observations": 15409, "task second": 32190, "provide feedback": 26701, "enhance quality": 9527, "languages despite": 16870, "despite considerable": 7772, "considerable advancements": 5704, "aims bridge": 1659, "llms covering": 18496, "containing total": 5837, "quality quantity": 26974, "data synthetic": 6887, "opensource pipeline": 23539, "diverse sources": 8464, "mixtral models": 20275, "models create": 21114, "toxicity alignment": 33316, "prompts multiple": 26433, "generate nontoxic": 12308, "llms establish": 18568, "languages data": 16868, "work released": 35772, "development reliable": 7972, "family caregivers": 10974, "urgent need": 34496, "quality care": 26945, "models potentially": 21827, "potentially used": 25316, "educational tools": 8846, "care study": 4166, "study aimed": 31297, "aimed develop": 1651, "requires fewer": 28252, "resources evaluate": 28435, "compared large": 5142, "rag framework": 27158, "improving quality": 14420, "falcon 7b": 10939, "parameters larger": 24265, "benchmark developed": 3381, "caregivers individuals": 4182, "using benchmark": 34739, "evaluating language": 9897, "provide accurate": 26682, "study measures": 31360, "memory access": 19801, "access language": 818, "tasks particularly": 32447, "underlying knowledge": 34154, "remain elusive": 27983, "lm gpt2": 19057, "synthetic tasks": 31860, "memorized content": 19796, "realistic scenarios": 27316, "answering code": 2057, "reproduce experiments": 28199, "values using": 35027, "fixed vocabulary": 11580, "existing transformerbased": 10322, "family ranging": 10984, "parameters large": 24261, "datasets comprising": 7080, "local models": 19134, "methods datasets": 20018, "datasets relative": 7168, "greatly simplify": 13278, "design generative": 7704, "iot devices": 15638, "llms stand": 18967, "era artificial": 9693, "directly deploying": 8236, "llms resourceconstrained": 18916, "resourceconstrained hardware": 28420, "cost paper": 6252, "models key": 21409, "key design": 15760, "transformer decoders": 33714, "given computational": 12743, "solving mathematical": 30513, "models termed": 22052, "autoregressive transformer": 2956, "compared 350m": 5118, "350m parameter": 345, "parameter opt": 24194, "nvidia jetson": 23195, "available soon": 3001, "information extracted": 14866, "previous state": 25879, "baseline results": 3258, "highlight critical": 13627, "critical role": 6393, "systems performance": 31913, "processing interpreting": 26106, "suggest promising": 31578, "task datasets": 32103, "family lightweight": 10979, "stateofthe art": 30918, "gemma models": 12146, "sizes models": 30300, "parameters provide": 24283, "models 11": 20919, "models alongside": 20977, "detailed description": 7836, "improving safety": 14422, "frontier models": 11933, "innovations language": 14993, "large curated": 16939, "play vital": 25020, "relatively little": 27888, "corpora paper": 6169, "paper compare": 24021, "relevant large": 27944, "intrinsic evaluation": 15490, "taken different": 32024, "different corpora": 8062, "practical impact": 25365, "differences training": 8041, "training specific": 33619, "clear differences": 4647, "training lms": 33555, "teaching llms": 32593, "instructions reinforcement": 15269, "learning development": 17558, "challenges stemming": 4376, "reliance human": 27961, "rlhf framework": 28907, "paradigm work": 24160, "llms following": 18619, "directly generate": 8238, "generation highquality": 12516, "excessive reliance": 10180, "reliance external": 27960, "advanced models": 1432, "way single": 35448, "rlhf stages": 28910, "highlight key": 13632, "key advantages": 15753, "instructions compared": 15246, "compared strong": 5173, "improved model": 14315, "privacy protection": 25953, "investigating performance": 15611, "opened new": 23454, "development new": 7963, "new types": 22864, "techniques used": 32670, "systems study": 31920, "using rouge": 34906, "rouge bleu": 28978, "different datasets": 8067, "models rag": 21884, "decrease performance": 7298, "based cosine": 3146, "generation summarization": 12608, "test hypothesis": 32770, "hypothesis conducted": 13964, "effective robust": 8894, "performing task": 24839, "important step": 14212, "dataset evaluated": 6983, "assess robustness": 2604, "scenarios results": 29219, "achieved highest": 1009, "robustness compared": 28944, "weather conditions": 35470, "llama achieved": 18070, "achieved good": 1005, "good results": 12824, "certain conditions": 4273, "llms neural": 18816, "performed large": 24830, "tests llm": 32808, "mathematical abilities": 19678, "domain finally": 8563, "human studies": 13865, "models case": 21046, "resources numerous": 28441, "llms mllms": 18802, "languages lrls": 16895, "lrls study": 19322, "strategies enhance": 31104, "bilingual data": 3707, "quantitatively evaluated": 26998, "llms tasks": 18996, "based human": 3173, "evaluation gpt4": 9958, "results showed": 28678, "qualitative analyses": 26930, "previously proposed": 25900, "monolingual models": 22209, "represent diverse": 28133, "probing task": 25983, "models opt": 21774, "models equally": 21210, "augmented finetuning": 2814, "finetuning scaling": 11516, "faces significant": 10830, "memory constraints": 19808, "multiple gpus": 22394, "efficient parameter": 9053, "resource management": 28414, "limited gpu": 17949, "gpu resources": 13177, "resources experiments": 28436, "runtime compared": 29017, "vram gpu": 35399, "probing classifiers": 25980, "applications automated": 2141, "model instead": 20585, "propose directly": 26504, "extraction capabilities": 10764, "efficient simultaneous": 9057, "introduce approach": 15498, "finetuning incurring": 11420, "minimal additional": 20182, "additional computational": 1252, "maintains high": 19432, "token generation": 33191, "baseline using": 3260, "using separate": 34908, "ner model": 22677, "challenge dataset": 4309, "fundamental cognitive": 11975, "deeply rooted": 7352, "llms release": 18901, "instances containing": 15112, "carefully selected": 4179, "manually annotated": 19563, "different levels": 8092, "dataset freely": 6994, "language different": 16063, "research suggests": 28364, "paper establish": 24038, "establish benchmark": 9767, "results popular": 28656, "task far": 32123, "models facto": 21257, "produce accurate": 26138, "realworld data": 27336, "data tends": 6890, "perspective llm": 24896, "curation pipeline": 6475, "automatically identifying": 2921, "existing data": 10266, "curation techniques": 6477, "comprehensive framework": 5379, "dataset trained": 7047, "assume access": 2659, "finetuning gpt35": 11414, "capabilities llm": 4038, "llm experiments": 18300, "reveal clear": 28791, "advancement generative": 1451, "intelligence genai": 15357, "diverse sectors": 8458, "performance computing": 24557, "concept generation": 5527, "guide autoregressive": 13343, "user prompts": 34666, "realworld evaluations": 27340, "llama2 llm": 18183, "data research": 6839, "critical step": 6394, "step aligning": 31037, "potential mitigating": 25278, "expanding domain": 10341, "distillation efficient": 8337, "prompt compression": 26315, "compress prompts": 5403, "information entropy": 14864, "challenge information": 4315, "fail capture": 10900, "essential information": 9759, "information needed": 14890, "llm compress": 18282, "crucial information": 6442, "use transformer": 34578, "bidirectional context": 3691, "lower latency": 19287, "explicitly learning": 10548, "outofdomain datasets": 23752, "datasets including": 7132, "ability different": 661, "llms additionally": 18425, "additionally model": 1293, "faster existing": 10999, "methods accelerating": 19999, "compression ratios": 5426, "tasks requires": 32484, "methods different": 20021, "users flexibly": 34690, "100 llms": 37, "effectiveness framework": 8947, "instructionfinetuned large": 15218, "analyze models": 1998, "reasoning context": 27396, "political science": 25095, "aware instruction": 3042, "translation capabilities": 33821, "commercial translation": 4996, "translation systems": 33853, "models mitigate": 21728, "llms translation": 19010, "instructions especially": 15250, "design twostage": 7716, "ability especially": 663, "llms maximum": 18797, "dataset elicit": 6979, "capabilities second": 4068, "samples randomly": 29087, "translation directions": 33825, "samples experiments": 29076, "benchmarks llama": 3458, "zeroshot directions": 35967, "compared competitive": 5126, "competitive baseline": 5220, "llama method": 18125, "translation quality": 33847, "agent trajectories": 1564, "abilities reasoning": 638, "recently efforts": 27592, "train language": 33363, "agents performance": 1573, "diverse prompting": 8450, "framework enables": 11845, "central role": 4269, "multiple rounds": 22416, "language agent": 16040, "using qlora": 34893, "qlora finetuning": 26924, "matches human": 19652, "iterative refinement": 15688, "lead performance": 17467, "agents significantly": 1574, "existing techniques": 10318, "prompting gpt4": 26376, "fully finetuned": 11955, "emergence numerous": 9175, "numerous large": 23184, "generation key": 12529, "key task": 15786, "intrinsic properties": 15493, "properties large": 26474, "gpt2 dialogpt": 12883, "chatgpt flant5": 4469, "sizes small": 30304, "small medium": 30354, "medium large": 19776, "propose different": 26503, "models analysis": 20979, "shows improvement": 29927, "quality datasets": 26951, "generating counter": 12417, "counter speech": 6291, "speech models": 30784, "models metrics": 21722, "speech generation": 30781, "models exponentially": 21243, "encounter significant": 9394, "approach employs": 2268, "lowrank matrix": 19307, "accurate approximation": 920, "training downstream": 33503, "memory savings": 19828, "improves downstream": 14372, "boosting llms": 3824, "llms currently": 18502, "tasks realworld": 32473, "lowdata regime": 19279, "making finetuning": 19503, "strategy uses": 31130, "small seed": 30366, "seed dataset": 29353, "augmenting additional": 2823, "used finetuning": 34602, "student llm": 31253, "initial seed": 14964, "incorrect data": 14583, "examples llm": 10133, "enhances performance": 9551, "achieve improvements": 970, "dataset 326": 6934, "regular finetuning": 27826, "regime using": 27816, "using llama27b": 34823, "contemporary large": 5842, "llms engage": 18563, "deploy llms": 7630, "interaction history": 15385, "llm prompt": 18353, "using variety": 34936, "prompt designs": 26319, "models robustly": 21949, "gpt4 chainofthought": 13061, "did result": 8031, "result robust": 28545, "including chainofthought": 14463, "dataset curation": 6968, "achieve best": 945, "models foundation": 21293, "leverages llms": 17770, "llms annotate": 18433, "large unlabeled": 17284, "transformer encoders": 33716, "encoders like": 9378, "approach slightly": 2340, "scaling behaviors": 29159, "work create": 35685, "outperforming openais": 23801, "checkpoint publicly": 4520, "code facilitate": 4750, "use natural": 34554, "potential benefits": 25244, "models billions": 21028, "t5 existing": 31942, "models size": 21983, "performance sentence": 24747, "positive correlation": 25193, "particularly noteworthy": 24351, "model available": 20383, "methods rely": 20086, "industry applications": 14745, "remarkable zeroshot": 28064, "examples introduce": 10131, "comprehensive comparison": 5360, "shows approach": 29922, "flant5 11b": 11592, "stateoftheart joint": 30934, "learning gpt35": 17574, "gpt35 175b": 13013, "finetuning requires": 11510, "requires training": 28264, "data yield": 6916, "yield comparable": 35908, "accurate information": 925, "literature review": 18045, "review process": 28830, "retrieval using": 28758, "using stateoftheart": 34920, "structured text": 31229, "analysis techniques": 1971, "key elements": 15763, "analyze challenges": 1989, "gpt35 textdavinci003": 13035, "accuracy 58": 859, "evaluating risks": 9913, "ongoing dialogue": 23356, "major challenges": 19440, "llm activations": 18264, "including truthfulqa": 14525, "metric improvement": 20122, "improvement baseline": 14331, "kullbackleibler divergence": 15946, "hallucination detection": 13376, "adoption large": 1408, "llms facilitated": 18599, "significant concern": 29971, "rag emerged": 27157, "emerged highly": 9160, "highly promising": 13666, "text produced": 32921, "produced llms": 26157, "retrieved documents": 28773, "ukraine war": 34093, "aigenerated text": 1635, "unable accurately": 34101, "introduces new": 15543, "new type": 22863, "learning mtl": 17613, "incorporating stateoftheart": 14579, "compared sota": 5168, "rank llms": 27224, "hallucinations generate": 13390, "llms answer": 18434, "users information": 34692, "conversational context": 6097, "approaches model": 2385, "information needs": 14891, "query use": 27032, "retrieval paper": 28750, "retrieval methods": 28746, "methods leverage": 20059, "generating appropriate": 12410, "appropriate response": 2407, "generate multiple": 12303, "implement evaluate": 14158, "models utilizing": 22107, "utilizing various": 34977, "llama2 chat": 18166, "based gpt": 3166, "reveal effectiveness": 28795, "developing generative": 7944, "field generative": 11137, "intelligence gai": 15356, "chatbots chatgpt": 4452, "google bard": 12826, "including education": 14475, "potential higher": 25260, "acceptance model": 813, "method encompasses": 19911, "literature databases": 18041, "critical elements": 6387, "main focus": 19396, "given prompt": 12762, "prompt like": 26333, "additionally observed": 1295, "final layer": 11177, "correct predictions": 6193, "improve factual": 14266, "neural machine translation": 22732, "using pretrained language": 34879, "pretrained language models": 25664, "language models lms": 16596, "models lms various": 21683, "lms various natural": 19123, "various natural language": 35125, "natural language processing": 22535, "language processing tasks": 16800, "tasks work introduce": 32554, "machine translation nmt": 19361, "language models large": 16404, "models large language": 21421, "large language models": 16989, "language models range": 16677, "gpt2 language model": 12909, "masked language model": 19611, "masked language models": 19616, "language models mlms": 16627, "nlp tasks instead": 22955, "autoregressive language models": 2945, "language models like": 16416, "models like gpt2": 21453, "constrained text generation": 5782, "largescale pretrained language": 17374, "language models demonstrated": 16299, "models demonstrated impressive": 21136, "demonstrated impressive performance": 7529, "text generation task": 32883, "commonsense reasoning given": 5041, "task generate coherent": 32131, "stateoftheart text generation": 30999, "text generation models": 32878, "language models gpt": 16368, "models achieved stateoftheart": 20952, "achieved stateoftheart results": 1019, "et al 2018": 9791, "model improve performance": 20572, "performance complex problems": 24556, "et al 2016": 9790, "task model trained": 32160, "model trained scratch": 20836, "setting new stateoftheart": 29725, "tiny fraction parameters": 33173, "conduct thorough analysis": 5626, "previous work focused": 25892, "models large pretrained": 21426, "large pretrained language": 17260, "language models led": 16415, "results natural language": 28650, "natural language understanding": 22569, "language understanding tasks": 16850, "natural language models": 22533, "language models machine": 16614, "machine learning tasks": 19354, "models similar size": 21979, "parameters language model": 24259, "language model recently": 16196, "neural language models": 22727, "language models trained": 16732, "using natural language": 34850, "natural language queries": 22562, "finetuning pretrained models": 11492, "models answer questions": 20981, "code trained models": 4825, "data augmentation using": 6614, "using pretrained transformer": 34883, "pretrained transformer models": 25766, "models language model": 21416, "language model based": 16122, "model based pretrained": 20389, "pretrained models bert": 25719, "different nlp tasks": 8113, "nlp tasks paper": 22961, "transformer based pretrained": 33710, "pretrained models autoregressive": 25718, "autoencoder models bert": 2844, "pretrained seq2seq model": 25747, "generative pretrained language": 12686, "pretrained language model": 25657, "language model gpt2": 16149, "generative language models": 12663, "language models paper": 16642, "models paper presents": 21796, "paper presents empirical": 24099, "presents empirical study": 25583, "language models plms": 16653, "maximum likelihood estimation": 19707, "taskoriented dialogue systems": 32222, "models using data": 22102, "texttotext transfer transformer": 33017, "transfer transformer t5": 33684, "fewer parameters compared": 11090, "natural language evaluation": 22515, "realworld relation extraction": 27345, "limited training data": 17971, "augment training data": 2794, "finetuning gpt2 generate": 11412, "training data used": 33493, "11 f1 score": 71, "new state art": 22847, "f1 points average": 10816, "improvements nlp tasks": 14362, "generative language model": 12662, "built using gpt2": 3938, "transformer based models": 33709, "outofdomain test sets": 23755, "baseline future research": 3246, "models lms bert": 21670, "lms bert gpt2": 19073, "tasks recent work": 32475, "recent work focused": 27568, "models substantially outperform": 22023, "deep learning architectures": 7326, "paper investigate commonsense": 24069, "natural language inference": 22525, "performance language models": 24643, "language models finetuned": 16344, "multiple choice question": 22383, "performance experimental results": 24592, "powerful generative model": 25339, "systems paper presents": 31912, "paper presents fewshot": 24101, "language model pretraining": 16192, "model pretraining knowledge": 20725, "knowledge pretrained language": 15888, "language modeling tasks": 16227, "neural network language": 22745, "network language models": 22693, "language models lm": 16595, "using neural text": 34856, "neural text generation": 22761, "text generation based": 32868, "propose new method": 26539, "new method called": 22821, "methods significantly improve": 20095, "using generative language": 34786, "language models work": 16759, "learning natural language": 17620, "openais generative pretrained": 23439, "generative pretrained transformer": 12692, "pretrained transformer gpt2": 25759, "language models synthetic": 16722, "data used train": 6903, "deep learning models": 7332, "fields natural language": 11158, "language processing nlp": 16789, "information retrieval ir": 14909, "learning models like": 17611, "recurrent neural networks": 27684, "neural networks rnns": 22755, "long shortterm memory": 19183, "bidirectional encoder representations": 3693, "encoder representations transformers": 9355, "representations transformers bert": 28176, "deep neural network": 7338, "small models large": 30360, "recently published work": 27617, "work deep learning": 35687, "large generative language": 16951, "language models gpt2": 16369, "downstream tasks finetuning": 8693, "human machinegenerated text": 13846, "models elmo bert": 21187, "bert gpt gpt2": 3507, "models previous works": 21852, "largescale language models": 17360, "models lms able": 21669, "natural language generate": 22519, "using smaller lms": 34918, "guide generation large": 13346, "fast generation speed": 10993, "advanced neural language": 1438, "language models assessing": 16249, "limitations language models": 17924, "tradeoff language models": 33337, "language models including": 16386, "openended text generation": 23463, "scaling model size": 29176, "model size efficiently": 20789, "propose simple effective": 26567, "pretrained gpt2 model": 25650, "existing training data": 10321, "neural toxic degeneration": 22763, "language models pretrained": 16661, "pretrained neural language": 25739, "models lms prone": 21677, "controllable text generation": 6061, "preventing toxic degeneration": 25861, "gpt2 radford et": 12943, "radford et al": 27151, "et al 2019": 9792, "language models recently": 16690, "models lms demonstrated": 21671, "lms demonstrated impressive": 19081, "demonstrated impressive abilities": 7527, "paper propose method": 24110, "set linguistic features": 29693, "humans process language": 13931, "datasets compare performance": 7078, "bert model achieves": 3519, "generated language model": 12366, "language model like": 16162, "model like gpt2": 20615, "machine translation models": 19359, "code data available": 4729, "achieved impressive results": 1012, "range natural language": 27200, "language understanding nlu": 16844, "extensive experimental results": 10690, "experimental results method": 10401, "relying external knowledge": 27977, "outperforms baseline methods": 23807, "commonsense reasoning ability": 5040, "language models question": 16676, "question answering recent": 27054, "recent works shown": 27574, "shown language models": 29892, "generative models t5": 12680, "models t5 bart": 22042, "diverse range datasets": 8454, "demonstrate effectiveness methods": 7448, "existing pretrained models": 10310, "pretrained models new": 25726, "generated gpt2 model": 12359, "artificial neural networks": 2540, "natural language generation": 22520, "stateoftheart approaches demonstrate": 30922, "openais gpt2 model": 23443, "gpt2 model successfully": 12922, "existing work does": 10325, "powerful language models": 25341, "language models able": 16235, "human evaluation shows": 13808, "evaluation shows model": 10012, "model able generate": 20339, "make publicly available": 19480, "publicly available code": 26851, "language models bert": 16257, "models bert xlnet": 21021, "long training time": 19189, "extremely large batch": 10799, "large batch sizes": 16931, "computer vision tasks": 5508, "downstream tasks results": 8700, "achieves comparable performance": 1039, "leverage large pretrained": 17755, "language models perform": 16649, "perform downstream tasks": 24484, "language model parameters": 16185, "finetuning natural language": 11462, "language generation tasks": 16091, "trillion parameter models": 33904, "parameters constant computational": 24235, "constant computational cost": 5771, "scale language models": 29136, "present indepth analysis": 25536, "indepth analysis impact": 14675, "neural language model": 22725, "work propose use": 35760, "build machine learning": 3916, "machine learning models": 19349, "experiments publicly available": 10473, "target domain available": 32049, "t5 language model": 31952, "tasks text classification": 32527, "outperforms strong baselines": 23858, "fluent natural language": 11636, "achieve good performance": 965, "second main contribution": 29324, "create synthetic data": 6355, "synthetic data improve": 31852, "nlp machine learning": 22937, "training common practice": 33451, "data boost performance": 6628, "using synthetic data": 34924, "generate synthetic data": 12326, "convolutional neural networks": 6125, "data improve performance": 6732, "performance natural language": 24688, "finetune pretrained gpt2": 11299, "pretrained gpt2 transformer": 25651, "gpt2 transformer model": 12961, "model generate synthetic": 20544, "natural language explanations": 22516, "language model perform": 16186, "demonstrated outstanding performance": 7537, "performance nlp tasks": 24693, "pretrained roberta gpt2": 25744, "improve performance particular": 14286, "finetuning pretrained language": 11487, "pretrained language gpt2": 25656, "achieve new stateoftheart": 974, "commonsense question answering": 5038, "use pretrained language": 34561, "paper present novel": 24091, "generative models gpt2": 12678, "despite recent progress": 7807, "models lms t5": 21681, "remains largely underexplored": 28002, "largely underexplored paper": 17311, "paper present study": 24094, "present study investigate": 25556, "empirical results demonstrate": 9234, "best performing models": 3571, "analysis reveals models": 1961, "dataset publicly available": 7028, "autoregressive decoding process": 2938, "models t5 gpt2": 22043, "source code available": 30549, "language models recent": 16683, "models recent years": 21909, "size pretrained language": 30275, "training models scratch": 33569, "number taskspecific parameters": 23163, "limited computational resources": 17945, "downstream tasks experimental": 8690, "tasks experimental results": 32322, "tens billions parameters": 32717, "source code model": 30551, "pretraining language understanding": 25808, "language understanding generation": 16842, "pretrained models achieved": 25717, "stateoftheart results various": 30987, "results various natural": 28706, "processing nlp tasks": 26121, "t5 gpt3 shown": 31950, "language models improve": 16382, "175 billion parameters": 173, "propose unified framework": 26581, "understanding generation tasks": 34229, "generation tasks zeroshot": 12617, "tasks zeroshot learning": 32556, "learning fewshot learning": 17567, "fewshot learning finetuning": 11111, "10 billion parameters": 27, "results model outperforms": 28646, "model outperforms stateoftheart": 20675, "outperforms stateoftheart models": 23855, "nlp tasks english": 22951, "spanish language models": 30595, "models pretrained using": 21848, "extractive question answering": 10780, "question answering dataset": 27042, "based large language": 3186, "large language model": 16960, "language model t5": 16205, "tasks conduct extensive": 32273, "conduct extensive experiments": 5607, "gpt2 based model": 12874, "text generation ability": 32866, "autoregressive language model": 2943, "experimental results performance": 10404, "language models complex": 16282, "models complex tasks": 21076, "relatively small number": 27893, "small number examples": 30362, "language models small": 16707, "training machine learning": 33559, "transformerbased pretrained language": 33766, "conventional nlp tasks": 6077, "language models performance": 16650, "models lms exhibit": 21673, "human sentence processing": 13863, "model best model": 20397, "named entity recognition": 22486, "entity recognition ner": 9649, "significant progress recent": 30014, "progress recent years": 26227, "stateoftheart sota models": 30993, "task aims generate": 32077, "facilitate research task": 10845, "publicly traded companies": 26867, "language model achieving": 16115, "achieve sota results": 988, "language models financial": 16343, "widelyused pretrained language": 35581, "holtzman et al": 13748, "et al 2020": 9795, "hidden states gpt2": 13540, "finegrained human annotations": 11274, "datasets demonstrate superior": 7092, "demonstrate superior performance": 7504, "superior performance sota": 31653, "processing nlp domain": 26117, "performance downstream tasks": 24575, "large number parameters": 17253, "despite superior performance": 7820, "general language understanding": 12174, "language understanding evaluation": 16841, "evaluation benchmark tasks": 9925, "models pretrained language": 21841, "wide range natural": 35557, "nlp community existing": 22927, "existing works focus": 10328, "achieve better performance": 948, "recently emerged effective": 27594, "emerged effective method": 9158, "adapting pretrained language": 1216, "tasks paper investigate": 32443, "natural language utterances": 22576, "conduct ablation studies": 5583, "different model scales": 8107, "increasing model scale": 14623, "models like gpt3": 21454, "like gpt3 t5": 17870, "gpt3 t5 research": 13008, "new model architectures": 22824, "generalization language models": 12219, "language models computational": 16283, "recent years pretrained": 27579, "years pretrained language": 35896, "models bert gpt2": 21018, "shown promising results": 29909, "neural network architectures": 22740, "test set compared": 32787, "range downstream tasks": 27193, "models deployed resourceconstrained": 21141, "proposed framework dubbed": 26600, "parameter efficient finetuning": 24180, "approach extensive experiments": 2280, "backbones bert roberta": 3059, "bert roberta gpt2": 3529, "roberta gpt2 dozens": 28918, "gpt2 dozens datasets": 12885, "achieving comparable performance": 1089, "language model finetuning": 16145, "finetuning language models": 11426, "respect input length": 28452, "context paper propose": 5906, "current pretrained language": 6525, "fraction computational cost": 11817, "approach using gpt2": 2357, "proposed model achieves": 26613, "language models data": 16296, "data augmentation techniques": 6612, "language models shown": 16702, "data augmentation text": 6613, "improve classification performance": 14258, "outperform competitive baselines": 23769, "text generation using": 32885, "current language models": 6501, "language models generate": 16358, "models generate highquality": 21308, "generate highquality text": 12287, "models lstm transformer": 21693, "training neural network": 33572, "neural network models": 22748, "neural networks generalize": 22753, "reduce computational cost": 27703, "existing methods struggle": 10295, "language models catastrophic": 16274, "models catastrophic forgetting": 21049, "machine learning shifting": 19352, "models trained selfsupervised": 22074, "large amounts data": 16928, "large number tasks": 17254, "raises important question": 27168, "pretrained models t5": 25728, "systems use large": 31922, "large neural networks": 17251, "neural networks require": 22754, "modern language models": 22160, "models bert t5": 21020, "extensive experiments different": 10697, "models trained english": 22067, "introduce novel method": 15530, "novel method called": 23096, "static word embeddings": 31014, "outperforms models comparable": 23835, "models comparable size": 21070, "training large language": 33544, "language models new": 16631, "make code models": 19455, "code models publicly": 4790, "models publicly available": 21879, "publicly available efficient": 26855, "adaptation pretrained language": 1188, "language models remarkable": 16693, "remarkable success large": 28057, "success large language": 31515, "language models driven": 16314, "models trained massive": 22070, "adaptation diverse domains": 1178, "method based observation": 19885, "frozen pretrained language": 11940, "paper proposes efficient": 24122, "inference computational cost": 14767, "wide range inference": 35554, "higher transformer layers": 13612, "inference latency experimental": 14787, "latency experimental results": 17404, "text generation tasks": 32884, "benchmarks like glue": 3455, "language models llms": 16425, "generation recent years": 12591, "seq2seq language model": 29590, "texttotext language models": 33014, "language models structured": 16714, "question answering knowledge": 27046, "paper overcome limitation": 24084, "achieves stateoftheart performance": 1072, "zeroshot fewshot learning": 35973, "pruning toxicity bias": 26817, "language models test": 16729, "knowledge distillation pruning": 15836, "generate humanlike text": 12289, "language models end": 16321, "language processing models": 16788, "machine learning ml": 19346, "analysis neural networks": 1945, "tasks prior work": 32457, "computer vision cv": 5506, "large pretrained transformers": 17270, "data model size": 6775, "nlp models including": 22939, "models including gpt2": 21380, "large model pretraining": 17232, "higher training throughput": 13610, "neural network training": 22750, "layer pretrained model": 17430, "pretrained model approach": 25712, "finetuning pretrained model": 11491, "learning models large": 17609, "language models llm": 16422, "graph neural networks": 13228, "language models building": 16268, "capable language models": 4110, "experiments t5 bert": 10489, "code demo available": 4747, "language models parameterefficient": 16646, "achieve superior performances": 997, "language understanding benchmarks": 16839, "achieved remarkable success": 1015, "model performance compared": 20697, "code publicly available": 4803, "language generation nlg": 16089, "gpt2 generated texts": 12895, "training data increase": 33479, "data source code": 6871, "language models various": 16746, "structures neural language": 31233, "specific language model": 30701, "recurrent neural network": 27682, "neural network rnn": 22749, "language models transformer": 16738, "language models novel": 16636, "language models improving": 16385, "text generation various": 32886, "tasks language models": 32388, "completion language models": 5260, "zhou et al": 36004, "et al 2021": 9796, "chen et al": 4530, "language model outperforms": 16181, "model outperforms gpt2": 20673, "al 2019 gpt3": 1683, "2019 gpt3 brown": 224, "gpt3 brown et": 12984, "brown et al": 3898, "model code models": 20425, "language models deep": 16297, "models deep learning": 21128, "deep learning dl": 7329, "alzheimers disease ad": 1864, "ability generalize small": 672, "publicly available research": 26861, "model parameters directly": 20690, "propose novel method": 26551, "data widely used": 6914, "language models language": 16399, "generalization natural language": 12221, "processing nlp algorithms": 26115, "remains significant challenge": 28013, "significant challenge paper": 29965, "paper addresses issue": 24006, "transformerbased language models": 33749, "language models scale": 16698, "hundreds billions parameters": 13944, "open source available": 23422, "training large neural": 33548, "address issues propose": 1339, "models lms shown": 21679, "knowledge pretraining corpora": 15890, "performance fewshot scenarios": 24598, "alleviates exposure bias": 1794, "text generation paper": 32879, "language model introduce": 16158, "language model trained": 16207, "model publicly available": 20739, "training evaluation code": 33514, "code model weights": 4783, "language models successfully": 16720, "zero fewshot learning": 35938, "models paper introduces": 21794, "models 13 billion": 20921, "billion 13 billion": 3714, "13 billion parameters": 108, "billion parameters trained": 3719, "low resource languages": 19275, "multilingual tasks including": 22333, "tasks including classification": 32365, "models follow instructions": 21291, "despite order magnitude": 7799, "order magnitude smaller": 23677, "requires significant human": 28262, "significant human effort": 29985, "paper propose conversational": 24108, "user simulator called": 34673, "automated natural language": 2871, "language generation metrics": 16085, "capable providing accurate": 4119, "bert language models": 3515, "social media platforms": 30425, "language models present": 16660, "using masked language": 34837, "masked language modelling": 19615, "generative transformer model": 12711, "model capable generating": 20411, "deep learning approach": 7325, "berts masked language": 3547, "masked language modeling": 19612, "language modeling mlm": 16221, "controlled text generation": 6066, "generation tasks demonstrate": 12614, "prompting large language": 26382, "language model llm": 16165, "question answering natural": 27048, "answering natural language": 2066, "challenge natural language": 4320, "processing nlp systems": 26120, "machine translation mt": 19360, "human evaluation results": 13807, "similar model trained": 30110, "prompt engineering paper": 26323, "introduce new benchmark": 15520, "diverse tasks datasets": 8467, "translation summarization question": 33851, "summarization question answering": 31623, "model better results": 20399, "language models evaluation": 16327, "conduct comprehensive empirical": 5591, "comprehensive empirical study": 5366, "performance existing stateoftheart": 24590, "models significantly outperform": 21976, "new stateoftheart performance": 22849, "models source code": 21993, "models including t5": 21384, "language inference nli": 16095, "language models right": 16697, "set nlp tasks": 29700, "propose novel algorithm": 26544, "benchmark datasets various": 3375, "models bart t5": 21006, "bart t5 gpt3": 3110, "demonstrate large language": 7467, "perform ablation studies": 24470, "highlight transformative potential": 13638, "language models chatgpt": 16276, "field natural language": 11144, "endtoend speech recognition": 9441, "yield good performance": 35912, "tackle challenges propose": 31996, "glancing language model": 12788, "language model glm": 16148, "word error rate": 35639, "comparable performance stateoftheart": 5087, "generalpurpose pretrained language": 12258, "new synthetic data": 22854, "issue propose knowledge": 15662, "data augmentation model": 6611, "language model pretrained": 16191, "unified texttotext format": 34340, "training objectives different": 33579, "best knowledge attempt": 3560, "training data augmentation": 33468, "extensive experiments synthetic": 10702, "models bert albert": 21016, "model pretraining finetuning": 20724, "finetuning downstream tasks": 11392, "variety nlp tasks": 35069, "achieve superior performance": 996, "college entrance examination": 4941, "pretraining natural language": 25825, "remarkable success natural": 28060, "success natural language": 31520, "showcase superior performance": 29842, "superior performance compared": 31650, "largescale natural language": 17368, "text generation model": 32876, "challenging task demands": 4399, "language model generation": 16147, "language models task": 16727, "results reveal current": 28673, "language models struggle": 16715, "representation linguistic phenomena": 28143, "pretrained transformerbased language": 25768, "language models widely": 16756, "models widely used": 22130, "understanding nlu natural": 34255, "nlu natural language": 22972, "training language models": 33540, "language models demonstrate": 16298, "financial sentiment analysis": 11221, "deep learning techniques": 7333, "stateoftheart models like": 30958, "batch size learning": 3288, "size learning rate": 30260, "language models infer": 16391, "work introduce novel": 35725, "representations pretrained language": 28171, "language models specifically": 16711, "pretrained bert gpt2": 25631, "bert gpt2 language": 3510, "gpt2 language models": 12911, "language models encoder": 16320, "natural language datasets": 22512, "automatically generate highquality": 2913, "widely used datasets": 35577, "demonstrate effectiveness method": 7447, "different context lengths": 8059, "model achieves best": 20347, "general language modeling": 12172, "language modeling ability": 16215, "closedbook question answering": 4684, "question answering datasets": 27043, "tasks summarization machine": 32520, "summarization machine translation": 31619, "powered large language": 25333, "study shed light": 31398, "causal language models": 4243, "language models general": 16356, "directions future research": 8229, "train evaluate models": 33362, "problems deep learning": 26024, "task use pretrained": 32207, "neural network model": 22747, "improves model performance": 14385, "model performance significantly": 20706, "best model outperforms": 3564, "outperforms current stateoftheart": 23817, "current stateoftheart sota": 6537, "trained natural language": 33415, "model achieves stateoftheart": 20350, "large models nlp": 17238, "models nlp tasks": 21755, "benefit using large": 3485, "using large language": 34808, "llms 100 billion": 18399, "100 billion parameters": 35, "pretrained models scale": 25727, "efficient finetuning methods": 9037, "language model paper": 16184, "recently large language": 27607, "deep learning based": 7327, "2022 shared task": 231, "language models substantially": 16718, "prohibitively expensive motivating": 26241, "translation natural language": 33838, "understanding nlu tasks": 34258, "improve performance downstream": 14283, "transformers shown remarkable": 33796, "shown remarkable success": 29915, "performance various tasks": 24808, "transformerbased text generation": 33769, "transformer models generative": 33733, "models generative pretrained": 21316, "pretrained transformer gpt": 25757, "achieved remarkable performance": 1014, "performance text generation": 24784, "generation natural language": 12560, "performance significantly degrades": 24753, "significantly degrades generation": 30045, "generation paper present": 12567, "xilinx alveo u280": 35872, "high bandwidth memory": 13553, "bandwidth memory hbm": 3091, "models llms training": 21652, "recent large language": 27524, "models llms demonstrated": 21497, "llms demonstrated remarkable": 18520, "outperform larger models": 23779, "larger language models": 17322, "llms significantly outperform": 18951, "transformer language model": 33724, "given natural language": 12757, "natural language prompt": 22560, "match exceed performance": 19642, "models llms shown": 21629, "shown exceptional performance": 29876, "exceptional performance variety": 10171, "variety natural language": 35066, "natural language tasks": 22568, "llms indepth analysis": 18716, "understanding llms pretrained": 34248, "natural language corpora": 22510, "compared models trained": 5154, "compared previous best": 5163, "time memory complexity": 33135, "outperforms prior methods": 23848, "offtheshelf pretrained language": 23332, "data experimental results": 6703, "achieves significant improvement": 1063, "work focuses simple": 35714, "zeroshot fewshot settings": 35976, "language models finetuning": 16345, "language models collection": 16280, "improve model performance": 14276, "model performance generalization": 20700, "performance generalization unseen": 24612, "generalization unseen tasks": 12229, "tasks paper explore": 32442, "data instruction finetuning": 6740, "stateoftheart performance benchmarks": 30970, "method improving performance": 19933, "evaluation large language": 9966, "language models understand": 16740, "publicly available pretrained": 26860, "language models 13b": 16232, "models 13b parameters": 20923, "language model train": 16206, "language models increasingly": 16388, "openaccess multilingual language": 23430, "semiparametric language models": 29501, "number model parameters": 23152, "multiple natural language": 22404, "paper develop novel": 24034, "semiparametric language model": 29500, "language model architecture": 16119, "texttotext language model": 33013, "superior zeroshot performance": 31659, "performance unseen tasks": 24791, "smaller model scale": 30382, "model scale compared": 20765, "leveraging pretrained models": 17793, "models recently gained": 21911, "models long short": 21688, "long short term": 19180, "short term memory": 29817, "leverage attention mechanism": 17745, "pretrained causal language": 25634, "model downstream task": 20474, "parameter language model": 24185, "significant computational resources": 29970, "carbon footprint ml": 4161, "future research directions": 12045, "propose novel learning": 26550, "helps language models": 13525, "language models better": 16262, "models better understand": 21025, "using language model": 34805, "language model components": 16127, "absolute f1 points": 763, "large neural language": 17247, "synthetic data generation": 31851, "generation method based": 12546, "multilingual language model": 22311, "language model large": 16159, "model large language": 20603, "shown able perform": 29868, "natural language instructions": 22529, "led widespread adoption": 17689, "language model designed": 16132, "achieves competitive performance": 1043, "competitive performance wide": 5227, "performance wide variety": 24815, "multitask prompted finetuning": 22454, "facilitate future research": 10841, "release models code": 27913, "models llms led": 21572, "understanding generation abilities": 34228, "increasing model size": 14624, "size solution propose": 30286, "models shown great": 21970, "shown great performance": 29880, "great performance tasks": 13253, "shown improve performance": 29890, "performance various nlp": 24806, "various nlp tasks": 35131, "nlp tasks just": 22956, "known incontext learning": 15936, "semantic parsing tasks": 29463, "tasks incontext learning": 32370, "open source model": 23425, "underlying language model": 34156, "previous supervised stateoftheart": 25888, "adapting large language": 1209, "finetuning large language": 11428, "language models different": 16310, "methods reduce number": 20085, "conditional language modeling": 5570, "language modeling objective": 16222, "leverage large language": 17753, "language models diverse": 16311, "landscape large language": 16024, "performance does scale": 24572, "llms like gpt": 18759, "gpt2 gpt3 models": 12902, "models paper examines": 21791, "domains using dataset": 8644, "largelanguage models llms": 17305, "performance smaller models": 24757, "smaller models using": 30391, "llama2 mpt falcon": 18190, "model achieves competitive": 20349, "model performance finally": 20699, "knowledge large language": 15872, "models llms trained": 21651, "impressive performance diverse": 14242, "language models particular": 16648, "active vs passive": 1149, "results important aspects": 28629, "language modeling task": 16226, "multilingual language models": 22312, "mbert xlmr mt5": 19713, "enabling natural language": 9327, "knowledge generative language": 15855, "largescale generative language": 17354, "language models glms": 16365, "secure multiparty computation": 29347, "present novel approach": 25545, "novel approach generating": 23060, "generation task using": 12612, "use training data": 34577, "gpt2 model able": 12917, "previous research focused": 25875, "multilingual large language": 22314, "dataset used train": 7052, "large models datasets": 17234, "wide range research": 35562, "share lessons learned": 29782, "training large deep": 33543, "deep neural networks": 7342, "language models vision": 16749, "base large models": 3120, "models trained scratch": 22073, "language models training": 16734, "incontext learning abilities": 14549, "models shown perform": 21971, "shown perform better": 29903, "wide variety tasks": 35567, "incontext learning paradigm": 14564, "paper investigate hypothesis": 24070, "ability large language": 690, "language model incontext": 16155, "billion parameter language": 3716, "number incontext examples": 23144, "overall study provides": 23916, "perform incontext learning": 24492, "incontext learning multilingual": 14563, "nlp large language": 22935, "tasks named entity": 32424, "pretrained sequencetosequence models": 25749, "tuning language models": 33986, "language models human": 16379, "enables pretrained language": 9307, "natural language descriptions": 22514, "approaches rely vast": 2389, "rely vast amounts": 27974, "various benchmarks results": 35079, "models llms surprisingly": 21646, "generating natural language": 12436, "natural language reasoning": 22565, "question answering qa": 27051, "code data prompts": 4735, "safety large language": 29049, "different llms using": 8099, "gpt35 gpt4 showed": 13026, "direct preference optimization": 8214, "sequence labeling tasks": 29600, "target language paper": 32052, "language paper present": 16769, "leverages large pretrained": 17769, "pretrained texttotext language": 25754, "language models stateoftheart": 16713, "multilingual t5 model": 22331, "lack highquality training": 15991, "highquality training data": 13704, "tasks code data": 32265, "code data publicly": 4737, "data publicly available": 6821, "generative ai models": 12648, "large generative models": 16952, "models able perform": 20937, "pretrained model finetuning": 25715, "bert albert roberta": 3496, "recent works proposed": 27573, "methods solve problem": 20097, "work paper propose": 35741, "paper propose novel": 24113, "datasets experiment results": 7108, "experiment results proposed": 10381, "textual style transfer": 33040, "propose novel task": 26553, "pretrained language generation": 25654, "language generation models": 16086, "effectiveness large language": 8951, "evaluation language models": 9964, "performance various natural": 24802, "tasks question answering": 32469, "question answering summarization": 27055, "summarization large language": 31615, "models llms used": 21657, "language understanding capabilities": 16840, "task paper explore": 32172, "number examples prompt": 23142, "llms paper demonstrate": 18838, "multiple tasks including": 22423, "gpt2 model generates": 12919, "using realworld datasets": 34898, "better baseline model": 3595, "achieves stateoftheart results": 1073, "improve zeroshot generalization": 14303, "zeroshot generalization ability": 35978, "ability language models": 688, "increased model parameters": 14610, "generation large language": 12534, "finetuned gpt2 model": 11318, "gpt2 model trained": 12923, "architectures like bert": 2467, "computer vision models": 5507, "empirical evaluation different": 9221, "questionanswering qa datasets": 27086, "perform extensive evaluation": 24488, "language models fewshot": 16342, "finetuned t5 models": 11356, "state art large": 30904, "models like bert": 21448, "like bert gpt": 17846, "bert gpt t5": 3508, "aspectbased sentiment analysis": 2571, "positive negative neutral": 25196, "significant performance improvements": 30006, "outperforms previous stateoftheart": 23844, "previous stateoftheart sota": 25884, "strong generalization ability": 31174, "qa language models": 26912, "stateoftheart language models": 30938, "including domain adaptation": 14474, "guiding large language": 13361, "guide llms generating": 13350, "data reinforcement learning": 6830, "dialogue response generation": 8019, "dialogues multiwoz dataset": 8026, "size large language": 30256, "language models continue": 16290, "reduce computational overhead": 27705, "language generation paper": 16090, "comprehension natural language": 5348, "sequence generation models": 29596, "foundation language models": 11794, "language models introduce": 16394, "language models ranging": 16678, "train stateoftheart models": 33377, "using publicly available": 34891, "publicly available datasets": 26854, "release models research": 27914, "models research community": 21934, "largest language model": 17395, "language model explicitly": 16139, "available hugging face": 2980, "language models plm": 16652, "plms gpt2 t5": 25048, "language models examine": 16328, "models trained large": 22069, "language model does": 16134, "training data finetuning": 33475, "classification semantic segmentation": 4610, "analysis question answering": 1954, "powerful large language": 25343, "natural language question": 22564, "question answering using": 27060, "question answering kbqa": 27045, "dataset code available": 6950, "use large language": 34543, "models llms chatgpt": 21488, "human language processing": 13838, "relation extraction given": 27865, "model based gpt2": 20387, "achieves stateoftheart accuracy": 1071, "grammatical error detection": 13208, "model paper presents": 20684, "language model using": 16210, "paper presents detailed": 24097, "scaling large language": 29168, "language models empirical": 16318, "models empirical study": 21193, "significantly enhances models": 30050, "enhances models performance": 9550, "amounts instruction data": 1886, "data model performance": 6772, "use cases paper": 34517, "performance large language": 24645, "language models based": 16256, "instruction tuning different": 15191, "instruction data evaluation": 15144, "tasks openended generation": 32436, "potential future research": 25256, "data large language": 6750, "models llms downstream": 21515, "models llms revolutionized": 21622, "llms revolutionized natural": 18924, "revolutionized natural language": 28849, "demonstrated impressive capabilities": 7528, "capabilities various tasks": 4081, "evaluate llms performance": 9846, "comparison multiple llms": 5198, "conduct comparative analysis": 5588, "gpt2 gpt3 chatgpt": 12901, "source code data": 30550, "deep learning algorithms": 7324, "automated machine learning": 2866, "machine learning automl": 19345, "models llms gpt4": 21547, "parameterefficient finetuning large": 24207, "language models success": 16719, "models llms like": 21574, "llms like gpt4": 18763, "parameterefficient finetuning peft": 24209, "comparable better performance": 5075, "llms paper presents": 18841, "conduct extensive empirical": 5606, "extensive empirical studies": 10683, "reasoning commonsense reasoning": 27393, "results demonstrate using": 28597, "tasks like image": 32400, "like image captioning": 17877, "feedback large language": 11065, "llms like chatgpt": 18757, "chatgpt exhibited remarkable": 4466, "natural language processingnlp": 22559, "models accessible restricted": 20941, "barriers new research": 3105, "opensource llms llama": 23523, "improves translation performance": 14398, "language models efficient": 16317, "stateoftheart training efficiency": 31002, "pretrained models code": 25722, "potential large language": 25267, "information extraction tasks": 14868, "work propose novel": 35756, "tasks shows significant": 32502, "shows significant improvements": 29937, "generated large language": 12368, "content recent work": 5872, "conduct human evaluation": 5611, "text simplification ts": 32943, "models outperform models": 21783, "paper propose new": 24111, "make code publicly": 19458, "better instruction following": 3609, "instruction following language": 15165, "language models chinese": 16277, "impact training data": 14141, "influence training data": 14841, "highquality instruction datasets": 13692, "offering valuable insights": 23304, "opensource chat models": 23487, "proprietary language models": 26638, "make model data": 19473, "model data code": 20449, "data code publicly": 6636, "instruction data instruction": 15147, "instruction following large": 15166, "following large language": 11696, "language models crucial": 16293, "research field natural": 28313, "tuning techniques lora": 34018, "llama base model": 18079, "language models especially": 16325, "especially field chinese": 9736, "concerns regarding potential": 5547, "llms chatgpt gpt4": 18465, "transformed natural language": 33700, "artificial general intelligence": 2531, "general intelligence agi": 12169, "research large language": 28331, "language models llama": 16421, "capabilities understanding generating": 4076, "ability follow instructions": 667, "secondary pretraining using": 29332, "data finetune model": 6712, "enhancing models ability": 9571, "experimental results indicate": 10399, "proficiency understanding generating": 26183, "yield competitive performance": 35910, "competitive performance models": 5225, "size pretrained models": 30278, "open research community": 23419, "various downstream tasks": 35090, "data filtering process": 6710, "bert t5 model": 3534, "effective instruction tuning": 8877, "select diverse set": 29377, "long text generation": 19186, "generation models outperform": 12556, "outperform 10x larger": 23763, "language models instruction": 16393, "models instruction tuning": 21401, "instruction tuning tasks": 15208, "longform question answering": 19206, "deep learning code": 7328, "critical machine learning": 6390, "applications large language": 2160, "machine learning systems": 19353, "llms perform worse": 18849, "lowrank adaptation lora": 19301, "datasets large language": 7139, "smaller models finetuned": 30388, "taskoriented dialog systems": 32219, "et al 2023": 9798, "using wide range": 34941, "wide range models": 35556, "given recent success": 12767, "encoderdecoder model mt0": 9369, "et al 2022": 9797, "languages intentionally seen": 16880, "model outperforms baseline": 20671, "baseline large margin": 3251, "findings reveal models": 11250, "models training data": 22078, "deploying large language": 7640, "models llms challenging": 21487, "amounts training data": 1891, "training data achieve": 33467, "data achieve comparable": 6589, "achieve comparable performance": 953, "achieves better performance": 1035, "substantially smaller model": 31488, "reduce model size": 27720, "dataset release code": 7033, "models pretrained large": 21843, "finetuned model perform": 11343, "suggest language models": 31572, "language models learn": 16413, "models generate text": 21310, "artificial intelligence ai": 2534, "language models despite": 16304, "prompt tuning simple": 26355, "simple efficient method": 30148, "efficient method significantly": 9049, "method significantly improves": 19974, "significantly improves performance": 30062, "era large language": 9698, "language models gpt3": 16370, "unlabeled training data": 34383, "pretraining language models": 25807, "language models ptlms": 16675, "building recent progress": 3927, "descriptions large language": 7689, "yields best performance": 35922, "language models temporal": 16728, "natural language nl": 22534, "different application domains": 8045, "domains paper propose": 8633, "models llms multiple": 21588, "achieves higher accuracy": 1047, "training data compared": 33471, "data compared baseline": 6647, "graphical user interfaces": 13235, "user interfaces guis": 34661, "natural language interfaces": 22530, "generalpurpose language models": 12249, "models finetuned specific": 21278, "language models follow": 16351, "deployed language models": 7634, "leveraging large language": 17784, "prediction large language": 25427, "models llms produce": 21608, "enhancing large language": 9563, "advancements large language": 1466, "artificial intelligence systems": 2538, "closedsource models like": 4689, "models like chatgpt": 21451, "like chatgpt opensource": 17856, "opensource models like": 23531, "language models given": 16364, "llms various sizes": 19035, "including llama alpaca": 14499, "language model create": 16129, "alignment large language": 1766, "end tasks user": 9420, "tasks user preferences": 32544, "llama language model": 18116, "language model finetuned": 16144, "model finetuned standard": 20533, "reinforcement learning human": 27841, "training data including": 33478, "instruction tuning data": 15188, "produce high quality": 26147, "harnessing capabilities large": 13460, "capabilities large language": 4032, "paper explore prompting": 24047, "llm families bloom": 18302, "detailed ablation studies": 7832, "best knowledge work": 3561, "language models acquire": 16241, "performance variety language": 24794, "paper investigate ability": 24067, "models including gpt3": 21381, "language models alms": 16247, "large pretrained models": 17267, "using large pretrained": 34814, "generative large language": 12667, "llms raises question": 18886, "llms revolutionized field": 18923, "comes significant computational": 4972, "significant computational costs": 29968, "computational costs paper": 5463, "costs paper propose": 6273, "efficient llm inference": 9045, "power llms approach": 25325, "proprietary large language": 26640, "garnered significant attention": 12123, "significant attention exceptional": 29961, "diverse range tasks": 8455, "llama display remarkable": 18093, "tuning experimental results": 33978, "evaluating large language": 9900, "language models spoken": 16712, "models spoken language": 22005, "spoken language understanding": 30816, "models demonstrated strong": 21137, "strong language understanding": 31179, "language understanding slu": 16849, "results smaller models": 28687, "ability foundation models": 669, "wide range linguistic": 35555, "models commonsense knowledge": 21068, "models llms directly": 21514, "paper shows llms": 24134, "carlo tree search": 4185, "llm world model": 18381, "text generated large": 32862, "extensive human evaluation": 10708, "strong language model": 31178, "paper explores potential": 24050, "models llms data": 21493, "evaluate effectiveness finetuning": 9829, "multilingual models mbert": 22321, "models mbert xlmr": 21709, "training data generated": 33477, "furthermore conduct human": 11990, "languages like tamil": 16890, "conversational ai systems": 6095, "automatic speech recognition": 2895, "speech recognition asr": 30788, "utilization large language": 34956, "bias large language": 3651, "ner sentiment analysis": 22679, "present systematic study": 25559, "comprehensive evaluation large": 5370, "language models automatic": 16254, "different data sources": 8066, "make data code": 19462, "hallucination large language": 13379, "language models inference": 16392, "tasks large language": 32391, "capable natural language": 4115, "tasks like question": 32402, "like question answering": 17893, "decoding language models": 7275, "families including opt": 10968, "models lms powerful": 21676, "propose adapt pretrained": 26491, "language models capable": 16270, "model soft prompts": 20803, "opt llama2 models": 23598, "reducing inference costs": 27752, "extend context window": 10650, "llm able perform": 18261, "finetuning llms using": 11450, "using instruction tuning": 34801, "instruction tuning particular": 15205, "instruction tuning dataset": 15189, "emerges promising solution": 9189, "models recent advancements": 21902, "recent advancements large": 27492, "models llms significantly": 21639, "speech processing tasks": 30786, "processing tasks including": 26129, "fewshot learning techniques": 11114, "sota models llms": 30536, "provide valuable insights": 26735, "semantic textual similarity": 29480, "described natural language": 7679, "language model evaluation": 16138, "diverse natural language": 8442, "learning large language": 17593, "generation instruction following": 12525, "instruction following abilities": 15162, "training set containing": 33611, "finetune llama7b model": 11292, "model needs learn": 20656, "performs significantly better": 24855, "openended question answering": 23460, "question answering fact": 27044, "text simplification models": 32942, "pretrained multilingual language": 25733, "language models reveal": 16696, "zeroshot crosslingual transfer": 35965, "crosslingual transfer lowresource": 6421, "language model finetune": 16143, "gap open closed": 12099, "lms current methods": 19078, "tasks unlike prior": 32540, "unlike prior works": 34402, "extremescale teacher model": 10808, "pretrained lms gpt2": 25709, "strong baselines including": 31164, "small finetuned models": 30342, "new tasks domains": 22857, "model weights available": 20866, "task machine translation": 32155, "language models partially": 16647, "models llms acquire": 21483, "incontext learning icl": 14555, "results provide evidence": 28664, "capabilities pretrained language": 4062, "language models wide": 16755, "pretrained large language": 25698, "recent studies ability": 27553, "gpt2 empirically demonstrate": 12887, "variety language tasks": 35063, "excel various natural": 10156, "tasks current research": 32282, "current research focuses": 6528, "llms including gpt3": 18693, "demonstrate incontext learning": 7465, "incontext learning instruction": 14560, "learning instruction tuning": 17589, "recent years significant": 27582, "language models nlp": 16634, "datasets address issue": 7062, "positive negative examples": 25195, "challenging paper proposes": 4391, "especially large language": 9740, "transformer language models": 33725, "autoregressive text generation": 2955, "performance gap small": 24608, "training language modeling": 33539, "methods fall short": 20036, "fall short addressing": 10951, "wide range tasks": 35563, "models different scales": 21155, "models llms study": 21645, "language models help": 16377, "comparing language models": 5191, "parameters language models": 24260, "largescale transformer models": 17384, "models shown remarkable": 21972, "shown remarkable performance": 29914, "performance language modelling": 24642, "language modelling tasks": 16230, "prohibitive training costs": 26238, "reduce number parameters": 27722, "model downstream tasks": 20475, "downstream tasks including": 8696, "tasks including language": 32366, "model performs similarly": 20710, "large foundation models": 16946, "surpasses conventional stateoftheart": 31740, "zeroshot reasoning benchmarks": 35992, "bigbench hard bbh": 3702, "shows competitive performance": 29925, "large language modelsllms": 17222, "using opensource llm": 34867, "improving zeroshot performance": 14427, "variety downstream tasks": 35061, "downstream tasks code": 8688, "children language models": 4535, "deep language models": 7321, "gpt2 models scratch": 12928, "models tend learn": 22050, "shed new light": 29796, "process natural language": 26076, "reasoning question answering": 27442, "language models using": 16745, "entities pretrained language": 9636, "questionanswering tasks work": 27091, "propose techniques improve": 26573, "structured knowledge graphs": 31223, "lossless text compression": 19257, "language models provide": 16673, "comprehensive benchmark study": 5357, "encoderdecoder models mt5": 9371, "achieve highest performance": 969, "language models bloom": 16267, "foundation language model": 11793, "models llms achieved": 21475, "llms achieved great": 18413, "achieved great success": 1007, "research applications field": 28292, "demonstrate effectiveness approach": 7446, "model llm based": 20621, "based chat assistants": 3143, "multilingual pretrained models": 22326, "reasoning tasks multilingual": 27458, "pretrained model does": 25714, "different types tasks": 8155, "2023 shared task": 235, "ability generative language": 679, "stateoftheart models including": 30957, "models including alpaca": 21378, "automated human evaluation": 2864, "translation large language": 33831, "recent years large": 27576, "years large language": 35892, "language models open": 16639, "gpt4 metas llama": 13096, "metas llama googles": 19864, "language models languages": 16403, "models work explore": 22134, "work explore capabilities": 35705, "analysis large language": 1935, "large multilingual language": 17242, "language models understanding": 16741, "language large language": 16106, "generative artificial intelligence": 12654, "emergence large language": 9170, "llms telecom domain": 18999, "demonstrate use case": 7509, "accuracy gpt2 model": 887, "achieves similar performance": 1066, "capabilities natural language": 4048, "pose significant risks": 25162, "opensource code repositories": 23492, "based generative pretrained": 3165, "generative pretrained transformers": 12699, "pretrained transformers gpts": 25772, "opensource language models": 23508, "potential artificial general": 25241, "model language models": 20601, "language models investigate": 16395, "received little attention": 27479, "alignment instruction following": 1764, "llms instruction tuning": 18724, "plays vital role": 25033, "llms human preferences": 18679, "performance nonenglish languages": 24695, "gpt4 automatic evaluation": 13056, "instruction test set": 15181, "language models scientific": 16700, "gap theory practice": 12113, "model size training": 20795, "counterfactual data augmentation": 6296, "data augmentation method": 6609, "impact models performance": 14134, "mitigate problem propose": 20257, "problem propose novel": 26005, "augmentation method generate": 2803, "text pretrained language": 32918, "language model plm": 16188, "model plm t5": 20713, "performs better current": 24843, "current augmentation methods": 6484, "new large language": 22814, "language model code": 16126, "wide range domains": 35551, "computational resources time": 5480, "process reduces computational": 26080, "reduces computational requirements": 27734, "reduces training time": 27741, "empowering large language": 9270, "llms including gpt4": 18699, "including gpt4 llama": 14491, "gpt4 llama chat": 13090, "finetuning parameterefficient finetuning": 11471, "adapt pretrained language": 1169, "tasks paper propose": 32444, "additional training enables": 1267, "instructiontuned large language": 15287, "model based llama": 20388, "results demonstrate approach": 28587, "pretrained transformer gpt4": 25761, "code generation machine": 4759, "generation machine translation": 12544, "models llms capture": 21486, "address issue work": 1335, "manner experimental results": 19548, "demonstrated remarkable potential": 7546, "potential natural language": 25282, "llms remains significant": 18906, "popular offtheshelf llms": 25132, "experimental results demonstrate": 10391, "results demonstrate superior": 28594, "methods extensive experiments": 20032, "extensive experiments demonstrate": 10695, "publicly available multilingual": 26859, "model outperforms previous": 20674, "previous stateoftheart models": 25883, "performs competitively compared": 24849, "nlp tasks large": 22957, "models llms typically": 21654, "nlp tasks despite": 22949, "scale model parameters": 29142, "outperforms taskspecific models": 23861, "factual consistency language": 10879, "model improves various": 20576, "gpt35 chatgpt gpt4": 13019, "question answering tasks": 27057, "exact match em": 10089, "llms including gpt2": 18692, "research highlights need": 28323, "language models generating": 16361, "shared task study": 29785, "abilities large language": 629, "language models providing": 16674, "present extensive evaluation": 25532, "models including gpt4": 21383, "fewshot incontext learning": 11108, "using reinforcement learning": 34901, "skills large language": 30311, "models gpt4 gpt35": 21333, "project website available": 26248, "language models current": 16295, "developments large language": 7981, "models llms enabled": 21519, "simple general effective": 30151, "improve performance language": 14284, "language models math": 16616, "solve math problems": 30493, "problems language models": 26029, "long context understanding": 19168, "models llms recently": 21611, "llms recently achieved": 18895, "following natural language": 11699, "higher success rate": 13607, "models graphtotext generation": 21338, "models llms widely": 21664, "finetuning llms requires": 11449, "llms requires significant": 18913, "performance finetuned llm": 24602, "models capable generating": 21041, "generating fluent coherent": 12424, "fluent coherent text": 11634, "error analysis reveals": 9709, "models struggle understanding": 22017, "detect machinegenerated text": 7851, "llms shown remarkable": 18944, "effectiveness various generaldomain": 8972, "various generaldomain natural": 35097, "generaldomain natural language": 12192, "address challenge introduce": 1309, "language models multiple": 16630, "learning human feedback": 17576, "development large language": 7958, "supervised finetuning sft": 31679, "finetuning sft reinforcement": 11521, "sft reinforcement learning": 29765, "human feedback rlhf": 13821, "commercial llms chatgpt": 4989, "existing opensource llms": 10305, "instruction tuning llms": 15201, "impressive results various": 14248, "performance approach involves": 24525, "different model sizes": 8108, "llms generate highquality": 18635, "achieve performance comparable": 978, "achieves new stateoftheart": 1053, "new stateoftheart result": 22850, "new stateoftheart results": 22851, "tasks code available": 32264, "reasoning large language": 27416, "models llms exhibit": 21525, "tasks wide range": 32550, "current stateoftheart llms": 6533, "highlights need research": 13654, "opensource large language": 23510, "great success large": 13263, "language models computer": 16284, "led paradigm shift": 17687, "current large language": 6503, "recent advances large": 27500, "advances large language": 1479, "accelerate llm inference": 792, "smaller language models": 30377, "exhibit strong reasoning": 10230, "dense retrieval method": 7611, "existing large language": 10284, "imbalance training data": 14102, "instructionfollowing large language": 15231, "source code summarization": 30554, "code summarization task": 4820, "writing natural language": 35854, "semantic similarity metric": 29475, "model gpt2 sequence": 20556, "average bleu score": 3012, "language models optimization": 16641, "behavior large language": 3316, "supervised finetuning reinforcement": 31676, "finetuning reinforcement learning": 11504, "natural language specification": 22567, "learning ml models": 17606, "like bert roberta": 17849, "llms focusing llama": 18617, "pretraining objective llms": 25828, "enhances understanding llms": 9554, "gpt35 palm2 llama2": 13034, "provide indepth analysis": 26708, "model size number": 20793, "size number parameters": 30268, "pretrained models despite": 25723, "llama llama2 models": 18121, "number tokens required": 23165, "resulting model named": 28558, "fewshot learning tasks": 11113, "foundational language models": 11804, "advanced natural language": 1434, "processing nlp research": 26119, "reinforcement learning approach": 27840, "instructions large language": 15257, "models llms present": 21604, "instruction tuning standard": 15207, "results demonstrate significant": 28593, "evaluate ability llms": 9818, "based blooms taxonomy": 3141, "potential data leakage": 25252, "llms comprehensive experiments": 18481, "experiments advanced llms": 10418, "achieves sota performance": 1068, "substantial room improvement": 31477, "room improvement especially": 28968, "data codes publicly": 6639, "codes publicly available": 4855, "language models advent": 16245, "models advent large": 20970, "advent large language": 1510, "revolutionized field natural": 28845, "language processing enabling": 16780, "significant progress various": 30016, "powerful models knowledge": 25348, "tasks paper proposes": 32445, "language models focus": 16349, "low rank adaptation": 19273, "dense passage retrieval": 7609, "average f1 score": 3016, "user study comparing": 34676, "gpt2 model model": 12920, "federated learning fl": 11051, "parameterefficient training methods": 24215, "orders magnitude faster": 23682, "use large transformerbased": 34546, "large transformerbased models": 17282, "transformerbased models bert": 33761, "models bert gpt": 21017, "significant advancements natural": 29955, "advancements natural language": 1471, "models computationally expensive": 21084, "models range natural": 21886, "deep reinforcement learning": 7344, "reinforcement learning rl": 27845, "learning rl based": 17647, "vision language models": 35303, "paper proposes novel": 24125, "t5 model generate": 31955, "integrating large language": 15332, "efficacy proposed approach": 8992, "intelligence large language": 15359, "recent progress large": 27542, "progress large language": 26213, "development artificial intelligence": 7950, "intelligence ai based": 15353, "dataset evaluate effectiveness": 6982, "evaluate effectiveness llms": 9830, "chainofthought cot think": 4299, "cot think stepbystep": 6285, "evaluation popular llms": 9991, "models using methods": 22104, "performance improvements compared": 24628, "models different sizes": 21156, "language understanding reasoning": 16848, "unified language model": 34331, "language model work": 16212, "openais gpt series": 23441, "marked significant advancement": 19594, "vast amounts text": 35182, "amounts text data": 1889, "understanding generating humanlike": 34225, "generating humanlike text": 12429, "diverse range topics": 8456, "llms exploring potential": 18594, "stateoftheart llms gpt35": 30946, "llms gpt35 gpt4": 18651, "prompt engineering techniques": 26324, "llms data preprocessing": 18504, "accuracy f1 score": 880, "study underscores promise": 31404, "address problems propose": 1352, "including llama bert": 14500, "demonstrating superiority existing": 7593, "model size findings": 20790, "llms code available": 18469, "framework pretraining finetuning": 11889, "models like t5": 21460, "address challenge present": 1311, "efficient pretraining finetuning": 9055, "language modelling research": 16229, "technical report large": 32608, "report large language": 28118, "progress opensource llms": 26225, "7b parameter models": 541, "parameter models 8k": 24192, "better results compared": 3626, "results compared stateoftheart": 28582, "modeling tasks shows": 20909, "llms achieved remarkable": 18417, "nlp multimodal tasks": 22941, "existing evaluations focus": 10273, "experimental results model": 10402, "models despite impressive": 21146, "despite impressive capabilities": 7789, "impressive capabilities large": 14232, "retrieved external knowledge": 28775, "llama family models": 18101, "investigate question introduce": 15595, "llms gpt4 palm": 18660, "gpt4 palm llama": 13109, "fake news detection": 10935, "news detection using": 22881, "finetuned large language": 11325, "model paper considers": 20682, "paper considers possibility": 24028, "finetuning llama large": 11441, "llama large language": 18118, "finetuning peftlora based": 11479, "peftlora based approach": 24441, "based approach used": 3134, "approach used study": 2352, "used study model": 34625, "study model finetuned": 31363, "model finetuned following": 20527, "finetuned following tasks": 11313, "following tasks analysing": 11705, "tasks analysing text": 32242, "extracting named entities": 10760, "sentiments obtained results": 29579, "obtained results finetuned": 23258, "results finetuned llama": 28614, "finetuned llama model": 11330, "llama model perform": 18129, "extracted sentiments named": 10753, "sentiments named entities": 29575, "named entities considered": 22482, "entities considered predictive": 9631, "considered predictive features": 5719, "predictive features supervised": 25450, "features supervised machine": 11040, "supervised machine learning": 31685, "family large language": 10976, "smaller transformerbased language": 30400, "model produce coherent": 20729, "produce coherent english": 26141, "billion parameter model": 3717, "models llms generate": 21539, "enhance learning process": 9515, "common sense reasoning": 5014, "reasoning natural language": 27430, "complex reasoning tasks": 5290, "publicly available llms": 26858, "models like llama": 21458, "demonstrate significant potential": 7495, "prominent llms including": 26269, "llms including gpt35": 18694, "including gpt35 gpt4": 14486, "language models exhibit": 16330, "propose novel approach": 26545, "gpt2 pretrained language": 12938, "language model corpus": 16128, "astronomy large language": 2673, "language models excel": 16329, "specialized domains like": 30672, "bridge gap introduce": 3865, "model finetuned llama2": 20531, "finetuned llama2 using": 11335, "causal language modeling": 4242, "models despite having": 21145, "despite having significantly": 7784, "exploring large language": 10619, "models llms gpt": 21543, "findings suggest llms": 11258, "chatgpt llama2 models": 4488, "accelerating large language": 800, "models llms need": 21591, "proposed method requires": 26609, "method requires additional": 19969, "generation language models": 12532, "models continue advance": 21108, "evaluate capabilities language": 9821, "capabilities language models": 4030, "address gap propose": 1326, "gap propose novel": 12106, "traditional chinese benchmarks": 33344, "offer comprehensive evaluation": 23288, "comprehensive evaluation framework": 5369, "assessment language models": 2617, "language models capabilities": 16269, "performance comparable gpt35": 24549, "models llms excel": 21522, "llms excel various": 18576, "carefully crafted prompts": 4175, "propose novel framework": 26549, "natural language expressions": 22518, "language processing capabilities": 16777, "closed opensource llms": 4680, "opensource llms including": 23521, "covering language understanding": 6326, "prompts existing methods": 26417, "automatic prompt generation": 2891, "foundational large language": 11806, "opendomain question answering": 23451, "used tune llms": 34634, "power large language": 25321, "struggle tasks require": 31245, "perform comprehensive evaluation": 24480, "language models dynamic": 16315, "inference large language": 14782, "generative nlp tasks": 12684, "making large language": 19508, "alpaca dataset instruction": 1827, "dataset instruction following": 7005, "memory usage inference": 19835, "li et al": 17809, "method generating text": 19927, "text language models": 32901, "generative model inference": 12674, "large gpu memory": 16954, "gpu memory consumption": 13174, "reduce gpu memory": 27712, "gpu memory footprint": 13175, "main bottleneck generative": 19388, "memory bandwidth bottleneck": 19803, "significantly outperforms stateoftheart": 30079, "demonstrated remarkable performance": 7544, "examples natural language": 10138, "technical report present": 32611, "outperforms opensource models": 23841, "opensource models similar": 23534, "benchmarks like mmlu": 3457, "language models process": 16665, "evaluation natural language": 9980, "high error rates": 13567, "chatgpt gpt4 bard": 4479, "questions large language": 27118, "results demonstrate effectiveness": 28588, "enhance capabilities large": 9506, "language models educational": 16316, "language models research": 16695, "best configuration outperforms": 3557, "13b model trained": 128, "number training tokens": 23172, "training tokens significant": 33637, "small language models": 30348, "text style transfer": 32952, "impact large language": 14128, "high deployment costs": 13565, "evaluation text generation": 10021, "text generation quality": 32882, "machine translation large": 19356, "field machine translation": 11140, "machine translation recent": 19364, "translation recent work": 33849, "translation nmt systems": 33840, "cases large language": 4201, "models llms emerged": 21517, "outputs paper study": 23897, "incontext learning finetuning": 14553, "provides valuable insights": 26768, "paper proposes comprehensive": 24121, "various benchmarks including": 35078, "codes data models": 4852, "models llms represent": 21620, "way interact computers": 35437, "evaluate performance llms": 9855, "llms based 13": 18444, "evaluate effectiveness models": 9831, "performing models achieved": 24836, "models achieved accuracy": 20948, "calculations large language": 3969, "language models highquality": 16378, "model finetuned llama": 20530, "code models datasets": 4789, "autoregressive large language": 2948, "model trained sentence": 20837, "reversal curse finetuning": 28821, "chatgpt gpt35 gpt4": 4476, "paper explore capabilities": 24046, "nlp tasks text": 22964, "tasks text summarization": 32529, "text classification sentiment": 32826, "classification sentiment analysis": 4612, "performance opensource llms": 24704, "opensource llms like": 23522, "reasoning ability llms": 27374, "ability llms large": 700, "llms large language": 18744, "remarkable performance wide": 28049, "performance wide range": 24814, "pose challenges practical": 25159, "challenges practical deployment": 4370, "smaller models distillation": 30385, "models specifically tailored": 22003, "scientific tabletotext generation": 29258, "smaller models experimental": 30386, "models experimental results": 21236, "distilled data achieves": 8352, "significant improvement compared": 29990, "significantly better performance": 30036, "speedup modern hardware": 30802, "ability use knowledge": 727, "language models ability": 16234, "methods large language": 20058, "models llms gained": 21535, "language models slms": 16706, "limited labeled data": 17953, "remarkable performance gain": 28047, "language models solving": 16708, "llms shown promise": 18943, "diverse question types": 8452, "especially smaller models": 9748, "smaller models like": 30390, "models like llama2": 21459, "improvements natural language": 14360, "models fall short": 21261, "chain thoughts prompting": 4294, "language models generative": 16363, "llms demonstrated impressive": 18516, "impressive performance various": 14243, "solving math word": 30511, "math word problems": 19676, "primary aim research": 25916, "training large models": 33547, "tasks results suggest": 32491, "results suggest models": 28693, "metric text generation": 20127, "guided natural language": 13354, "natural language instruction": 22528, "approach large language": 2306, "different model families": 8106, "context downstream tasks": 5887, "significantly boost performance": 30038, "sequence sequence models": 29607, "language models reasoning": 16682, "facilitate comprehensive evaluation": 10836, "reasoning capabilities large": 27384, "extensive evaluation using": 10686, "using popular llms": 34876, "popular llms gpt4": 25125, "llms gpt4 llama2": 18657, "fewshot learning scenarios": 11112, "findings indicate models": 11239, "reasoning abilities llms": 27372, "providing nuanced understanding": 26781, "data recent advancements": 6827, "recent advancements llms": 27495, "llms demonstrated potential": 18519, "reasoning paths using": 27432, "opensource llm series": 23518, "method achieves stateoftheart": 19870, "explore large language": 10588, "using proposed method": 34887, "recent success large": 27560, "gained significant attention": 12066, "zero fewshot generalization": 35937, "capabilities opensource llms": 4058, "token classification tasks": 33186, "substantially outperforms llms": 31486, "llms recently showcased": 18897, "recently showcased remarkable": 27623, "processing tasks diverse": 26127, "tasks diverse domains": 32300, "llms paper propose": 18842, "paper propose framework": 24109, "textdavinci003 gpt35turbo gpt4": 32982, "gpt4 llama27b llama213b": 13094, "bypass safety alignment": 3949, "games large language": 12081, "language models systematically": 16724, "evaluate various llms": 9870, "significant differences performance": 29979, "consistency language models": 5733, "llms fall short": 18602, "based multiagent collaboration": 3199, "evaluate capabilities llms": 9823, "language models represent": 16694, "models llms sparked": 21642, "language modeling question": 16224, "modeling question answering": 20906, "costs large language": 6270, "language model inference": 16156, "models llms exploded": 21527, "llms exploded popularity": 18590, "recent stateoftheart llm": 27551, "knowledge work study": 15922, "remains open problem": 28006, "language models contain": 16289, "language model demonstrate": 16131, "tasks finetuning language": 32337, "data training evaluation": 6897, "zeroshot chain thought": 35961, "chain thought prompting": 4292, "language models good": 16367, "remarkable success wide": 28063, "work propose new": 35754, "propose new benchmark": 26537, "new benchmark termed": 22782, "finetuning experimental results": 11401, "llms achieved impressive": 18415, "answer complex questions": 2042, "advancements artificial intelligence": 1461, "advanced large language": 1426, "llama shown great": 18144, "shown great potential": 29882, "generative ai genai": 12647, "llms demonstrates significant": 18530, "language model capabilities": 16125, "single attention head": 30199, "models llms pretrained": 21606, "datasets work introduce": 7192, "smaller models bloomz": 30384, "joint entity relation": 15713, "using single model": 34913, "corresponding entity relation": 6227, "gap introduce new": 12092, "method outperforms existing": 19952, "benchmarking large language": 3424, "language models augmented": 16252, "task natural language": 32165, "learning techniques work": 17663, "work paves way": 35745, "text data augmentation": 32842, "generate high quality": 12283, "finetuning language model": 11425, "application machine learning": 2136, "demonstrated remarkable capabilities": 7543, "remarkable capabilities natural": 28033, "various domains including": 35088, "llms achieve similar": 18411, "achieve similar better": 985, "similar better performance": 30099, "assess performance llms": 2602, "llms present comprehensive": 18862, "present comprehensive evaluation": 25521, "popular llms llama": 25127, "continual learning large": 5976, "language models aligned": 16246, "models llms demonstrate": 21494, "llms demonstrate exceptional": 18509, "continual learning benchmarks": 5975, "instruction tuning paper": 15204, "tuning paper introduce": 34002, "benchmark designed evaluate": 3380, "empirical findings suggest": 9227, "inference acceleration large": 14760, "acceleration large language": 805, "sparse finetuning large": 30613, "llms finetuning pretrained": 18612, "finetuning pretrained llms": 11490, "methods instruction data": 20052, "open source models": 23426, "models varying sizes": 22112, "language models zeroshot": 16760, "time series forecasting": 33142, "models llms gpt3": 21545, "model size generally": 20791, "data collection model": 6643, "incontext learning capability": 14551, "capability large language": 4094, "language models gpt35": 16372, "expertise prompt engineering": 10515, "conducted user study": 5642, "exceptional performance various": 10172, "recent studies focused": 27554, "llms shedding light": 18935, "capability language models": 4092, "costs work propose": 6278, "human preference datasets": 13855, "code dataset model": 4743, "billionparameter language model": 3725, "language model specialized": 16203, "available large language": 2986, "language models generation": 16362, "multiple dimensions including": 22387, "existing language models": 10282, "datasets publicly available": 7166, "applied question answering": 2197, "question answering text": 27058, "generation tasks language": 12615, "natural language sentences": 22566, "improves performance existing": 14388, "instruction tuning human": 15192, "instruction data generation": 15146, "blooms taxonomy classic": 3795, "yields significant performance": 35928, "benchmarks hope work": 3446, "learning process llms": 17635, "entity recognition using": 9651, "pretrained transformerbased models": 25770, "training dataset using": 33496, "model llm using": 20626, "using dataset train": 34765, "based bert model": 3139, "fundamental component language": 11977, "models llms perform": 21600, "perform multiple choice": 24496, "choice question answering": 4553, "question answering mcqa": 27047, "ability llms smaller": 703, "llms smaller language": 18956, "sentence embedding models": 29533, "llms chatgpt llama": 18466, "model achieves comparable": 20348, "generative ai applications": 12646, "stateoftheart large language": 30940, "instruction tuning using": 15209, "llms like llama": 18764, "responses paper propose": 28504, "consistently improves performance": 5752, "super natural instructions": 31638, "teaching language models": 32592, "math reasoning tasks": 19673, "contrast prior work": 6016, "models improve performance": 21373, "address limitations present": 1344, "limitations present new": 17931, "conduct experiments diverse": 5603, "experiments diverse set": 10437, "diverse set tasks": 8461, "zeroshot fewshot scenarios": 35975, "supervised learning tasks": 31683, "remains poorly understood": 28009, "pretrained foundation models": 25645, "generating instructiontuning data": 12433, "using incontext learning": 34797, "wang et al": 35416, "models 175b parameters": 20925, "proposed method yields": 26610, "recent advancements natural": 27496, "language processing large": 16784, "processing large language": 26108, "work provides insights": 35766, "provides insights potential": 26758, "understanding large language": 34240, "models llms remarkable": 21619, "recent studies suggest": 27558, "gpt35turbo gpt4 llama2": 13044, "llama2 series models": 18193, "models represent reason": 21929, "instruction tuned large": 15184, "remains lack comprehensive": 27999, "lack comprehensive investigation": 15980, "address gap present": 1325, "benchmark specifically designed": 3412, "evaluate performance various": 9858, "multilingual pretrained language": 22324, "analysis reveals existing": 1960, "instruction tuned llms": 15185, "used previous works": 34619, "using language models": 34806, "method outperforms stateoftheart": 19953, "outperforms stateoftheart baselines": 23853, "current landscape large": 6497, "like llama mistral": 17885, "findings shed light": 11254, "existing work focuses": 10326, "tasks require reasoning": 32483, "datasets various settings": 7190, "release code pretrained": 27903, "code pretrained checkpoints": 4797, "open information extraction": 23396, "challenging task natural": 4400, "methods require significant": 20089, "paper introduce novel": 24060, "introduce novel framework": 15527, "training data furthermore": 33476, "reducing training time": 27760, "time experimental results": 33124, "extensive automatic human": 10680, "challenging natural language": 4389, "multiple llms including": 22400, "llms including vicuna": 18707, "retrieval augmented large": 28736, "augmented large language": 2820, "commercial large language": 4985, "incontext learning ability": 14550, "evaluate effectiveness proposed": 9832, "effectiveness proposed methods": 8966, "models language models": 21417, "large models finetuning": 17235, "training data making": 33483, "source domain target": 30558, "domain target domains": 8597, "language processing computer": 16778, "processing computer vision": 26100, "vision downstream tasks": 35294, "commonly used datasets": 5031, "generative modeling tasks": 12676, "work bridge gap": 35673, "bridge gap proposing": 3867, "significantly boosts performance": 30041, "standard language modeling": 30879, "including autoencoding models": 14457, "models encoderdecoder models": 21201, "leading improved performance": 17476, "compared models like": 5153, "achieves superior performance": 1077, "different downstream tasks": 8074, "benchmarks human evaluation": 3448, "evaluation results demonstrate": 10001, "information language models": 14876, "plays important role": 25029, "llama2 70b model": 18161, "address problem propose": 1350, "scales 7b 13b": 29152, "multimodal models multiple": 22364, "language models rapid": 16679, "models rapid advancement": 21893, "rapid advancement large": 27243, "advancement large language": 1455, "various language models": 35106, "synthetic dataset demonstrates": 31854, "models llms including": 21562, "llms used generate": 19023, "feasibility using llms": 11018, "potential pretrained large": 25290, "llms experimental results": 18587, "factors influence performance": 10873, "provide insights future": 26710, "method large language": 19938, "llms shown great": 18939, "great potential natural": 13255, "conduct comprehensive experiments": 5594, "comprehensive experiments demonstrate": 5377, "experiments demonstrate effectiveness": 10432, "recently released llms": 27620, "improving llms performance": 14414, "models like gpt4": 21457, "believe work provides": 3342, "work provides valuable": 35768, "valuable insights future": 35013, "insights future research": 15075, "recent work shown": 27569, "convolutional neural network": 6124, "exhibit impressive reasoning": 10222, "reasoning data augmentation": 27401, "tasks small models": 32509, "models work propose": 22136, "data augmentation ability": 6606, "syntactic language models": 31820, "classification tasks building": 4615, "systems using large": 31925, "like llama 7b": 17883, "llama 7b 13b": 18067, "opensource models achieve": 23529, "achieve competitive performance": 955, "language processing task": 16799, "exhibited remarkable performance": 10237, "remarkable performance various": 28048, "llms including chatgpt": 18689, "including chatgpt gpt4": 14465, "leverage user feedback": 17763, "quantization large language": 27005, "llama2 model family": 18187, "enhance model performance": 9520, "language models study": 16716, "model parameters experiments": 20691, "enhance llms ability": 9518, "follow user instructions": 11681, "performance improvement variety": 24626, "average accuracy improvement": 3010, "specific downstream tasks": 30692, "requiring extensive training": 28271, "varying difficulty levels": 35173, "resulting significantly improved": 28562, "experiments language models": 10455, "zeroshot fewshot prompting": 35974, "retrieval augmented generation": 28734, "augmented generation rag": 2816, "learning human preferences": 17581, "preference optimization dpo": 25470, "pairs preference data": 23983, "data demonstrate significant": 6672, "challenges future directions": 4347, "cost training models": 6256, "enlarging model sizes": 9584, "model 13 billion": 20333, "foundation model pretrained": 11797, "significantly outperforms models": 30077, "models multiple benchmarks": 21743, "reflect differences model": 27790, "differences model performance": 8038, "encoded large language": 9341, "samples large language": 29081, "data generation approach": 6723, "open large language": 23401, "generated synthetic data": 12391, "applicability large language": 2121, "remains unexplored study": 28022, "language models conduct": 16285, "different parameter sizes": 8118, "model size grows": 20792, "despite impressive performance": 7792, "substantial computational resources": 31464, "computational resources making": 5479, "potential address challenges": 25237, "address challenges introduce": 1314, "orders magnitude larger": 23683, "including finetuning incontext": 14478, "finetuning incontext learning": 11419, "llms demonstrated superior": 18527, "llms like gpt3": 18761, "significant progress natural": 30011, "progress natural language": 26219, "stateoftheart llms like": 30949, "models various tasks": 22110, "demonstrated large language": 7533, "language explanations nles": 16072, "improve robustness llms": 14296, "introduce new approach": 15519, "evaluate popular llms": 9860, "models llms given": 21542, "improved chainofthought prompting": 14308, "intermediate computation steps": 15426, "fundamental linguistic phenomenon": 11980, "models pretrained code": 21840, "languages recent advancements": 16911, "proliferation large language": 26259, "popular large language": 25120, "different language families": 8088, "languages like english": 16889, "generative tasks like": 12707, "popularity large language": 25143, "recent advances transformerbased": 27506, "advances transformerbased large": 1489, "transformerbased large language": 33752, "great strides natural": 13260, "strides natural language": 31149, "domains large language": 8624, "llms exhibit remarkable": 18581, "performance larger models": 24651, "proprietary models gpt35": 26648, "models gpt35 gpt4": 21330, "limitations language model": 17923, "language model training": 16208, "language model lm": 16173, "information training data": 14921, "consistently improve performance": 5750, "set data samples": 29682, "future research direction": 12044, "models llms extensive": 21530, "language model handle": 16153, "diverse contexts different": 8418, "source code publicly": 30552, "augmented language models": 2818, "number parameters language": 23156, "language models proven": 16672, "models proven effective": 21872, "used measure performance": 34612, "llms lowresource languages": 18788, "downstream tasks unlike": 8701, "pretrained word embeddings": 25782, "leveraging contextual information": 17781, "partofspeech pos tagging": 24367, "lm training finetuning": 19064, "teaching small language": 32595, "language models reason": 16681, "outperform conventional instructiontuned": 23771, "larger models provide": 17333, "help model learn": 13511, "advanced reasoning abilities": 1442, "llms demonstrated exceptional": 18513, "demonstrated exceptional capabilities": 7521, "highperformance computing large": 13677, "computing large language": 5515, "llms including llama": 18702, "highperformance computing hpc": 13676, "responses response challenge": 28511, "response challenge propose": 28474, "model supervised finetuning": 20815, "generated qa questionanswer": 12380, "qa questionanswer instances": 26916, "demonstrate comparable performance": 7440, "comparable performance existing": 5085, "performance existing methods": 24589, "bridge performance gap": 3870, "utilization language models": 34954, "language models model": 16628, "result significant performance": 28548, "overcome problem propose": 23925, "finetuned language model": 11322, "pretrained base model": 25629, "language models produce": 16666, "improve performance text": 14288, "questionanswering qa tasks": 27087, "qa datasets using": 26909, "llm automatically generate": 18273, "significantly improve performance": 30057, "bleu rouge metrics": 3767, "compared model finetuning": 5151, "approach finetuning llms": 2284, "study introduces novel": 31345, "introduces novel approach": 15545, "language processing techniques": 16803, "demonstrates significantly enhanced": 7571, "establishes new stateoftheart": 9777, "models paper present": 21795, "model sizes ranging": 20800, "large langauge models": 16958, "subset training data": 31454, "facilitate research development": 10844, "open language models": 23399, "models permissive license": 21813, "reasoning abilities large": 27369, "previous studies typically": 25886, "address issue propose": 1334, "provides thorough evaluation": 26765, "models conduct extensive": 21089, "extensive experiments popular": 10700, "gpt4 llama2 mistral": 13092, "indicate significant performance": 14696, "significant performance gap": 30005, "llms specifically designed": 18966, "datasets experimental results": 7111, "experimental results reveal": 10407, "accurate contextually relevant": 922, "models llms llms": 21581, "multimodal language model": 22350, "pretrained visionlanguage model": 25778, "reasoning capabilities innovative": 27383, "provide comprehensive understanding": 26691, "models llms various": 21662, "llms various tasks": 19036, "highresource languages english": 13708, "exhibit superior performance": 10232, "comprehensive empirical analysis": 5365, "recent advancements generative": 27490, "language generation capabilities": 16083, "lowresource language use": 19312, "instruction dataset covering": 15151, "classification question answering": 4607, "demonstrating superior performance": 7591, "superior performance current": 31651, "finetuning llama27b model": 11446, "language models approach": 16248, "results various tasks": 28709, "reducing memory consumption": 27755, "survey large language": 31775, "llms gpt4 llama": 18656, "models 7b 13b": 20929, "7b 13b 70b": 528, "tackle issue introduce": 31998, "introduce novel inference": 15528, "novel inference method": 23089, "models llms llama": 21580, "llms llama falcon": 18769, "code technical reports": 4822, "code data model": 4731, "data model checkpoints": 6771, "gain deeper insights": 12057, "highlevel concepts represented": 13624, "llms consistently outperform": 18487, "best opensource models": 3567, "50 billion parameters": 420, "billion parameters using": 3720, "base chat models": 3115, "human annotations paper": 13792, "proximal policy optimization": 26795, "policy optimization ppo": 25088, "series opensource llms": 29644, "demonstrates exceptional performance": 7559, "significantly improves accuracy": 30061, "nlp tasks models": 22960, "generate meaningful responses": 12302, "quantitative qualitative evaluations": 26995, "models llms increasingly": 21567, "llms increasingly integrated": 18712, "ability llms comprehend": 698, "llms particularly gpt4": 18846, "comparative analysis llms": 5097, "llms using human": 19026, "providing valuable insights": 26786, "models effective text": 21181, "complex contextual relationships": 5270, "language model meta": 16175, "model meta ai": 20640, "advancement field natural": 1448, "improve natural language": 14281, "70 billion parameters": 496, "language adaptation strategies": 16039, "achieves average improvement": 1030, "information large number": 14881, "context window models": 5927, "limited address issue": 17939, "model training data": 20840, "training data available": 33469, "manually designed prompts": 19571, "capabilities current stateoftheart": 4008, "knowledge graphs kgs": 15860, "policy gradient reinforcement": 25081, "gradient reinforcement learning": 13191, "reinforcement learning algorithm": 27839, "current stateoftheart model": 6535, "method code available": 19889, "code available github": 4723, "language models exploring": 16337, "refining large language": 27787, "machinegenerated instructionfollowing data": 19370, "models exhibit impressive": 21227, "paper systematically investigate": 24140, "model instruction finetuning": 20588, "architecture code data": 2437, "data model publicly": 6773, "local large language": 19130, "superior performance various": 31654, "nlp tasks inspired": 22954, "available apache 20": 2966, "apache 20 license": 2099, "language model generate": 16146, "learners large language": 17527, "llms natural language": 18811, "understanding question answering": 34264, "finetuned language models": 11323, "llms incontext learning": 18709, "generative tasks using": 12708, "analysis sheds light": 1963, "models llms highlights": 21555, "llms highlights potential": 18675, "language models goal": 16366, "scales large language": 29154, "prompts extensive experiments": 26419, "extensive experiments conducted": 10694, "verify effectiveness proposed": 35218, "models project page": 21860, "project page available": 26246, "space recent work": 30582, "information learned representations": 14883, "representations large language": 28163, "representational similarity analysis": 28155, "language model architectures": 16120, "recent trend large": 27566, "scale model size": 29143, "stateoftheart language model": 30937, "demonstrate proposed approach": 7482, "proposed approach significantly": 26591, "experiments conducted using": 10428, "achieve stateoftheart performance": 991, "stateoftheart performance terms": 30975, "models paper explores": 21792, "tasks sentiment analysis": 32494, "different prompting strategies": 8128, "results indicate need": 28634, "tasks natural language": 32428, "30 billion parameters": 307, "factual knowledge graph": 10888, "code data results": 4740, "future research endeavors": 12046, "mainstream llms llama": 19411, "nonenglish languages paper": 22993, "question conduct extensive": 27064, "pretraining instruction tuning": 25803, "paper presents development": 24098, "initial pretraining phase": 14962, "field materials science": 11142, "available research community": 3000, "remarkable capabilities understanding": 28037, "opensource language model": 23507, "plays crucial role": 25027, "suggest continual pretraining": 31568, "era generative ai": 9696, "hold immense promise": 13735, "small language model": 30347, "language model present": 16190, "significantly outperforms existing": 30076, "publicly available github": 26857, "end propose new": 9417, "knowledge catastrophic forgetting": 15823, "performance various benchmarks": 24798, "models llama family": 21465, "natural programming languages": 22579, "laying solid foundation": 17453, "development opensource large": 7968, "study scaling laws": 31393, "advancing opensource language": 1495, "conduct supervised finetuning": 5622, "sft direct preference": 29761, "exhibits superior performance": 10256, "outperforms llama 70b": 23830, "mathematics code generation": 19688, "code generation multilingual": 4762, "provide model finetuned": 26715, "model finetuned follow": 20525, "finetuned follow instructions": 11311, "gemini pro llama": 12142, "chat model human": 4444, "base instruct models": 3118, "models released apache": 21919, "released apache 20": 27920, "gpt35 gpt4 llama2": 13024, "spatial reasoning capabilities": 30641, "reasoning capabilities llms": 27387, "multimodal large language": 22352, "models llms multimodal": 21585, "llms multimodal large": 18806, "language models mllms": 16624, "models mllms shown": 21733, "tasks address gap": 32237, "experimental results models": 10403, "language models mental": 16618, "models mental health": 21717, "mental health challenges": 19840, "transformerbased models like": 33764, "like bert xlnet": 17851, "models llms potential": 21602, "using llms generate": 34826, "demonstrate impressive capabilities": 7463, "diverse downstream tasks": 8427, "downstream tasks paper": 8697, "mixtureofexperts language models": 20286, "language models era": 16322, "models era large": 21213, "models llms hold": 21557, "paper investigates potential": 24074, "language models search": 16701, "instruction tuning large": 15197, "tuning large language": 33988, "work explore potential": 35706, "empirical results reveal": 9237, "models publicly accessible": 21878, "question answering training": 27059, "frequently asked questions": 11927, "reward model train": 28860, "using policy gradient": 34874, "models based t5": 21009, "data natural language": 6781, "models human evaluation": 21363, "efficient finetuning peft": 9038, "finetuning effective way": 11394, "instruction tuning datasets": 15190, "performance lowresource languages": 24669, "paper conduct comprehensive": 24024, "conduct comprehensive study": 5596, "significantly improved performance": 30059, "given training data": 12780, "incurs high cost": 14665, "llms excel tasks": 18575, "address data scarcity": 1321, "diverse highquality dataset": 8432, "mathematical reasoning capabilities": 19684, "wider research community": 35587, "retrievalaugmented generation rag": 28762, "popular llms including": 25126, "llms including llama213b": 18704, "questions answers using": 27097, "demonstrate finetuned model": 7456, "despite general capabilities": 7778, "general capabilities large": 12159, "language models consistently": 16288, "knowledge reasoning safety": 15899, "factual knowledge demonstrate": 10887, "vision language tasks": 35305, "gpt2 models results": 12927, "model instruction finetuned": 20587, "models trained evaluated": 22068, "models human preferences": 21364, "training work study": 33645, "instruction following ability": 15163, "iterations approach yields": 15684, "approach yields model": 2365, "yields model outperforms": 35926, "model outperforms existing": 20672, "outperforms existing systems": 23822, "text generation capabilities": 32869, "generation capabilities llms": 12467, "models llms task": 21650, "llm training data": 18375, "using dataset collected": 34764, "llms llama2 mistral": 18778, "publicly release code": 26863, "release code data": 27902, "fusion large language": 12023, "models training large": 22079, "improve performance target": 14287, "code generation code": 4755, "model weights data": 20867, "weights data public": 35505, "complex language tasks": 5278, "text generation address": 32867, "novel framework designed": 23082, "results demonstrate proposed": 28591, "bridge gap propose": 3866, "propose new task": 26542, "benchmark designed assess": 3379, "perform new task": 24498, "achieves comparable results": 1040, "task performance pruning": 32174, "roberta t5 models": 28923, "trillion tokens sourced": 33908, "specific use cases": 30724, "associated code publicly": 2644, "code publicly accessible": 4802, "inspire future research": 15092, "future research practical": 12048, "research practical applications": 28343, "high memory bandwidth": 13575, "explainability large language": 10527, "models llms critical": 21492, "aspect natural language": 2566, "language processing llms": 16787, "significant concerns regarding": 29973, "llms llama family": 18770, "pretraining large language": 25811, "language models known": 16398, "new training procedure": 22862, "provide extensive analysis": 26700, "aigenerated content aigc": 1634, "generate training data": 12336, "7b 13b 34b": 527, "stateoftheart opensource models": 30968, "achieves performance par": 1058, "reasoning multimodal large": 27426, "large language modelsmllms": 17223, "poses significant challenge": 25174, "extreme compression large": 10792, "compression large language": 5418, "size poses significant": 30272, "poses significant challenges": 25175, "training inference costs": 33532, "llama2 7b model": 18164, "multilingual capabilities large": 22298, "language models models": 16629, "extending large language": 10664, "data results indicate": 6843, "presents promising direction": 25592, "encoderdecoder language model": 9367, "language model enhanced": 16136, "recent advances natural": 27503, "advances natural language": 1484, "pretrained encoderdecoder architecture": 25641, "compute memory resources": 5496, "zeroshot task performance": 35998, "models code available": 21057, "based insights introduce": 3180, "dialogue code generation": 8012, "finance large language": 11211, "using financial domain": 34779, "apply supervised finetuning": 2214, "13b chat model": 125, "augmentation language models": 2801, "learning language models": 17591, "math reasoning testbed": 19674, "significant performance gain": 30003, "training curriculum learning": 33465, "versatile multimodal large": 35225, "language model mllm": 16177, "lowrank adaption lora": 19305, "compared original lora": 5158, "consistent performance gains": 5742, "demonstrates significant performance": 7568, "nlp tasks propose": 22962, "trained supervised finetuning": 33431, "used text generation": 34630, "generation based gpt2": 12463, "aligning large language": 1746, "language models news": 16632, "biases generated text": 3673, "unclear models perform": 34127, "research highlights potential": 28324, "language models critical": 16292, "language models developed": 16309, "trillion tokens english": 33907, "open language model": 23398, "details training data": 7848, "including training data": 14523, "training data training": 33492, "solve wide range": 30500, "llms llama2 gpt35": 18775, "llama2 gpt35 palm2": 18179, "performs par better": 24851, "llms 7b 70b": 18403, "7b 70b parameters": 531, "language models face": 16340, "representative large language": 28182, "models capable performing": 21043, "paper present method": 24089, "gpt4 smaller models": 13120, "models gpt4 using": 21335, "100 success rate": 40, "previous methods using": 25870, "different sizes gpt2": 8140, "holdout test set": 13739, "perform extensive experiments": 24489, "novel lightweight framework": 23093, "llms llama2 gpt4": 18777, "models llms particularly": 21599, "using blooms taxonomy": 34743, "substantial computational memory": 31462, "computational memory requirements": 5471, "inference recent advancements": 14805, "identify current limitations": 14007, "current limitations discuss": 6508, "future directions improve": 12032, "llm inference efficiency": 18322, "guardrails large language": 13336, "identify mitigate risks": 14013, "tasks model sizes": 32420, "finetuning peft methods": 11476, "model inference sparsityaware": 20581, "models demonstrate effectiveness": 21132, "downstream tasks experiments": 8692, "experiments proposed method": 10468, "maintaining competitive performance": 19422, "data instruction tuning": 6741, "commonsense reasoning reading": 5042, "reasoning reading comprehension": 27445, "improves performance llama": 14389, "code model dataset": 4782, "models confidence scores": 21094, "benchmarks demonstrate proposed": 3436, "single hidden state": 30205, "increase number parameters": 14602, "minimal computational overhead": 20185, "pretraining resulting model": 25835, "linear computational complexity": 17988, "validate effectiveness approach": 34994, "performance multiple benchmarks": 24684, "multiple benchmarks code": 22381, "model weights datasets": 20869, "lottery ticket hypothesis": 19264, "work present comprehensive": 35748, "models specifically llama2": 22002, "model achieves superior": 20352, "underscore effectiveness finetuning": 34174, "datasets contain short": 7085, "benchmark includes datasets": 3391, "use model filter": 34551, "models llms proven": 21609, "llms work propose": 19049, "effective training framework": 8904, "achieves best performance": 1032, "question answering task": 27056, "task large language": 32149, "task artificial intelligence": 32080, "capture contextual information": 4149, "directly applying llms": 8234, "enhance reasoning abilities": 9529, "work propose alternative": 35752, "sparsity large language": 30631, "natural approach reduce": 22504, "approach reduce cost": 2333, "inference existing methods": 14776, "like gpt llama": 17866, "strong performance wide": 31186, "massive amounts text": 19624, "llms including popular": 18706, "compare performance popular": 5112, "performance popular llms": 24716, "open challenges future": 23387, "challenges future research": 4348, "models diverse set": 21165, "instructions instruction finetuning": 15254, "instruction finetuning ift": 15158, "framework future research": 11859, "knowledge graph completion": 15858, "language model recent": 16195, "language models achieved": 16238, "achieved stateoftheart performance": 1018, "stateoftheart performance multiple": 30972, "llms reasoning abilities": 18891, "enhance performance llms": 9525, "llms performance various": 18851, "reasoning performance llms": 27434, "models including gpt35": 21382, "training language model": 33538, "llama model significantly": 18130, "model significantly outperforms": 20784, "llms generative ai": 18640, "models llms great": 21552, "llms great potential": 18664, "different llms gpt4": 8097, "received lot attention": 27482, "languages lowresource languages": 16894, "improve language model": 14271, "language model performance": 16187, "model finetuned model": 20532, "finetuned model shows": 11344, "llms increasingly utilized": 18714, "models previous studies": 21851, "llama2 falcon mistral": 18174, "finetuned models exhibit": 11346, "language models abstractive": 16236, "applied large language": 2192, "additionally qualitative analysis": 1300, "extensive experiments multiple": 10699, "using gpt 35": 34788, "demonstrate significant performance": 7494, "downstream tasks given": 8694, "models enabling use": 21197, "gpu memory requirements": 13176, "experiments llama2 mistral": 10460, "understanding incontext learning": 34233, "language processing based": 16776, "latent variable models": 17412, "common sense knowledge": 5013, "nlp tasks empirical": 22950, "understanding language models": 34238, "nexttoken probabilities computed": 22897, "precision recall assess": 25394, "llms paper introduces": 18840, "paper introduces novel": 24064, "introduces novel evaluation": 15546, "novel evaluation framework": 23078, "evaluation framework large": 9949, "framework large language": 11875, "quality diversity generated": 26955, "comprehensive evaluation stateoftheart": 5374, "models finetuned human": 21276, "poorly understood paper": 25109, "question answering cqa": 27041, "llms gpt 35": 18644, "gpt 35 llama": 12844, "paper addresses challenge": 24005, "demonstrating significant improvement": 7588, "introduce novel approach": 15525, "social media posts": 30426, "using open source": 34864, "open source large": 23423, "source large language": 30565, "language model llama2": 16164, "power natural language": 25327, "research focuses developing": 28319, "language model provides": 16194, "context address challenge": 5881, "address challenge propose": 1312, "prompts large language": 26427, "model performance notably": 20703, "additionally findings reveal": 1286, "challenges large language": 4355, "scenarios address gap": 29202, "address gap introduce": 1324, "llms like gpt35": 18762, "contexts language models": 5943, "models lms strong": 21680, "reasoning knowledge graph": 27414, "paper aim improve": 24009, "improve reasoning ability": 14293, "models llms knowledge": 21570, "llms knowledge graphs": 18736, "datasets code data": 7075, "data publicly released": 6822, "models llms new": 21592, "challenge paper propose": 4325, "new evaluation benchmark": 22800, "set evaluation metrics": 29684, "experimental evaluation shows": 10385, "models dont learn": 21171, "present empirical investigation": 25527, "model family llama": 20516, "models llms make": 21582, "introduce new task": 15522, "benchmark comprehensive evaluation": 3360, "comprehensive evaluation benchmark": 5368, "perform better tasks": 24473, "graph neural network": 13226, "network large language": 22695, "learning icl capabilities": 17585, "neural network gnn": 22744, "classification tasks gpt2": 4616, "llms demonstrated strong": 18526, "capable llms like": 4112, "outperform strong baselines": 23789, "language models gpt4": 16373, "languages large language": 16885, "crosslingual knowledge transfer": 6415, "evaluate different llms": 9826, "comprehension generation tasks": 5343, "enhance multilingual capabilities": 9523, "finetuned llms using": 11340, "using lowrank adaptation": 34831, "models natural language": 21745, "new approach generating": 22777, "models trained data": 22066, "model trained data": 20835, "indomain training data": 14727, "usage large language": 34506, "recently emerged promising": 27595, "models lms proven": 21678, "machine translation paper": 19363, "llms pretrained large": 18865, "massive multitask language": 19628, "pretraining large models": 25813, "efficiency large language": 9006, "recent efforts explored": 27517, "help llms achieve": 13508, "comparable model performance": 5083, "model performance paper": 20704, "llama27b llama213b respectively": 18207, "achieving superior performance": 1110, "stochastic beam search": 31070, "computational cost llm": 5459, "llms demonstrate remarkable": 18511, "potential various domains": 25308, "highquality instruction data": 13691, "bilingual english chinese": 3709, "existing datasets introduce": 10268, "performance llms especially": 24664, "language models external": 16338, "machine learning model": 19348, "finetuned llama27b model": 11337, "llms exhibit different": 18579, "study large language": 31353, "multiple choice questions": 22384, "cognitive abilities knowledge": 4875, "model size paper": 20794, "textual data augmentation": 33025, "data augmentation da": 6607, "tasks paper challenge": 32441, "address limitation propose": 1342, "propose simple approach": 26566, "tokens encode information": 33223, "model achieve stateoftheart": 20344, "recently proposed address": 27615, "proposed address issue": 26589, "exhibits significant performance": 10251, "significant performance drops": 30002, "compared standard finetuning": 5171, "parameters propose simple": 24282, "significant performance gains": 30004, "single a100 gpu": 30197, "tokens large language": 33238, "remarkable capabilities various": 28038, "decoding process address": 7281, "proposed framework significantly": 26601, "significant advancement field": 29951, "remarkable capabilities language": 28032, "mistral zephyr models": 20236, "performance levels comparable": 24656, "finetuned models findings": 11347, "findings underscore potential": 11260, "valuable resource understanding": 35017, "llama vicuna mistral": 18152, "models heavily relies": 21350, "highquality pretraining data": 13698, "improve data quality": 14261, "example use cases": 10113, "improving data quality": 14406, "evaluate large language": 9842, "tasks limited understanding": 32405, "understanding llms perform": 34247, "intellectual property ip": 15349, "language model called": 16124, "benchmark experimental results": 3387, "code data models": 4734, "data models available": 6777, "small subset neurons": 30370, "language models attention": 16250, "models accurately predict": 20943, "language model representations": 16197, "substantial computational costs": 31461, "novel approach designed": 23057, "approach designed reduce": 2258, "reduce computational costs": 27704, "language model series": 16200, "models available hugging": 21002, "language models explore": 16335, "models explore approach": 21241, "models plms bert": 21820, "series flant5 llama": 29637, "models llms ability": 21473, "time large language": 33131, "single forward pass": 30202, "role attention heads": 28954, "llms text generation": 19003, "text generation large": 32872, "models llms known": 21571, "paper propose simple": 24116, "models proposed framework": 21870, "knowledge distillation additional": 15831, "method reinforcement learning": 19967, "develop new evaluation": 7919, "new evaluation dataset": 22801, "propose novel evaluation": 26547, "demonstrates strong performance": 7573, "llms code data": 18470, "directly prompting llms": 8243, "lack domainspecific knowledge": 15987, "experiment results demonstrate": 10380, "feedback reinforcement learning": 11070, "rapidly evolving field": 27256, "presents formidable challenge": 25586, "gpt35 gpt4 llama27b": 13025, "capabilities smaller models": 4071, "compared larger counterparts": 5144, "natural language input": 22527, "models achieved remarkable": 20950, "pretraining instruction finetuning": 25802, "language adaptation large": 16036, "adaptation large language": 1181, "model foundation model": 20537, "empirical results analysis": 9233, "resources publicly available": 28445, "play crucial role": 25018, "construct instruction tuning": 5799, "release dataset model": 27907, "generalization incontext learning": 12217, "paper try answer": 24144, "try answer question": 33947, "tasks maintaining comparable": 32413, "maintaining comparable performance": 19420, "models recent advances": 21905, "llms reasoning capabilities": 18892, "finetuning single gpu": 11527, "paper presents new": 24102, "results extensive experiments": 28612, "hallucination code data": 13374, "data evaluation benchmark": 6698, "language models minimal": 16622, "models minimal human": 21724, "minimal human effort": 20187, "serving large language": 29665, "issue particularly pronounced": 15659, "empirical results suggest": 9238, "llama 13b model": 18060, "paper investigate basic": 24068, "models recent works": 21907, "models work study": 22137, "bias gradient descent": 3647, "different prompting techniques": 8129, "chain thought cot": 4291, "models like gpt35": 21455, "tasks extensive experiments": 32326, "future large language": 12036, "language models surprisingly": 16721, "llms perform task": 18848, "research question paper": 28355, "paper proposes new": 24124, "grammatical error correction": 13207, "outperform previous stateoftheart": 23783, "error correction models": 9712, "keyvalue kv cache": 15795, "llm inference engine": 18323, "language models automatically": 16255, "llms transformerbased models": 19009, "popular llms chatgpt": 25124, "despite considerable advancements": 7773, "importance data quality": 14187, "data quality quantity": 6824, "data synthetic data": 6888, "data diverse sources": 6682, "language models potentially": 16658, "models potentially used": 21828, "study aimed develop": 31298, "evaluate performance model": 9856, "evaluating language models": 9898, "question answering code": 27040, "code reproduce experiments": 4812, "transformerbased language model": 33748, "deep learning methods": 7331, "zeroshot performance new": 35988, "models llms stand": 21644, "era artificial intelligence": 9694, "computational cost paper": 5460, "language models key": 16396, "competitive performance stateoftheart": 5226, "compared 350m parameter": 5119, "350m parameter opt": 346, "code available soon": 4724, "previous state art": 25880, "models demonstrate strong": 21133, "demonstrate strong performance": 7501, "play vital role": 25021, "instructions reinforcement learning": 15270, "feedback rlhf framework": 11072, "instruction data training": 15149, "paving way single": 24423, "compared strong baselines": 5174, "opened new opportunities": 23455, "rouge bleu meteor": 28979, "llama2 language models": 18182, "based cosine similarity": 3147, "tasks text generation": 32528, "llms gpt llama": 18645, "models llms specifically": 21643, "models case study": 21047, "models llms use": 21656, "experimental results showed": 10408, "models opt bloom": 21775, "models perform better": 21808, "addressing gap introduce": 1372, "finetuning llama2 models": 11444, "model code data": 20423, "exhibit different levels": 10214, "paper establish benchmark": 24039, "results popular llms": 28657, "data curation pipeline": 6667, "dataset trained model": 7048, "capabilities llm experiments": 4039, "like gpt35 llama2": 17872, "rapid advancement generative": 27240, "advancement generative artificial": 1452, "artificial intelligence genai": 2537, "high performance computing": 13577, "model llm inference": 20623, "guide autoregressive generation": 13344, "causal language model": 4241, "issues propose data": 15673, "model shows significant": 20782, "robust generalization ability": 28934, "generalization ability different": 12206, "downstream tasks requires": 8699, "instructionfinetuned large language": 15219, "downstream task performance": 8686, "aware instruction tuning": 3043, "especially lowresource languages": 9744, "compared competitive baseline": 5127, "general task performance": 12186, "code models released": 4792, "foundation models recently": 11800, "agents significantly outperform": 1575, "emergence numerous large": 9176, "numerous large language": 23185, "processing nlp applications": 26116, "models finetuning llms": 21283, "properties large language": 26475, "small medium large": 30355, "increase model size": 14600, "models significantly better": 21975, "counter speech generation": 6292, "training downstream tasks": 33504, "improves downstream task": 14373, "llm generate synthetic": 18314, "significantly enhances performance": 30052, "student model large": 31255, "contemporary large language": 5843, "performance existing llms": 24588, "language models achieve": 16237, "achieve best performance": 946, "encoders like bert": 9379, "use natural language": 34555, "language models billions": 16265, "models billions parameters": 21029, "zeroshot performance various": 35989, "compared prior work": 5166, "comprehensive comparison multiple": 5361, "incontext learning gpt35": 14554, "ablation study demonstrates": 738, "benchmarks including truthfulqa": 3450, "widespread adoption large": 35592, "adoption large language": 1409, "models llms facilitated": 21531, "generation rag emerged": 12588, "users information needs": 34693, "retrieval paper propose": 28751, "models llms understanding": 21655, "various llms including": 35114, "including gpt4 llama2": 14492, "addition propose new": 1246, "artificial intelligence gai": 2536, "language models factual": 16341, "evaluated various language": 9886, "using pretrained language models": 34880, "pretrained language models lms": 25679, "language models lms various": 16611, "models lms various natural": 21684, "lms various natural language": 19124, "various natural language processing": 35126, "natural language processing tasks": 22556, "neural machine translation nmt": 22733, "language models large language": 16405, "models large language models": 21422, "masked language models mlms": 19617, "largescale pretrained language models": 17376, "pretrained language models demonstrated": 25669, "language models demonstrated impressive": 16301, "models achieved stateoftheart results": 20953, "models large pretrained language": 21427, "large pretrained language models": 17261, "natural language understanding tasks": 22575, "neural language models trained": 22729, "generative pretrained language model": 12687, "pretrained language model gpt2": 25659, "pretrained language models paper": 25682, "language models paper presents": 16645, "paper presents empirical study": 24100, "pretrained language models plms": 25685, "texttotext transfer transformer t5": 33018, "language models lms bert": 16598, "neural network language models": 22746, "propose new method called": 26540, "generative pretrained transformer gpt2": 12695, "natural language processing nlp": 22547, "recurrent neural networks rnns": 27685, "bidirectional encoder representations transformers": 3694, "encoder representations transformers bert": 9356, "generative language models gpt2": 12665, "largescale language models lms": 17362, "language models lms able": 16597, "advanced neural language models": 1439, "pretrained neural language models": 25740, "language models lms prone": 16605, "gpt2 radford et al": 12944, "radford et al 2019": 27152, "language models lms demonstrated": 16599, "models lms demonstrated impressive": 21672, "language model like gpt2": 16163, "range natural language understanding": 27204, "natural language understanding nlu": 22572, "language models bert xlnet": 16261, "extremely large batch sizes": 10800, "pretrained language models perform": 25683, "natural language generation tasks": 22524, "parameters constant computational cost": 24236, "neural language model gpt2": 22726, "performance natural language processing": 24689, "use pretrained language models": 34562, "language models lms t5": 16609, "pretrained language models recent": 25690, "language models recent years": 16689, "size pretrained language models": 30276, "downstream tasks experimental results": 8691, "pretraining language understanding generation": 25809, "stateoftheart results various natural": 30988, "results various natural language": 28707, "language processing nlp tasks": 16796, "natural language understanding generation": 22570, "language understanding generation tasks": 16843, "based large language model": 3187, "tasks conduct extensive experiments": 32274, "transformerbased pretrained language models": 33767, "language models lms exhibit": 16601, "named entity recognition ner": 22487, "significant progress recent years": 30015, "datasets demonstrate superior performance": 7093, "language processing nlp domain": 16792, "general language understanding evaluation": 12175, "language models pretrained language": 16662, "models pretrained language models": 21842, "wide range natural language": 35558, "range natural language processing": 27201, "adapting pretrained language models": 1217, "recent years pretrained language": 27580, "years pretrained language models": 35897, "pretrained language models bert": 25665, "language models bert gpt2": 16259, "bert roberta gpt2 dozens": 3530, "roberta gpt2 dozens datasets": 28919, "current pretrained language models": 6526, "language models generate highquality": 16359, "models generate highquality text": 21309, "language models catastrophic forgetting": 16275, "language models bert t5": 16260, "language models large pretrained": 16408, "outperforms models comparable size": 23836, "training large language models": 33545, "large language models new": 17177, "make code models publicly": 19456, "code models publicly available": 4791, "adaptation pretrained language models": 1189, "remarkable success large language": 28058, "success large language models": 31516, "frozen pretrained language model": 11941, "inference latency experimental results": 14788, "large language models llms": 17057, "natural language processing models": 22546, "machine learning models large": 19350, "learning models large language": 17610, "large language models llm": 17055, "finetuning pretrained language models": 11489, "pretrained language models recently": 25692, "natural language generation nlg": 22523, "data source code available": 6872, "structures neural language models": 31234, "recurrent neural network rnn": 27683, "chen et al 2021": 4531, "language model outperforms gpt2": 16182, "et al 2019 gpt3": 9793, "al 2019 gpt3 brown": 1684, "2019 gpt3 brown et": 225, "gpt3 brown et al": 12985, "brown et al 2020": 3899, "generalization natural language processing": 12222, "language processing nlp algorithms": 16790, "transformerbased language models lms": 33750, "language models lms shown": 16607, "language models paper introduces": 16643, "despite order magnitude smaller": 7800, "automated natural language generation": 2872, "natural language generation metrics": 22521, "large language models present": 17186, "berts masked language modeling": 3548, "masked language modeling mlm": 19613, "prompting large language model": 26383, "large language model llm": 16972, "question answering natural language": 27049, "answering natural language inference": 2067, "challenge natural language processing": 4321, "language processing nlp systems": 16795, "translation summarization question answering": 33852, "conduct comprehensive empirical study": 5592, "achieve new stateoftheart performance": 975, "natural language inference nli": 22526, "demonstrate large language models": 7468, "large language models chatgpt": 16998, "field natural language processing": 11145, "glancing language model glm": 12789, "generalpurpose pretrained language models": 12259, "pretrained language models gpt2": 25673, "language models bert albert": 16258, "remarkable success natural language": 28061, "pretrained transformerbased language models": 25769, "language models widely used": 16757, "language understanding nlu natural": 16845, "understanding nlu natural language": 34256, "nlu natural language generation": 22973, "batch size learning rate": 3289, "autoregressive language models gpt2": 2946, "tasks summarization machine translation": 32521, "powered large language models": 25334, "current stateoftheart sota models": 6538, "generative pretrained language models": 12689, "model achieves stateoftheart performance": 20351, "benefit using large language": 3486, "using large language models": 34810, "llms 100 billion parameters": 18400, "recently large language models": 27608, "language understanding nlu tasks": 16847, "transformers shown remarkable success": 33797, "models generative pretrained transformer": 21317, "generative pretrained transformer gpt": 12693, "high bandwidth memory hbm": 13554, "recent large language models": 27525, "language models llms demonstrated": 16446, "models llms demonstrated remarkable": 21504, "larger language models llms": 17323, "large language models large": 17049, "language models llms shown": 16561, "variety natural language tasks": 35067, "improve model performance generalization": 14277, "model performance generalization unseen": 20701, "performance generalization unseen tasks": 24613, "evaluation large language models": 9967, "large language models understand": 17215, "language models 13b parameters": 16233, "large language models increasingly": 17046, "multiple natural language tasks": 22405, "large language models lms": 17169, "models long short term": 21689, "long short term memory": 19181, "pretrained causal language models": 25635, "language models better understand": 16263, "large neural language models": 17248, "openaccess multilingual language model": 23431, "language model large language": 16160, "model large language models": 20604, "language models llms led": 16510, "shown great performance tasks": 29881, "performance various nlp tasks": 24807, "adapting large language models": 1210, "finetuning large language models": 11431, "large language models different": 17012, "leverage large language models": 17754, "large language models diverse": 17013, "landscape large language models": 16025, "widelyused pretrained language models": 35582, "knowledge large language models": 15873, "language models llms trained": 16580, "using masked language modeling": 34838, "masked language modeling task": 19614, "knowledge generative language models": 15856, "largescale generative language models": 17355, "generative language models glms": 12664, "language models shown perform": 16703, "tasks named entity recognition": 32425, "enables pretrained language models": 9308, "approaches rely vast amounts": 2390, "language models llms surprisingly": 16576, "safety large language models": 29050, "large language models work": 17220, "pretrained texttotext language models": 25755, "lack highquality training data": 15992, "code data publicly available": 4738, "datasets experiment results proposed": 7109, "pretrained language generation models": 25655, "effectiveness large language models": 8952, "performance various natural language": 24803, "tasks question answering summarization": 32470, "summarization large language models": 31616, "language models llms used": 16586, "generation large language models": 12535, "pretrained language models like": 25676, "language models like bert": 16417, "like bert gpt t5": 17847, "size large language models": 30257, "release models research community": 27915, "pretrained language models plm": 25684, "language models trained large": 16733, "use large language models": 34544, "language models llms chatgpt": 16437, "scaling large language models": 29169, "large language models empirical": 17016, "language models empirical study": 16319, "significantly enhances models performance": 30051, "performance large language models": 24646, "large language models based": 16995, "data large language models": 6751, "language models llms downstream": 16457, "language models llms revolutionized": 16555, "models llms revolutionized natural": 21624, "llms revolutionized natural language": 18925, "revolutionized natural language processing": 28850, "automated machine learning automl": 2867, "language models llms gpt4": 16488, "large language models success": 17206, "language models llms like": 16512, "models llms like gpt4": 21578, "tasks like image captioning": 32401, "feedback large language models": 11066, "models llms like chatgpt": 21575, "large language models efficient": 17015, "potential large language model": 25268, "generated large language models": 12369, "make code publicly available": 19459, "make model data code": 19474, "model data code publicly": 20450, "data code publicly available": 6637, "instruction following large language": 15167, "following large language model": 11697, "large language models crucial": 17004, "research field natural language": 28314, "artificial general intelligence agi": 2532, "research large language models": 28332, "large language models llama": 17054, "applications large language models": 2161, "datasets large language models": 7140, "language models training data": 16735, "deploying large language models": 7641, "language models llms challenging": 16436, "data achieve comparable performance": 6590, "ability large language models": 691, "era large language models": 9699, "pretrained language models ptlms": 25689, "descriptions large language models": 7690, "large language models temporal": 17208, "language models llms multiple": 16524, "training data compared baseline": 33472, "graphical user interfaces guis": 13236, "large language models follow": 17026, "language models follow instructions": 16352, "leveraging large language models": 17785, "prediction large language models": 25428, "language models llms produce": 16543, "enhancing large language models": 9564, "advancements large language models": 1467, "large language models given": 17037, "alignment large language models": 1767, "large language models trained": 17211, "end tasks user preferences": 9421, "harnessing capabilities large language": 13461, "capabilities large language models": 4034, "pretrained models bert gpt2": 25720, "generative large language models": 12669, "models llms revolutionized field": 21623, "comes significant computational costs": 4973, "significant computational costs paper": 29969, "proprietary large language models": 26643, "evaluating large language models": 9902, "large language models spoken": 17204, "models spoken language understanding": 22006, "language models demonstrated strong": 16302, "spoken language understanding slu": 30817, "language models llms directly": 16456, "text generated large language": 32863, "language models llms data": 16442, "furthermore conduct human evaluation": 11991, "automatic speech recognition asr": 2896, "bias large language models": 3652, "comprehensive evaluation large language": 5371, "large language models automatic": 16994, "make data code publicly": 19463, "tasks large language models": 32392, "tasks like question answering": 32403, "language models lms powerful": 16604, "large language models recent": 17194, "language models recent advancements": 16684, "models recent advancements large": 21903, "recent advancements large language": 27493, "language models llms significantly": 16569, "learning large language models": 17594, "pretrained multilingual language models": 25734, "large language models partially": 17183, "language models llms acquire": 16432, "capabilities pretrained language models": 4063, "pretrained large language models": 25700, "performance variety language tasks": 24795, "excel various natural language": 10157, "incontext learning instruction tuning": 14561, "pretrained language models nlp": 25680, "especially large language models": 9741, "large language models gpt3": 17039, "large language models paper": 17180, "language models llms study": 16575, "models large language modelsllms": 21425, "entities pretrained language models": 9637, "using large language model": 34809, "multilingual large language models": 22315, "language models llms achieved": 16428, "models llms achieved great": 21476, "llms achieved great success": 18414, "evaluating large language model": 9901, "language model llm based": 16166, "ability generative language models": 680, "translation large language models": 33832, "recent years large language": 27577, "years large language models": 35893, "large language models open": 17179, "gpt4 metas llama googles": 13097, "analysis large language models": 1936, "large language models general": 17031, "large multilingual language models": 17244, "language large language models": 16107, "generative artificial intelligence ai": 12655, "emergence large language models": 9171, "capabilities natural language processing": 4049, "generative pretrained transformers gpts": 12700, "potential artificial general intelligence": 25242, "data augmentation method generate": 6610, "pretrained language model plm": 25660, "language model plm t5": 16189, "new large language model": 22815, "large language model code": 16964, "process reduces computational requirements": 26081, "empowering large language models": 9271, "llms including gpt4 llama": 18700, "finetuning parameterefficient finetuning peft": 11472, "instructiontuned large language model": 15288, "large language model based": 16962, "language model based llama": 16123, "generative pretrained transformer gpt4": 12697, "code generation machine translation": 4760, "language models llms capture": 16435, "llms demonstrated remarkable potential": 18524, "experimental results demonstrate superior": 10397, "results demonstrate superior performance": 28595, "outperforms previous stateoftheart models": 23846, "nlp tasks large language": 22958, "language models llms typically": 16583, "large language models generating": 17034, "abilities large language models": 630, "large language models providing": 17190, "skills large language models": 30312, "large language models current": 17005, "developments large language models": 7982, "language models llms enabled": 16461, "various natural language tasks": 35129, "language models llms recently": 16546, "models llms recently achieved": 21612, "following natural language instructions": 11700, "language models llms widely": 16592, "generating fluent coherent text": 12425, "pretrained large language model": 25699, "models llms shown remarkable": 21635, "effectiveness various generaldomain natural": 8973, "various generaldomain natural language": 35098, "generaldomain natural language processing": 12193, "instructiontuned large language models": 15290, "large language models multiple": 17176, "reinforcement learning human feedback": 27842, "development large language models": 7959, "supervised finetuning sft reinforcement": 31680, "finetuning sft reinforcement learning": 11522, "sft reinforcement learning human": 29766, "learning human feedback rlhf": 17579, "achieves new stateoftheart result": 1054, "reasoning large language models": 27417, "language models llms exhibit": 16467, "opensource large language model": 23511, "great success large language": 13264, "large language models computer": 17001, "current large language models": 6504, "recent advances large language": 27501, "advances large language models": 1480, "existing large language models": 10285, "instructionfollowing large language models": 15232, "models pretrained large language": 21844, "large language models gpt": 17038, "language model gpt2 sequence": 16151, "behavior large language models": 3317, "supervised finetuning reinforcement learning": 31677, "finetuning reinforcement learning human": 11505, "machine learning ml models": 19347, "diverse natural language processing": 8443, "like bert roberta gpt2": 17850, "advanced natural language processing": 1435, "language processing nlp research": 16794, "instructions large language models": 15258, "language models llms present": 16539, "large language model evaluation": 16965, "data codes publicly available": 6640, "advent large language models": 1511, "revolutionized field natural language": 28846, "natural language processing enabling": 22540, "large language models focus": 17025, "significant advancements natural language": 29956, "advancements natural language processing": 1472, "models range natural language": 21887, "reinforcement learning rl based": 27846, "intelligence large language models": 15360, "large language models language": 17048, "recent progress large language": 27543, "progress large language models": 26214, "artificial intelligence ai based": 2535, "chainofthought cot think stepbystep": 4300, "vast amounts text data": 35183, "understanding generating humanlike text": 34226, "technical report large language": 32609, "report large language models": 28119, "models llms achieved remarkable": 21478, "llms achieved remarkable success": 18419, "large language models despite": 17008, "language models despite impressive": 16305, "despite impressive capabilities large": 7790, "impressive capabilities large language": 14233, "models llms gpt4 palm": 21550, "llms gpt4 palm llama": 18661, "fake news detection using": 10936, "finetuned large language model": 11326, "large language model paper": 16984, "model paper considers possibility": 20683, "finetuning llama large language": 11442, "finetuning peftlora based approach": 11480, "peftlora based approach used": 24442, "based approach used study": 3135, "approach used study model": 2353, "used study model finetuned": 34626, "study model finetuned following": 31364, "model finetuned following tasks": 20528, "finetuned following tasks analysing": 11314, "following tasks analysing text": 11706, "sentiments obtained results finetuned": 29580, "obtained results finetuned llama": 23259, "results finetuned llama model": 28615, "finetuned llama model perform": 11331, "extracted sentiments named entities": 10754, "sentiments named entities considered": 29576, "named entities considered predictive": 22483, "entities considered predictive features": 9632, "considered predictive features supervised": 5720, "predictive features supervised machine": 25451, "features supervised machine learning": 11041, "supervised machine learning models": 31686, "family large language models": 10977, "smaller transformerbased language models": 30401, "language models llms generate": 16480, "llms including gpt35 gpt4": 18695, "gpt2 pretrained language model": 12939, "pretrained language model corpus": 25658, "astronomy large language models": 2674, "exploring large language models": 10620, "language models llms gpt": 16484, "language models llms need": 16526, "language models continue advance": 16291, "evaluate capabilities language models": 9822, "address gap propose novel": 1327, "language models llms excel": 16464, "models llms excel various": 21524, "paper propose novel framework": 24115, "closed opensource llms including": 4681, "foundational large language models": 11807, "power large language models": 25322, "large language models dynamic": 17014, "inference large language models": 14783, "making large language models": 19509, "large language models demonstrate": 17006, "llms demonstrated remarkable performance": 18523, "opensource models similar size": 23535, "large language models exhibit": 17018, "questions large language models": 27119, "experimental results demonstrate effectiveness": 10393, "enhance capabilities large language": 9507, "large language models using": 17216, "large language models research": 17199, "impact large language models": 14129, "machine translation large language": 19357, "machine translation recent work": 19365, "machine translation nmt systems": 19362, "cases large language models": 4202, "language models llms emerged": 16459, "language models llms represent": 16553, "best performing models achieved": 3572, "performing models achieved accuracy": 24837, "calculations large language models": 3970, "autoregressive large language models": 2949, "text classification sentiment analysis": 32827, "reasoning ability llms large": 27375, "ability llms large language": 701, "llms large language models": 18745, "remarkable performance wide range": 28050, "pose challenges practical deployment": 25160, "smaller models experimental results": 30387, "language models llms gained": 16477, "small language models slms": 30350, "large language models solving": 17202, "models llms shown promise": 21634, "prompting large language models": 26384, "large language models generative": 17036, "llms demonstrated impressive performance": 18518, "demonstrated impressive performance various": 7530, "solving math word problems": 30512, "approach large language models": 2307, "large language models reasoning": 17193, "reasoning capabilities large language": 27385, "data recent advancements llms": 6828, "explore large language models": 10589, "recent success large language": 27561, "models llms recently showcased": 21613, "llms recently showcased remarkable": 18898, "language processing tasks diverse": 16801, "processing tasks diverse domains": 26128, "games large language models": 12082, "language models llms sparked": 16572, "language modeling question answering": 16225, "large language model inference": 16968, "language models llms exploded": 16469, "models llms exploded popularity": 21528, "pretrained language models contain": 25668, "tasks finetuning language models": 32338, "llms achieved impressive results": 18416, "advanced large language models": 1427, "language models llms pretrained": 16541, "benchmarking large language models": 3425, "task natural language processing": 32166, "llms demonstrated remarkable capabilities": 18522, "remarkable capabilities natural language": 28034, "capabilities natural language understanding": 4051, "achieve similar better performance": 986, "continual learning large language": 5977, "language models llms demonstrate": 16443, "models llms demonstrate exceptional": 21495, "acceleration large language models": 806, "sparse finetuning large language": 30614, "llms finetuning pretrained llms": 18613, "large language models chinese": 16999, "potential large language models": 25269, "large language models zeroshot": 17221, "language models llms gpt3": 16486, "capability large language models": 4095, "large language models gpt35": 17040, "large language models learn": 17051, "exceptional performance various tasks": 10173, "proprietary large language model": 26641, "available large language models": 2987, "large language models generation": 17035, "named entity recognition using": 22489, "language model llm using": 16171, "language models llms perform": 16535, "choice question answering mcqa": 4554, "llms smaller language models": 18957, "models llms chatgpt llama": 21489, "stateoftheart large language models": 30941, "opensource large language models": 23512, "models llms like llama": 21579, "address limitations present new": 1345, "conduct experiments diverse set": 5604, "using incontext learning icl": 34798, "recent advancements natural language": 27497, "natural language processing large": 22543, "language processing large language": 16785, "processing large language models": 26109, "work provides insights potential": 35767, "understanding large language models": 34241, "language models llms remarkable": 16552, "remains lack comprehensive investigation": 28000, "multilingual pretrained language models": 22325, "current landscape large language": 6498, "release code pretrained checkpoints": 27904, "challenging task natural language": 4401, "retrieval augmented large language": 28737, "commercial large language models": 4986, "evaluate effectiveness proposed methods": 9833, "language models language models": 16401, "models language models lms": 21418, "source domain target domains": 30559, "results natural language processing": 28651, "natural language processing computer": 22538, "language processing computer vision": 16779, "finetuned large language models": 11327, "large language models rapid": 17191, "language models rapid advancement": 16680, "rapid advancement large language": 27244, "advancement large language models": 1456, "various language models including": 35107, "language models llms including": 16500, "potential pretrained large language": 25291, "method large language models": 19939, "models llms shown great": 21630, "llms shown great potential": 18940, "great potential natural language": 13256, "potential natural language processing": 25283, "conduct comprehensive experiments demonstrate": 5595, "comprehensive experiments demonstrate effectiveness": 5378, "experiments demonstrate effectiveness method": 10433, "work provides valuable insights": 35769, "valuable insights future research": 35014, "systems using large language": 31926, "opensource models like llama": 23532, "like llama 7b 13b": 17884, "natural language processing task": 22555, "exhibited remarkable performance various": 10238, "llms including chatgpt gpt4": 18690, "quantization large language models": 27006, "pretrained language models study": 25694, "pretrained language models trained": 25695, "retrieval augmented generation rag": 28735, "direct preference optimization dpo": 8215, "cost training models scratch": 6257, "model 13 billion parameters": 20334, "work propose novel framework": 35758, "encoded large language models": 9342, "samples large language models": 29082, "open large language models": 23403, "applicability large language model": 2122, "large language models conduct": 17002, "including finetuning incontext learning": 14479, "pretrained language models llms": 25678, "models llms demonstrated superior": 21510, "significant progress natural language": 30012, "progress natural language processing": 26220, "using natural language explanations": 34851, "demonstrated large language models": 7534, "tasks incontext learning icl": 32371, "natural language explanations nles": 22517, "language models llms given": 16483, "proliferation large language models": 26260, "popular large language models": 25121, "popularity large language models": 25144, "recent advances transformerbased large": 27507, "advances transformerbased large language": 1490, "transformerbased large language models": 33755, "great strides natural language": 13261, "domains large language models": 8625, "models llms exhibit remarkable": 21526, "proprietary models gpt35 gpt4": 26649, "language models llms extensive": 16472, "deep neural network model": 7341, "source code publicly available": 30553, "number parameters language models": 23157, "teaching small language models": 32596, "small language models reason": 30349, "models llms demonstrated exceptional": 21498, "highperformance computing large language": 13678, "computing large language models": 5516, "models llms including llama": 21565, "responses response challenge propose": 28512, "generated qa questionanswer instances": 12381, "finetuning large language model": 11429, "natural language processing techniques": 22558, "language models paper present": 16644, "reasoning abilities large language": 27370, "language models conduct extensive": 16286, "models conduct extensive experiments": 21090, "conduct extensive experiments popular": 5608, "indicate significant performance gap": 14697, "language models llms llms": 16518, "language models llms various": 16590, "models llms various tasks": 21663, "survey large language models": 31776, "models llms gpt4 llama": 21548, "introduce novel inference method": 15529, "language models llms llama": 16517, "proximal policy optimization ppo": 26797, "language models llms increasingly": 16505, "large language models represent": 17198, "large language model meta": 16980, "language model meta ai": 16176, "advancement field natural language": 1449, "data source code publicly": 6873, "extend context window models": 10651, "policy gradient reinforcement learning": 25082, "large language models exploring": 17020, "code data model publicly": 4732, "data model publicly available": 6774, "local large language models": 19131, "processing nlp tasks inspired": 26122, "available apache 20 license": 2967, "large language models better": 16996, "learners large language models": 17528, "llms natural language understanding": 18812, "models llms highlights potential": 21556, "scales large language models": 29155, "models project page available": 21861, "representations large language models": 28164, "demonstrate proposed approach significantly": 7483, "models llms gpt4 llama2": 21549, "tasks natural language processing": 32429, "performance nonenglish languages paper": 24696, "question conduct extensive empirical": 27065, "development opensource large language": 7969, "advancing opensource language models": 1496, "sft direct preference optimization": 29762, "provide model finetuned follow": 26716, "model finetuned follow instructions": 20526, "models released apache 20": 21920, "released apache 20 license": 27921, "llms gpt35 gpt4 llama2": 18652, "multimodal large language models": 22355, "language models llms multimodal": 16522, "models llms multimodal large": 21586, "llms multimodal large language": 18807, "large language models mllms": 17173, "language models mllms shown": 16626, "large language models mental": 17170, "language models mental health": 16619, "models like bert xlnet": 21450, "language models llms potential": 16537, "performance downstream tasks paper": 24576, "downstream tasks paper explore": 8698, "language models era large": 16323, "models era large language": 21214, "language models llms hold": 16495, "instruction tuning large language": 15198, "tuning large language models": 33989, "models llms demonstrated impressive": 21501, "llms demonstrated impressive capabilities": 18517, "using reinforcement learning rl": 34902, "language models improve performance": 16383, "parameter efficient finetuning peft": 24181, "processing nlp tasks paper": 26123, "models llms excel tasks": 21523, "despite general capabilities large": 7779, "large language models study": 17205, "language models language model": 16400, "iterations approach yields model": 15685, "approach yields model outperforms": 2366, "large language models scientific": 17200, "language models llms task": 16579, "fusion large language models": 12024, "large language models training": 17212, "language models training large": 16736, "models training large language": 22080, "code model weights data": 4784, "model weights data public": 20868, "empirical results demonstrate proposed": 9235, "future research practical applications": 12049, "explainability large language models": 10528, "language models llms critical": 16441, "natural language processing llms": 22545, "pretraining large language models": 25812, "reasoning multimodal large language": 27427, "multimodal large language modelsmllms": 22359, "extreme compression large language": 10793, "compression large language models": 5419, "size poses significant challenges": 30273, "multilingual capabilities large language": 22299, "extending large language models": 10665, "recent advances natural language": 27504, "advances natural language processing": 1485, "finance large language models": 11212, "versatile multimodal large language": 35226, "multimodal large language model": 22353, "large language model mllm": 16982, "demonstrates significant performance improvements": 7569, "language models nlp tasks": 16635, "aligning large language models": 1747, "large language models news": 17178, "data training evaluation code": 6898, "llms llama2 gpt35 palm2": 18776, "llms 7b 70b parameters": 18404, "large language models various": 17217, "language models capable performing": 16272, "based large language models": 3188, "language models llms particularly": 16534, "substantial computational memory requirements": 31463, "guardrails large language models": 13337, "parameterefficient finetuning peft methods": 24210, "commonsense reasoning reading comprehension": 5043, "language models llms proven": 16544, "task large language models": 32150, "sparsity large language models": 30632, "natural approach reduce cost": 22505, "llms like gpt llama": 18760, "strong performance wide range": 31187, "compare performance popular llms": 5113, "open challenges future research": 23388, "models diverse set tasks": 21166, "large language model recent": 16985, "large language models achieved": 16990, "finetuned llama model significantly": 11332, "llama model significantly outperforms": 18131, "language models llms great": 16492, "models llms increasingly utilized": 21569, "applied large language models": 2193, "learning natural language processing": 17621, "natural language processing based": 22537, "language model training data": 16209, "introduces novel evaluation framework": 15547, "evaluation framework large language": 9950, "framework large language models": 11876, "open source large language": 23424, "large language model llama2": 16971, "transformerbased large language model": 33753, "prompts large language models": 26428, "challenges large language models": 4356, "gap introduce new benchmark": 12093, "training language models lms": 33541, "language models lms strong": 16608, "language models llms knowledge": 16508, "llms knowledge graphs kgs": 18737, "code data publicly released": 4739, "language models llms new": 16527, "language models llms make": 16519, "incontext learning icl capabilities": 14557, "graph neural network gnn": 13227, "models llms demonstrated strong": 21509, "large language models gpt4": 17041, "languages large language models": 16886, "usage large language models": 34507, "language models lms proven": 16606, "llms pretrained large language": 18866, "efficiency large language models": 9007, "models llms demonstrate remarkable": 21496, "study large language models": 31354, "pretrained language models improving": 25674, "yields significant performance gains": 35929, "tokens large language models": 33239, "remarkable capabilities various tasks": 28039, "significant advancement field natural": 29952, "evaluate large language models": 9843, "novel approach designed reduce": 23058, "models available hugging face": 21003, "language models explore approach": 16336, "language models plms bert": 16654, "language models llms ability": 16426, "time large language models": 33132, "text generation large language": 32873, "language models llms known": 16509, "propose novel evaluation framework": 26548, "language models achieved remarkable": 16239, "models achieved remarkable success": 20951, "general language understanding tasks": 12176, "language adaptation large language": 16037, "adaptation large language models": 1182, "large language models including": 17045, "paper try answer question": 24145, "tasks maintaining comparable performance": 32414, "language models recent advances": 16686, "hallucination code data available": 13375, "instruction data evaluation benchmark": 15145, "language models minimal human": 16623, "serving large language models": 29666, "language models recent works": 16688, "future large language models": 12037, "large language models recently": 17197, "large language models potentially": 17185, "superior zeroshot performance new": 31660, "language models llms stand": 16574, "compared 350m parameter opt": 5120, "large language models specifically": 17203, "human feedback rlhf framework": 13822, "language models llms specifically": 16573, "language models llms use": 16585, "pretrained language models using": 25696, "model code data available": 20424, "models like gpt35 llama2": 21456, "rapid advancement generative artificial": 27241, "advancement generative artificial intelligence": 1453, "generative artificial intelligence genai": 12657, "generative large language model": 12668, "language model llm inference": 16168, "instructionfinetuned large language models": 15220, "emergence numerous large language": 9177, "numerous large language models": 23186, "language processing nlp applications": 16791, "properties large language models": 26476, "improves downstream task performance": 14374, "large language models explore": 17019, "contemporary large language models": 5844, "language models billions parameters": 16266, "large language models fewshot": 17021, "widespread adoption large language": 35593, "adoption large language models": 1410, "language models llms facilitated": 16473, "language models llms understanding": 16584, "various llms including gpt4": 35115, "llms including gpt4 llama2": 18701, "generative artificial intelligence gai": 12656, "language models lms various natural": 16612, "models lms various natural language": 21685, "lms various natural language processing": 19125, "various natural language processing tasks": 35128, "language models large language models": 16406, "models large pretrained language models": 21428, "generative pretrained language model gpt2": 12688, "bidirectional encoder representations transformers bert": 3695, "gpt2 radford et al 2019": 12945, "language models lms demonstrated impressive": 16600, "pretrained language models recent years": 25691, "size pretrained language models plms": 30277, "stateoftheart results various natural language": 30989, "various natural language processing nlp": 35127, "natural language processing nlp tasks": 22554, "natural language understanding generation tasks": 22571, "natural language processing nlp domain": 22550, "language models pretrained language models": 16663, "wide range natural language processing": 35559, "range natural language processing nlp": 27202, "recent years pretrained language models": 27581, "pretrained language models bert gpt2": 25666, "bert roberta gpt2 dozens datasets": 3531, "language models large pretrained language": 16409, "make code models publicly available": 19457, "remarkable success large language models": 28059, "machine learning models large language": 19351, "models large language models llm": 21423, "radford et al 2019 gpt3": 27153, "et al 2019 gpt3 brown": 9794, "al 2019 gpt3 brown et": 1685, "2019 gpt3 brown et al": 226, "gpt3 brown et al 2020": 12986, "natural language processing nlp algorithms": 22548, "automated natural language generation metrics": 2873, "berts masked language modeling mlm": 3549, "question answering natural language inference": 27050, "challenge natural language processing nlp": 4322, "natural language processing nlp systems": 22553, "natural language understanding nlu natural": 22573, "language understanding nlu natural language": 16846, "understanding nlu natural language generation": 34257, "nlu natural language generation nlg": 22974, "generative pretrained language models plms": 12690, "benefit using large language models": 3487, "using large language models llms": 34812, "natural language understanding nlu tasks": 22574, "recent large language models llms": 27527, "large language models llms demonstrated": 17069, "language models llms demonstrated remarkable": 16450, "models large language models llms": 21424, "large language models large language": 17050, "large language models llms shown": 17145, "improve model performance generalization unseen": 14278, "model performance generalization unseen tasks": 20702, "models long short term memory": 21690, "language model large language models": 16161, "model large language models llms": 20605, "large language models llms led": 17109, "landscape large language models llms": 16026, "largescale pretrained language models bert": 17377, "knowledge large language models llms": 15874, "large language models llms trained": 17156, "enables pretrained language models perform": 9309, "large language models llms surprisingly": 17153, "safety large language models llms": 29051, "performance various natural language processing": 24804, "summarization large language models llms": 31617, "large language models llms used": 17162, "recently large language models llms": 27609, "pretrained language models like bert": 25677, "large neural language models trained": 17249, "use large language models llms": 34545, "large language models llms chatgpt": 17064, "data large language models llms": 6752, "large language models llms downstream": 17073, "large language models llms revolutionized": 17142, "language models llms revolutionized natural": 16557, "models llms revolutionized natural language": 21625, "llms revolutionized natural language processing": 18926, "large language models llms gpt4": 17096, "success large language models llms": 31517, "large language models llms like": 17110, "language models llms like gpt4": 16515, "feedback large language models llms": 11067, "language models llms like chatgpt": 16513, "make model data code publicly": 19475, "instruction following large language model": 15168, "research field natural language processing": 28315, "adapting large language models llms": 1211, "deploying large language models llms": 7642, "large language models llms challenging": 17063, "ability large language models llms": 692, "descriptions large language models llms": 7691, "large language models llms multiple": 17116, "large language models follow instructions": 17027, "large language models llms produce": 17133, "harnessing capabilities large language models": 13462, "generative large language models llms": 12670, "language models llms revolutionized field": 16556, "comes significant computational costs paper": 4974, "proprietary large language models llms": 26644, "large pretrained language models demonstrated": 17264, "large language models llms directly": 17072, "text generated large language models": 32864, "leveraging large language models llms": 17786, "large language models llms data": 17067, "comprehensive evaluation large language models": 5372, "make data code publicly available": 19464, "tasks large language models llms": 32393, "large language models recent advancements": 17195, "language models recent advancements large": 16685, "models recent advancements large language": 21904, "recent advancements large language models": 27494, "advancements large language models llms": 1468, "large language models llms significantly": 17147, "learning large language models llms": 17595, "large language models llms acquire": 17060, "excel various natural language processing": 10158, "large language models llms study": 17152, "language models large language modelsllms": 16407, "entities pretrained language models lms": 9638, "large language models llms achieved": 17059, "language models llms achieved great": 16429, "models llms achieved great success": 21477, "large language model llm based": 16973, "recent years large language models": 27578, "emergence large language models llms": 9172, "pretrained language model plm t5": 25661, "large language model based llama": 16963, "large language models llms capture": 17062, "models llms demonstrated remarkable potential": 21507, "experimental results demonstrate superior performance": 10398, "nlp tasks large language models": 22959, "large language models llms typically": 17159, "developments large language models llms": 7983, "large language models llms enabled": 17077, "pretrained large language models llms": 25701, "large language models llms recently": 17136, "language models llms recently achieved": 16547, "generation large language models llms": 12537, "large language models llms widely": 17166, "language models llms shown remarkable": 16566, "effectiveness various generaldomain natural language": 8974, "various generaldomain natural language processing": 35099, "generaldomain natural language processing nlp": 12194, "development large language models llms": 7960, "supervised finetuning sft reinforcement learning": 31681, "finetuning sft reinforcement learning human": 11523, "sft reinforcement learning human feedback": 29767, "reinforcement learning human feedback rlhf": 27844, "results various natural language tasks": 28708, "reasoning large language models llms": 27418, "large language models llms exhibit": 17081, "great success large language models": 13265, "recent advances large language models": 27502, "advances large language models llm": 1481, "instructionfollowing large language models llms": 15233, "models pretrained large language models": 21845, "supervised finetuning reinforcement learning human": 31678, "finetuning reinforcement learning human feedback": 11506, "diverse natural language processing tasks": 8444, "advanced natural language processing nlp": 1436, "natural language processing nlp research": 22552, "instructions large language models llms": 15259, "large language models llms present": 17129, "revolutionized field natural language processing": 28847, "field natural language processing enabling": 11146, "significant advancements natural language processing": 29957, "models range natural language processing": 21888, "range natural language processing tasks": 27203, "recent progress large language models": 27544, "progress large language models llms": 26215, "technical report large language models": 32610, "report large language models llms": 28120, "language models llms achieved remarkable": 16430, "models llms achieved remarkable success": 21480, "large language models despite impressive": 17009, "despite impressive capabilities large language": 7791, "impressive capabilities large language models": 14234, "capabilities large language models llms": 4035, "language models llms gpt4 palm": 16491, "models llms gpt4 palm llama": 21551, "finetuning peftlora based approach used": 11481, "peftlora based approach used study": 24443, "based approach used study model": 3136, "approach used study model finetuned": 2354, "used study model finetuned following": 34627, "study model finetuned following tasks": 31365, "model finetuned following tasks analysing": 20529, "finetuned following tasks analysing text": 11315, "sentiments obtained results finetuned llama": 29581, "obtained results finetuned llama model": 23260, "results finetuned llama model perform": 28616, "extracted sentiments named entities considered": 10755, "sentiments named entities considered predictive": 29577, "named entities considered predictive features": 22484, "entities considered predictive features supervised": 9633, "considered predictive features supervised machine": 5721, "predictive features supervised machine learning": 25452, "features supervised machine learning models": 11042, "existing large language models llms": 10286, "large language models llms generate": 17089, "large language models llms gpt": 17093, "large language models llms need": 17118, "large language models llms excel": 17080, "language models llms excel various": 16466, "inference large language models llms": 14784, "revolutionized natural language processing nlp": 28851, "models llms demonstrated remarkable performance": 21506, "enhance capabilities large language models": 9508, "machine translation large language models": 19358, "neural machine translation nmt systems": 22734, "large language models llms emerged": 17075, "large language models llms represent": 17140, "best performing models achieved accuracy": 3573, "autoregressive large language models llms": 2950, "reasoning ability llms large language": 27376, "ability llms large language models": 702, "llms large language models llms": 18746, "large language models llms gained": 17087, "language models llms shown promise": 16565, "capabilities natural language processing nlp": 4050, "reasoning capabilities large language models": 27386, "explore large language models llms": 10590, "recent success large language models": 27562, "language models llms recently showcased": 16548, "models llms recently showcased remarkable": 21614, "natural language processing tasks diverse": 22557, "language processing tasks diverse domains": 16802, "games large language models llms": 12083, "advances large language models llms": 1482, "large language models llms sparked": 17149, "large language models llms exploded": 17082, "language models llms exploded popularity": 16470, "large language models llms pretrained": 17131, "using large language models large": 34811, "models llms demonstrated remarkable capabilities": 21505, "remarkable capabilities natural language understanding": 28036, "continual learning large language models": 5978, "large language models llms demonstrate": 17068, "language models llms demonstrate exceptional": 16444, "sparse finetuning large language models": 30615, "finetuning large language models llms": 11432, "potential large language models llms": 25270, "large language models llms gpt3": 17094, "proprietary large language model llm": 26642, "instructiontuned large language models llms": 15291, "instructiontuned large language model llm": 15289, "large language model llm using": 16978, "large language models llms perform": 17126, "language models llms chatgpt llama": 16438, "stateoftheart large language models large": 30942, "opensource large language models llms": 23513, "language models llms like llama": 16516, "recent advancements natural language processing": 27498, "advancements natural language processing large": 1473, "natural language processing large language": 22544, "language processing large language models": 16786, "processing large language models llms": 26110, "understanding large language models large": 34242, "large language models llms remarkable": 17139, "current landscape large language models": 6499, "challenging task natural language processing": 4402, "commercial large language models llms": 4987, "language models language models lms": 16402, "natural language processing computer vision": 22539, "revolutionized natural language processing tasks": 28852, "evaluating large language models llms": 9903, "large language models rapid advancement": 17192, "rapid advancement large language models": 27245, "advancement large language models llms": 1457, "large language models llms including": 17104, "potential pretrained large language models": 25292, "method large language models llms": 19940, "language models llms shown great": 16562, "models llms shown great potential": 21631, "great potential natural language processing": 13257, "potential natural language processing nlp": 25284, "systems using large language models": 31927, "quantization large language models llms": 27007, "large pretrained language models llms": 17265, "language models llms demonstrated superior": 16453, "research large language models llms": 28333, "significant progress natural language processing": 30013, "progress natural language processing nlp": 26221, "demonstrated large language models llms": 7535, "large language models llms given": 17092, "proliferation large language models llms": 26261, "recent advances transformerbased large language": 27508, "domains large language models llms": 8626, "language models llms exhibit remarkable": 16468, "training large language models llms": 33546, "large language models llms extensive": 17083, "teaching small language models reason": 32597, "language models llms demonstrated exceptional": 16447, "highperformance computing large language models": 13679, "computing large language models llms": 5517, "language models llms including llama": 16503, "large language models paper present": 17181, "reasoning abilities large language models": 27371, "large language models conduct extensive": 17003, "language models conduct extensive experiments": 16287, "models conduct extensive experiments popular": 21091, "multilingual large language models llms": 22316, "large language models llms llms": 17112, "large language models llms various": 17165, "language models llms various tasks": 16591, "language models llms gpt4 llama": 16489, "large language models llms llama": 17111, "family large language models llms": 10978, "generated large language models llms": 12370, "large language models llms increasingly": 17106, "large language model meta ai": 16981, "advancement field natural language processing": 1450, "data source code publicly available": 6874, "code data model publicly available": 4733, "especially large language models llms": 9742, "language processing nlp tasks inspired": 16797, "language models llms gpt4 llama2": 16490, "development opensource large language models": 7970, "sft direct preference optimization dpo": 29763, "provide model finetuned follow instructions": 26717, "models released apache 20 license": 21921, "capability large language models llms": 4096, "multimodal large language models large": 22356, "large language models llms multimodal": 17115, "language models llms multimodal large": 16523, "models llms multimodal large language": 21587, "llms multimodal large language models": 18808, "multimodal large language models mllms": 22358, "large language models mllms shown": 17175, "large language models mental health": 17171, "large language models llms potential": 17128, "language models era large language": 16324, "models era large language models": 21215, "analysis large language models llms": 1937, "large language models llms hold": 17100, "instruction tuning large language models": 15199, "tuning large language models llms": 33990, "language models llms demonstrated impressive": 16449, "models llms demonstrated impressive capabilities": 21502, "performance large language models llms": 24648, "language processing nlp tasks paper": 16798, "language models llms excel tasks": 16465, "applications large language models llms": 2162, "iterations approach yields model outperforms": 15686, "open large language models llms": 23404, "large language models llms task": 17155, "language models training large language": 16737, "models training large language models": 22081, "code model weights data public": 4785, "explainability large language models llms": 10529, "large language models llms critical": 17066, "advanced large language models llms": 1428, "extreme compression large language models": 10794, "multilingual capabilities large language models": 22300, "extending large language models llms": 10666, "recent advances natural language processing": 27505, "finance large language models llms": 11213, "versatile multimodal large language model": 35227, "multimodal large language model mllm": 22354, "pretrained language models nlp tasks": 25681, "large pretrained language models plms": 17266, "based large language models llms": 3189, "large language models llms particularly": 17125, "large language models llms proven": 17134, "years large language models achieved": 35894, "finetuned llama model significantly outperforms": 11333, "large language models llms great": 17097, "datasets large language models llms": 7141, "language models llms increasingly utilized": 16507, "applied large language models llms": 2194, "evaluation framework large language models": 9951, "transformerbased large language model llm": 33754, "prompts large language models llms": 26429, "large language models llms knowledge": 17107, "large language models llms new": 17119, "current large language models llms": 6505, "large language models llms make": 17113, "language models llms demonstrated strong": 16452, "languages large language models llms": 16887, "usage large language models llms": 34508, "llms pretrained large language models": 18867, "language models llms demonstrate remarkable": 16445, "evaluation large language models llms": 9968, "study large language models llms": 31355, "significant advancement field natural language": 29953, "field natural language processing nlp": 11147, "models llms demonstrated impressive performance": 21503, "pretrained language models plms bert": 25686, "text generation large language models": 32874, "large language models llms known": 17108, "large language models achieved remarkable": 16991, "language models achieved remarkable success": 16240, "language adaptation large language models": 16038, "large language models recent works": 17196, "using large language models recently": 34813, "effectiveness large language models llms": 8953, "large language models llms stand": 17151, "learning human feedback rlhf framework": 17580, "large language models llms specifically": 17150, "large language models llms use": 17161, "scaling large language models llms": 29170, "task large language models llms": 32151, "abilities large language models llms": 631, "rapid advancement generative artificial intelligence": 27242, "large language model llm inference": 16975, "emergence numerous large language models": 9178, "natural language processing nlp applications": 22549, "contemporary large language models llms": 5845, "performance various natural language tasks": 24805, "stateoftheart large language models llms": 30943, "widespread adoption large language models": 35594, "adoption large language models llms": 1411, "large language models llms facilitated": 17084, "large language models llms understanding": 17160, "bypasses": 3950, "byte": 3954, "retrained": 28725, "distractor": 8381, "grover": 13308, "infinitely": 14836, "contextualizing": 5965, "selfsimilarity": 29435, "justification": 15735, "electronic": 9097, "auc": 2771, "alternating": 1847, "priors": 25949, "speaker": 30648, "persuasion": 24902, "persuade": 24901, "traverse": 33870, "moving": 22239, "fosters": 11789, "fits": 11573, "paragraphs": 24164, "shortened": 29824, "morphological": 22219, "tiling": 33106, "concluded": 5553, "welldocumented": 35522, "associating": 2654, "priori": 25944, "dual": 8750, "injects": 14984, "manifested": 19537, "adhoc": 1387, "jensenshannon": 15703, "organic": 23688, "rough": 28984, "plots": 25054, "completed": 5253, "hierarchy": 13547, "deciding": 7229, "inform": 14849, "095": 22, "accompanying": 839, "83b": 572, "conditionally": 5574, "covid19": 6332, "pandemic": 24000, "calling": 3983, "june": 15732, "74": 512, "forums": 11780, "venues": 35200, "post": 25220, "members": 19789, "posted": 25222, "retrain": 28724, "cord19": 6148, "shot": 29830, "spacing": 30587, "corner": 6161, "bioinformatics": 3741, "protein": 26659, "electra": 9096, "tpu": 33321, "1024": 56, "localization": 19138, "bypassing": 3951, "318": 317, "connected": 5682, "dp": 8706, "differently": 8165, "priming": 25927, "implication": 14171, "ending": 9426, "interdependency": 15402, "lite": 18036, "diverge": 8405, "spawning": 30646, "distortion": 8379, "confounding": 5670, "ranker": 27227, "xai": 35867, "visualize": 35362, "wechat": 35490, "hot": 13762, "tries": 33897, "elicited": 9104, "enjoys": 9578, "verifiable": 35208, "treating": 33873, "regimes": 27817, "insertion": 15060, "peak": 24429, "50k": 427, "rankers": 27228, "similaritybased": 30132, "thresholds": 33097, "09": 20, "concatenates": 5521, "averages": 3030, "distractors": 8382, "missed": 20222, "presumably": 25620, "chats": 4508, "autocomplete": 2840, "shares": 29789, "unintended": 34351, "wisdom": 35621, "tagger": 32010, "transformersbased": 33799, "chemical": 4526, "drug": 8747, "cleaned": 4644, "affective": 1543, "category": 4231, "insignificant": 15085, "captions": 4141, "confront": 5671, "bar": 3094, "requested": 28207, "conceptually": 5537, "pseudo": 26818, "letter": 17727, "regarded": 27807, "satisfies": 29109, "constraining": 5783, "treatment": 33874, "backtranslation": 3069, "clip": 4662, "visionandlanguage": 35311, "reconstructed": 27659, "fault": 11006, "clickthrough": 4650, "enjoyable": 9576, "lewis": 17796, "179": 180, "agree": 1589, "encodings": 9384, "blanks": 3759, "reasoners": 27366, "qnli": 26925, "mnli": 20317, "isnt": 15648, "compete": 5210, "pc": 24427, "lowers": 19294, "bigru": 3704, "comment": 4980, "evil": 10071, "vl": 35373, "wellsuited": 35530, "hearing": 13489, "paucity": 24415, "117": 81, "gb": 12134, "diminish": 8201, "hans": 13416, "diagnostics": 8002, "scene": 29223, "cross": 6404, "endowing": 9428, "ample": 1892, "tackled": 32003, "qualities": 26937, "intersectional": 15471, "subgroups": 31422, "tokenbytoken": 33206, "drift": 8733, "bidirectionally": 3697, "logs": 19164, "probable": 25974, "optimality": 23618, "converges": 6087, "inputting": 15053, "taming": 32042, "beast": 3301, "extendable": 10658, "removal": 28073, "unsatisfactory": 34430, "entropybased": 9662, "unifiedqa": 34341, "realizes": 27322, "barely": 3101, "discard": 8254, "unit": 34366, "theories": 33055, "overcomes": 23926, "standardization": 30884, "accounting": 852, "disclosure": 8261, "engaged": 9453, "swapping": 31790, "deteriorates": 7891, "transferable": 33686, "weaklysupervised": 35462, "125": 95, "impose": 14220, "guaranteeing": 13331, "appearance": 2114, "speaking": 30650, "truefalse": 33926, "blind": 3772, "boolq": 3813, "t5s": 31977, "kd": 15744, "prize": 25960, "music": 22469, "tv": 34034, "orion": 23731, "acknowledge": 1111, "favor": 11009, "propagate": 26464, "competent": 5213, "immediate": 14111, "dramatic": 8716, "selfalignment": 29405, "abundant": 780, "fused": 12018, "domainadapted": 8605, "prefixed": 25482, "forced": 11717, "winogrande": 35618, "facial": 10833, "disclose": 8260, "metalearning": 19861, "evades": 9814, "privacypreserving": 25955, "cotraining": 6286, "crossattention": 6406, "gpt2xl": 12978, "datafree": 6930, "interconnected": 15400, "interplay": 15451, "wav2vec20": 35426, "doesnt": 8544, "invariant": 15564, "isolate": 15649, "uncommon": 34129, "430": 389, "valence": 34987, "correspondence": 6223, "rho": 28872, "recovered": 27668, "weat": 35468, "intralayer": 15481, "spearmans": 30653, "reader": 27298, "diagnosis": 8000, "governed": 12838, "generalizations": 12230, "protected": 26655, "humanevaluation": 13898, "linguistically": 18025, "drawback": 8724, "hurt": 13951, "markov": 19603, "retrievalaugmentation": 28759, "nonretrieval": 23006, "united": 34367, "570": 450, "090": 21, "lie": 17818, "flaws": 11614, "copied": 6141, "penalize": 24445, "cope": 6139, "influences": 14844, "sentential": 29564, "higherlevel": 13614, "manifold": 19538, "biological": 3742, "restricting": 28533, "selfsupervision": 29442, "paretofrontier": 24310, "recommender": 27655, "usergenerated": 34681, "exiting": 10332, "unambiguous": 34105, "routinely": 28993, "humanintheloop": 13901, "perturbation": 24908, "errorprone": 9719, "496": 411, "bartlarge": 3112, "366": 355, "nonparametric": 23004, "perplexitybased": 24874, "terrible": 32755, "silly": 30092, "locally": 19143, "counterintuitive": 6299, "consecutive": 5692, "selfreinforcement": 29432, "bm25": 3800, "meetings": 19783, "phone": 24934, "oral": 23664, "translators": 33859, "conquered": 5691, "composable": 5318, "differential": 8162, "edit": 8822, "distinguishing": 8377, "assists": 2641, "barrier": 3102, "lab": 15950, "deductively": 7311, "mediumsized": 19777, "tells": 32685, "alleviating": 1795, "imagetotext": 14096, "offered": 23295, "ungrounded": 34316, "constrain": 5777, "dividing": 8491, "reformulated": 27800, "datastore": 7193, "exploitation": 10556, "39x": 363, "spikes": 30807, "titan": 33176, "int4": 15313, "2080": 244, "ti": 33101, "bug": 3904, "bugs": 3906, "167": 162, "84": 573, "gradientguided": 13197, "delays": 7393, "forces": 11718, "battery": 3292, "normal": 23016, "analytically": 1984, "transferlearning": 33688, "reinforced": 27836, "computeefficient": 5500, "convolution": 6121, "parser": 24316, "115": 79, "inherits": 14956, "commons": 5033, "cd": 4261, "opt13b": 23604, "opt125m": 23602, "subjectverb": 31428, "assert": 2585, "diffusionbased": 8186, "hubert": 13777, "explorations": 10566, "machinetranslated": 19374, "196": 193, "492": 410, "empowered": 9267, "reasonings": 27466, "prefers": 25478, "subproblems": 31443, "marketing": 19599, "fasttext": 11005, "classified": 4622, "inputoutput": 15038, "turing": 34025, "undetectable": 34294, "fooling": 11711, "mechanics": 19747, "clarity": 4580, "delivery": 7403, "unanswered": 34108, "denote": 7602, "flant5s": 11604, "specifics": 30765, "ast": 2666, "crossmodal": 6423, "neglected": 22667, "confused": 5673, "workarounds": 35798, "80m": 559, "soda": 30446, "standing": 30889, "exceptionally": 10176, "ushered": 34718, "2500": 272, "buying": 3946, "idiosyncratic": 14032, "compound": 5331, "30b": 313, "relevancy": 27934, "flaw": 11612, "ubiquitously": 34089, "imposed": 14221, "minilm": 20179, "ms": 22248, "drama": 8715, "outlines": 23744, "scenes": 29225, "templatebased": 32690, "investors": 15619, "profit": 26190, "lexicons": 17806, "formula": 11768, "achievable": 940, "decreased": 7299, "informationtheoretic": 14930, "functionally": 11968, "16k": 167, "prevalently": 25857, "incompleteness": 14538, "assurance": 2665, "tedious": 32681, "pressures": 25619, "localizes": 19141, "communications": 5053, "productive": 26171, "arc": 2432, "amt": 1900, "manifest": 19535, "attracting": 2753, "universities": 34375, "wait": 35406, "byt5": 3953, "bytelevel": 3955, "recommend": 27647, "prioritize": 25946, "chai": 4288, "translates": 33815, "nextgeneration": 22891, "epistemic": 9670, "normalized": 23019, "universality": 34372, "webpages": 35484, "consumers": 5820, "swiftly": 31792, "finer": 11279, "incapable": 14441, "endeavor": 9423, "laborious": 15972, "astray": 2669, "52k": 438, "schemas": 29231, "fulfill": 11944, "evenly": 10044, "nonuniform": 23014, "trap": 33867, "elastic": 9095, "contradict": 6005, "fisher": 11568, "informationseeking": 14929, "channel": 4418, "communicative": 5054, "cooperative": 6134, "opensourcing": 23557, "ignores": 14039, "reorder": 28084, "nonexperts": 22999, "videotext": 35269, "clips": 4669, "ocr": 23279, "optimally": 23619, "alpha": 1841, "intractable": 15480, "simplest": 30169, "multimodel": 22371, "youtube": 35930, "personally": 24891, "minigpt4": 20176, "humorous": 13941, "poems": 25060, "remote": 28072, "dino": 8208, "profoundly": 26192, "benchmarked": 3420, "restful": 28528, "costfree": 6262, "convenience": 6069, "batches": 3291, "phrasing": 24939, "criterion": 6379, "pinpoints": 24958, "indirect": 14709, "leak": 17497, "unimodal": 34349, "understands": 34279, "boosted": 3818, "4times": 415, "crosslanguage": 6411, "files": 11163, "converts": 6115, "multiround": 22436, "visuallanguage": 35365, "fulfilling": 11945, "submodules": 31436, "underwent": 34289, "impressively": 14251, "render": 28078, "artists": 2546, "longhorizon": 19209, "assistive": 2640, "executable": 10188, "robotics": 28927, "polarities": 25076, "contextualised": 5958, "usages": 34510, "exemplar": 10203, "singlegpu": 30231, "distinguished": 8375, "tackles": 32004, "spreading": 30829, "continuity": 5994, "68": 485, "faulty": 11008, "mood": 22217, "224": 254, "237": 258, "max": 19698, "modelslms": 22147, "guessing": 13339, "134x": 115, "122": 93, "nearperfect": 22603, "multidigit": 22274, "breadth": 3857, "prioritizes": 25947, "stopping": 31074, "hallucinates": 13371, "cka": 4575, "commodity": 5001, "cpus": 6337, "accelerator": 807, "discrepancy": 8278, "lowering": 19292, "902": 593, "grace": 13182, "brains": 3852, "llama33b": 18225, "competitor": 5235, "struggling": 31250, "cheap": 4509, "aroused": 2508, "milestone": 20161, "expenditure": 10354, "tailoring": 32020, "pathology": 24399, "bolster": 3807, "indicated": 14698, "windows": 35615, "2048": 243, "verifies": 35215, "languageguided": 16859, "interpreter": 15466, "weeks": 35491, "pandagpt": 23998, "auditory": 2787, "audios": 2782, "scalar": 29127, "force": 11716, "naturalistic": 22582, "nonsequential": 23008, "backpack": 3064, "intervene": 15475, "6bparameter": 492, "imagine": 14097, "technically": 32613, "codedavinci002": 4837, "carriers": 4188, "determination": 7895, "assigning": 2625, "decoupling": 7295, "blend": 3760, "decides": 7228, "humancreated": 13895, "obvious": 23266, "deploys": 7662, "gqa": 13181, "biasing": 3689, "styled": 31415, "journey": 15718, "qformer": 26921, "intersection": 15470, "domainadaptive": 8606, "selfgenerated": 29420, "400": 375, "231": 257, "689": 487, "poorer": 25105, "unnecessary": 34417, "preprocessed": 25503, "inputted": 15052, "falling": 10954, "superni": 31667, "multi": 22264, "rouge1": 28981, "lasted": 17397, "underperforms": 34167, "patch": 24393, "affirmative": 1546, "composes": 5322, "deployments": 7661, "similarsized": 30137, "svd": 31788, "proactive": 25964, "amr": 1898, "caveat": 4259, "pick": 24945, "animal": 2011, "unlocks": 34414, "prp": 26801, "50x": 429, "uncertain": 34114, "instantiated": 15116, "humanagent": 13881, "let": 17725, "69": 488, "nonexpert": 22997, "seamless": 29302, "acoustic": 1113, "avaliable": 3003, "17b": 181, "negotiations": 22672, "unsuitable": 34452, "monitoring": 22207, "enlarge": 9580, "2chat": 295, "derivation": 7669, "generalisation": 12195, "equation": 9676, "humanunderstandable": 13935, "pathway": 24403, "80gb": 558, "800": 555, "noted": 23035, "bestfinetuned": 3581, "racial": 27143, "repair": 28086, "misunderstanding": 20243, "erroneous": 9706, "repairs": 28087, "reactions": 27292, "9b": 611, "indicator": 14706, "loglinear": 19163, "rejection": 27850, "359": 351, "scans": 29185, "inquiry": 15055, "implements": 14170, "encapsulates": 9334, "recorded": 27663, "california": 3981, "san": 29100, "exactmatch": 10093, "separates": 29585, "copilot": 6142, "544": 444, "voluminous": 35389, "transmission": 33860, "lexglue": 17797, "modals": 20328, "signifying": 30090, "transcending": 33662, "higherorder": 13615, "023": 6, "screening": 29293, "guanaco": 13328, "155": 146, "molecule": 22201, "httpsgithubcomnlpxucanwizardlm": 13775, "instructblip": 15132, "mme": 20310, "wanjuan": 35418, "confidential": 5653, "internlm": 15449, "closedsourced": 4691, "democratization": 7423, "humancentric": 13891, "llama27bchat": 18214, "synthesizes": 31842, "embracing": 9153, "compliance": 5305, "displayed": 8316, "noting": 23044, "lvlms": 19335, "qwenvlchat": 27139, "experienced": 10372, "2k": 297, "safetycritical": 29055, "anomaly": 2037, "lvlm": 19332, "anomalous": 2036, "vlm": 35376, "activity": 1152, "feeds": 11079, "dissemination": 8324, "clouds": 4704, "desiderata": 7694, "file": 11162, "attentionfree": 2748, "traininginference": 33651, "tuningfree": 34021, "neighborhood": 22673, "fkgl": 11582, "perlayer": 24861, "defect": 7357, "odds": 23280, "pre": 25384, "pareto": 24309, "understandability": 34204, "untested": 34461, "transitioning": 33809, "embark": 9123, "troubleshooting": 33922, "stop": 31073, "brand": 3855, "audiocaps": 2781, "audioset": 2783, "notorious": 23046, "asymmetric": 2675, "threestage": 33094, "llama70b": 18229, "contextrich": 5934, "renowned": 28082, "664": 480, "194": 192, "823": 566, "dozen": 8703, "usable": 34500, "678": 483, "attempting": 2707, "reductions": 27765, "generalise": 12196, "segmentlevel": 29372, "recognise": 27635, "ldm": 17460, "misalignment": 20209, "hacking": 13364, "mmhalbench": 20311, "penalizing": 24447, "llavabench": 18254, "40000": 376, "anthropic": 2088, "sensor": 29524, "influenza": 14847, "vaccine": 34985, "vaccines": 34986, "instrumental": 15310, "infectious": 14756, "tooluse": 33276, "mpt30b": 22247, "graphics": 13237, "primitives": 25929, "52": 433, "1d": 201, "06": 12, "multiscale": 22438, "urdu": 34491, "4635": 400, "informationdense": 14928, "arrive": 2511, "suit": 31593, "conflicting": 5665, "170": 170, "105": 59, "inferential": 14829, "subtracting": 31500, "wellstructured": 35529, "langchain": 16031, "responsive": 28524, "heart": 13490, "harnessed": 13455, "redefines": 27693, "influencing": 14845, "oversight": 23953, "warm": 35421, "enduser": 9444, "lemur": 17702, "observable": 23216, "durations": 8754, "forming": 11765, "commendable": 4977, "histories": 13728, "stitching": 31067, "resemblance": 28382, "accept": 809, "95k": 604, "alleviation": 1796, "ed": 8817, "multistage": 22440, "obviating": 23264, "altered": 1844, "datatypes": 7196, "arising": 2498, "rotations": 28976, "uncharted": 34122, "doc": 8499, "touvron": 33303, "10times": 64, "differentiate": 8164, "revision": 28836, "baichuan2": 3076, "straightforwardly": 31094, "sole": 30460, "3gb": 369, "wake": 35408, "depression": 7663, "recommending": 27656, "92": 596, "satisfied": 29108, "assumes": 2661, "underline": 34151, "striving": 31157, "scrutiny": 29298, "understudy": 34283, "defacto": 7355, "a10080gb": 619, "theorem": 33046, "proving": 26787, "385": 360, "git": 12737, "selfreflection": 29430, "provision": 26788, "decouples": 7294, "crowdworkers": 6435, "constituent": 5773, "emphasized": 9211, "embeds": 9149, "resembling": 28385, "element": 9098, "substantiates": 31489, "affirms": 1547, "communitybased": 5062, "enforce": 9450, "failing": 10910, "prover": 26678, "155b": 147, "overrely": 23950, "vq": 35393, "catching": 4219, "complements": 5247, "baby": 3050, "babylm": 3051, "zephyr7b": 35933, "tutorials": 34033, "possesses": 25203, "postediting": 25224, "engages": 9455, "081": 17, "gpt4vision": 13138, "cold": 4899, "facets": 10832, "skypile": 30319, "condensing": 5565, "strategically": 31098, "sourcing": 30576, "syntactical": 31828, "neighborhoods": 22674, "buffer": 3903, "22x": 255, "twopart": 34039, "sifting": 29941, "cogvlm": 4883, "exacerbates": 10086, "impacting": 14145, "invaluable": 15563, "fingpt": 11559, "176": 177, "16000": 159, "openorca": 23476, "cascade": 4191, "4677": 401, "selfverification": 29444, "speechbased": 30791, "v15": 34983, "resilience": 28394, "elimination": 9111, "irish": 15642, "maximise": 19701, "unfair": 34304, "percent": 24458, "arisen": 2496, "lowentropy": 19281, "leaks": 17501, "longlora": 19210, "verbal": 35203, "pal": 23987, "onestage": 23353, "heterogeneity": 13529, "186": 189, "package": 23962, "videobased": 35267, "pursuit": 26888, "depicting": 7628, "revised": 28835, "659": 475, "uncertaintyaware": 34120, "socially": 30435, "layered": 17434, "synchronized": 31805, "preferring": 25477, "nvidias": 23197, "megatronlm": 19787, "condensed": 5563, "prefixbased": 25481, "imaging": 14098, "flickr30k": 11619, "patches": 24394, "movements": 22236, "instagram": 15107, "tough": 33302, "chainofthoughts": 4305, "exorbitant": 10333, "sharp": 29792, "publiclyreleased": 26868, "audited": 2785, "accentuates": 808, "capitalizes": 4131, "projector": 26254, "800k": 557, "factbased": 10857, "acknowledges": 1112, "ineffectiveness": 14748, "molecular": 22200, "bells": 3344, "whistles": 35539, "multiimage": 22289, "kl": 15802, "ema": 9120, "pruner": 26806, "smartphone": 30408, "pope": 25110, "consume": 5815, "missions": 20224, "supervisor": 31700, "pull": 26876, "7b13b": 543, "975": 607, "23m": 260, "collects": 4938, "circumventing": 4572, "inaccuracy": 14433, "codellms": 4842, "august": 2830, "laid": 16018, "7bs": 548, "mistrals": 20242, "mistake": 20225, "flowbased": 11628, "mild": 20160, "older": 23335, "icd": 13972, "partitioned": 24360, "lacked": 16010, "capitalize": 4130, "cut": 6568, "worthwhile": 35844, "frontal": 11930, "cnns": 4713, "ethnicity": 9809, "accomplishments": 844, "181": 187, "relearning": 27897, "propelled": 26466, "clients": 4653, "highrisk": 13709, "partitioning": 24361, "merges": 19850, "inaugural": 14440, "summarisation": 31607, "recording": 27664, "evidencebased": 10068, "resistance": 28396, "guideline": 13355, "satisfactorily": 29106, "rendered": 28079, "2023a": 238, "xu": 35883, "2024": 240, "impossibility": 14224, "llama2s": 18223, "demographics": 7431, "238": 259, "underutilize": 34287, "deducing": 7307, "closedform": 4685, "450": 394, "assets": 2621, "vicunas": 35261, "trainingtime": 33652, "safetyaligned": 29054, "harmless": 13447, "attack": 2685, "attacks": 2690, "origin": 23697, "disrupts": 8322, "gpt35turbo16k": 13047, "faults": 11007, "trendy": 33891, "591": 454, "red": 27689, "teaming": 32599, "jailbreaking": 15698, "redteaming": 27694, "sec": 29317, "filings": 11165, "finqa": 11563, "prevention": 25862, "llava157b": 18252, "talent": 32040, "atom": 2679, "multilinguality": 22335, "tsne": 33950, "emit": 9200, "apibank": 2104, "7k": 549, "welldesigned": 35521, "confusing": 5674, "copes": 6140, "correctional": 6200, "residuals": 28393, "illustrations": 14052, "tripadvisor": 33912, "2s": 301, "416": 385, "safeguard": 29034, "8000": 556, "epoch": 9671, "082": 18, "020": 5, "color": 4943, "unforeseen": 34311, "tone": 33254, "nationality": 22497, "depressive": 7665, "experiencing": 10375, "blends": 3763, "256k": 275, "64k": 473, "128k": 102, "pressure": 25618, "unleash": 34388, "disadvantaged": 8248, "reimagines": 27834, "augmenter": 2821, "shortcoming": 29820, "objectlevel": 23213, "fueled": 11943, "couple": 6308, "shaped": 29776, "llava7b": 18253, "overflow": 23933, "posting": 25227, "replacements": 28103, "overlooks": 23949, "distributionally": 8401, "minority": 20205, "grand": 13211, "indications": 14705, "modulation": 22191, "368": 356, "755": 517, "coefficients": 4871, "permissively": 24865, "licensed": 17815, "507": 426, "6k": 493, "granular": 13215, "decay": 7220, "exchanges": 10182, "refinements": 27783, "corrected": 6196, "greedily": 13279, "540": 442, "enumeration": 9664, "billionscale": 3729, "fool": 11710, "immune": 14118, "850": 576, "nonexistent": 22995, "llavarlhf": 18255, "632": 470, "8times": 585, "visiolinguistic": 35286, "pioneers": 24961, "onpar": 23372, "promptings": 26401, "minigptv2": 20178, "historically": 13727, "deployable": 7631, "automates": 2874, "hallucinationfree": 13385, "llama27bbased": 18212, "481": 405, "mysterious": 22475, "discipline": 8258, "checked": 4515, "spent": 30806, "nonstationary": 23010, "53x": 440, "8192": 564, "812": 561, "144": 138, "hardly": 13426, "substructures": 31495, "221": 253, "undoes": 34296, "predominance": 25459, "recruit": 27672, "braininspired": 3851, "parietal": 24311, "privately": 25959, "eyes": 10811, "domainrelated": 8609, "formatted": 11759, "warrants": 35424, "coping": 6143, "yi": 35905, "977": 608, "saturation": 29112, "142": 136, "presently": 25571, "001": 0, "mamba": 19525, "carries": 4189, "overhaul": 23934, "sparser": 30624, "endowed": 9427, "partitions": 24362, "promises": 26279, "vllms": 35375, "movement": 22235, "rejected": 27849, "2023b": 239, "40x": 382, "misinterpret": 20214, "topology": 33295, "induces": 14733, "regulations": 27832, "circumvent": 4571, "distinguishes": 8376, "4bit": 412, "rectifying": 27675, "determines": 7901, "tale": 32039, "expenses": 10356, "divides": 8490, "condenses": 5564, "han": 13402, "severity": 29755, "entangled": 9618, "cos": 6238, "instructfollowing": 15135, "coordinated": 6136, "readiness": 27303, "inthewild": 15479, "spectrogram": 30770, "extraordinarily": 10784, "freeze": 11917, "prioritization": 25945, "clustered": 4707, "handles": 13412, "concurrent": 5560, "dependability": 7614, "errorfree": 9718, "timely": 33155, "comply": 5307, "thousand": 33084, "coordinate": 6135, "systems data": 31892, "crucial challenge": 6438, "models expected": 21233, "compute time": 5498, "mainly natural": 19405, "efficacy pretrained": 8989, "generation developed": 12485, "conducted extensive": 5635, "translation text": 33856, "gpt2 demonstrated": 12882, "ability capture": 658, "multiturn dialogue": 22463, "ngram analysis": 22901, "article describes": 2521, "using transformerbased": 34933, "models automated": 20997, "model retrained": 20758, "public domain": 26836, "contextualized representations": 5962, "produced models": 26158, "upper layers": 34483, "representations layers": 28165, "embedding word": 9135, "techniques shown": 32664, "annotated dataset": 2018, "processing transformer": 26132, "selfsupervised pretraining": 29440, "reduce required": 27724, "required number": 28230, "factor 10": 10864, "powerful tool": 25353, "labeled samples": 15957, "make better": 19453, "better quality": 3620, "quality text": 26981, "model openai": 20663, "automatic metrics": 2889, "text using": 32962, "decoding algorithms": 7270, "domain data": 8559, "data new": 6784, "correctness generated": 6208, "require extensive": 28214, "downstream nlp": 8682, "tasks pretrained": 32454, "generation exploration": 12500, "exploration paper": 10565, "model requires": 20754, "par stateoftheart": 24153, "generation aims": 12455, "rules generate": 29011, "transformer network": 33735, "model consisting": 20439, "model transformer": 20842, "input representation": 15023, "method produce": 19958, "performance proposed": 24724, "generation guided": 12514, "order generate": 23674, "range applications": 27187, "respectively leveraging": 28461, "knowledge embedded": 15839, "making use": 19517, "unsupervised learning": 34455, "finetuning present": 11485, "technique using": 32624, "sentence level": 29536, "spans text": 30602, "text smaller": 32944, "pairs isolating": 23980, "data automatically": 6616, "language text": 16834, "text english": 32852, "github repository": 12739, "paper devise": 24036, "require new": 28223, "distribution language": 8394, "given proposed": 12763, "capable producing": 4117, "parameter gpt2": 24182, "synthetic corpus": 31849, "83 billion": 569, "access models": 824, "apply methodology": 2209, "key problem": 15782, "works best": 35810, "massive training": 19633, "realworld scenario": 27346, "new domain": 22794, "domain ability": 8551, "target data": 32047, "standard method": 30880, "visual question": 35349, "remains challenge": 27992, "sound reasoning": 30543, "proposing new": 26632, "model generating": 20548, "visual questions": 35352, "weights using": 35518, "task predicting": 32178, "vqa generating": 35397, "tokens text": 33248, "generation gpt2": 12513, "specifically pretrained": 30753, "character level": 4422, "paper use": 24146, "recently introduced": 27604, "closer human": 4696, "human text": 13870, "model propose": 20732, "jensenshannon divergence": 15704, "generation understanding": 12627, "results wide": 28711, "modeling benchmarks": 20888, "deep generative": 7319, "era largescale": 9701, "largescale pretraining": 17379, "pretraining make": 25819, "methods practical": 20075, "emergence largescale": 9173, "remain unexplored": 27988, "aligned human": 1737, "highlight importance": 13630, "performance introduce": 24636, "better par": 3615, "requires model": 28257, "model track": 20831, "writing styles": 35858, "demonstrate largescale": 7469, "gpt2 grover": 12906, "gpt2 achieved": 12869, "constraints address": 5788, "simple novel": 30159, "generation proposed": 12580, "tokens existing": 33225, "finetune downstream": 11282, "time complexity": 33112, "simple language": 30155, "user input": 34653, "leads stateoftheart": 17496, "main metrics": 19399, "corresponding input": 6228, "text recent": 32929, "rely additional": 27969, "transformerbased unidirectional": 33770, "unidirectional language": 34321, "additional taskspecific": 1265, "introduced new": 15540, "race dataset": 27142, "users paper": 34696, "responses work": 28517, "procedure obtain": 26045, "demonstrate scaling": 7491, "yielded similar": 35917, "using bert": 34740, "covid19 pandemic": 6333, "learning approaches": 17538, "bert openai": 3521, "openai gpt2": 23435, "solve challenge": 30488, "evaluate results": 9863, "comprehensive information": 5380, "extracted original": 10750, "generate paraphrases": 12311, "classification experiments": 4596, "paraphrases generated": 24306, "good quality": 12823, "used data": 34594, "online communities": 23362, "media provide": 19762, "provide potential": 26721, "models possible": 21825, "model automatically": 20381, "model applied": 20371, "relevant sentences": 27945, "performance evaluation": 24585, "experts rate": 10521, "additionally based": 1273, "web application": 35473, "data generate": 6720, "generate natural": 12304, "power pretrained": 25328, "features different": 11031, "visual textual": 35357, "framework allows": 11828, "models capture": 21045, "potential direction": 25253, "generation long": 12542, "models largescale": 21432, "gpt2 powerful": 12935, "coherent long": 4893, "text various": 32963, "design allows": 7696, "set examples": 29685, "broad set": 3886, "methods terms": 20102, "quality sample": 26977, "lstm gpt2": 19327, "provide large": 26713, "attributes using": 2764, "trained classify": 33385, "weight distribution": 35494, "generated models": 12375, "achieved best": 1001, "times gpt2": 33161, "models draw": 21174, "achieve near": 972, "corpus used": 6188, "gpt 20": 12841, "zero shot": 35945, "work applies": 35669, "generate plausible": 12313, "generates valid": 12406, "previously unseen": 25904, "gpt2 finetuning": 12892, "offers novel": 23311, "vast data": 35184, "advantage using": 1501, "released models": 27926, "pretraining strategies": 25841, "respectively extensive": 28460, "analysis identify": 1926, "effective technique": 8898, "finetuning steps": 11538, "examples paper": 10139, "tasks importantly": 32359, "highlight current": 13628, "sentence sentence": 29543, "text human": 32891, "require manual": 28221, "quality existing": 26958, "reducing gap": 27747, "despite widespread": 7828, "investigate use": 15598, "hardware single": 13432, "synthetic text": 31861, "limited success": 17968, "generation contextual": 12479, "increasingly popular": 14641, "models prone": 21864, "reasonable perplexity": 27361, "easily identified": 8798, "improve coherence": 14259, "coherence consistency": 4887, "given topic": 12778, "outperformed baselines": 23792, "outperforms conventional": 23815, "models humanlike": 21365, "scoring model": 29286, "generation important": 12518, "problem lies": 25994, "reasoning module": 27424, "human writing": 13879, "generation automatic": 12461, "evaluation proposed": 9997, "models design": 21142, "level language": 17733, "following concept": 11688, "implementation perspective": 14163, "model transfer": 20841, "bestperforming models": 3585, "demonstrate possible": 7479, "visual input": 35334, "visual information": 35333, "successfully generates": 31539, "generation high": 12515, "variety settings": 35070, "new framework": 22805, "effort required": 9080, "augmentation finetuning": 2798, "finetuning text": 11548, "yelp reviews": 35902, "text including": 32896, "fluency experiments": 11631, "use dataset": 34523, "dataset existing": 6985, "preferences results": 25475, "architectures gpt2": 2463, "recurrent architectures": 27678, "parameter training": 24201, "generation generative": 12511, "tremendous success": 33884, "exhibit better": 10211, "result better": 28541, "generation particular": 12569, "decoding hyperparameters": 7273, "results multiple": 28648, "tasks especially": 32315, "multiple sources": 22420, "work addressed": 35665, "entire document": 9624, "model task": 20825, "twostage generation": 34044, "metrics human": 20139, "generate semantically": 12321, "active research": 1146, "topic generating": 33283, "work train": 35795, "model answer": 20366, "earlier work": 8772, "larger base": 17315, "models lead": 21437, "lead better": 17462, "agent generate": 1561, "accomplish tasks": 842, "uses pretrained": 34713, "corresponding instructions": 6229, "simulated data": 30187, "easier understand": 8789, "fully automated": 11953, "automated approaches": 2855, "approaches used": 2400, "information accurately": 14853, "new parallel": 22829, "roberta xlnet": 28924, "absolute improvement": 764, "construct knowledge": 5800, "manner requiring": 19549, "knowledge recent": 15900, "recent deep": 27512, "writing code": 35851, "propose unsupervised": 26582, "finetuning corpora": 11382, "new existing": 22802, "topics large": 33291, "framework analyzing": 11829, "techniques demonstrate": 32633, "framework conduct": 11837, "factors contribute": 10869, "biases models": 3680, "results confirm": 28583, "ranking models": 27234, "higher sensitivity": 13605, "sensitivity word": 29522, "model characteristics": 20414, "transformersbased models": 33800, "glove embeddings": 12800, "experiments benchmarks": 10422, "compared current": 5129, "editing approach": 8826, "leveraging abilities": 17777, "output model": 23875, "opens possibility": 23481, "grammatical correctness": 13205, "model provide": 20734, "comparison results": 5199, "field neural": 11148, "architectures models": 2468, "architecture used": 2456, "gpt2 order": 12932, "architecture gpt2": 2444, "architecture designed": 2441, "information present": 14898, "language captions": 16048, "adapt language": 1164, "caption generation": 4134, "language encoding": 16068, "essential role": 9760, "problems despite": 26025, "recent methods": 27534, "dataset paper": 7018, "presents novel": 25588, "technique named": 32623, "outperforms competitive": 23814, "introduce technique": 15537, "preserving semantic": 25612, "level specifically": 17736, "training sequence": 33608, "real life": 27311, "domains limited": 8630, "control content": 6048, "open questions": 23417, "large training": 17279, "based finetuning": 3161, "document retrieval": 8506, "expand users": 10336, "use text": 34574, "different experiments": 8077, "easily implemented": 8799, "gpt code": 12845, "produce highquality": 26148, "gpt2 accounts": 12868, "search space": 29312, "improvements model": 14358, "problem given": 25990, "obtain comparable": 23249, "new perspective": 22830, "generation effectiveness": 12490, "built pretrained": 3936, "gpt2 specifically": 12953, "health support": 13486, "reduce global": 27710, "key component": 15757, "studies shown": 31283, "shown highly": 29883, "rl agent": 28899, "network based": 22686, "evaluation demonstrate": 9938, "generation work": 12639, "generate large": 12299, "model small": 20801, "synthetic useful": 31862, "space search": 30583, "framework generate": 11860, "based clip": 3144, "image input": 14070, "language decoder": 16059, "architecture language": 2445, "conditional text": 5571, "learn generate": 17507, "generate labels": 12297, "achieving similar": 1103, "small training": 30371, "automatically annotated": 2902, "approach automatically": 2240, "supervised training": 31692, "training paradigm": 33583, "lack training": 16006, "text samples": 32936, "samples available": 29073, "novel fewshot": 23079, "samples data": 29075, "text text": 32956, "pretraining paper": 25830, "endtoend task": 9442, "evaluated human": 9877, "different traditional": 8151, "propose endtoend": 26508, "uses generative": 34710, "outperforms baselines": 23808, "lack knowledge": 15995, "dataset carefully": 6946, "automatic methods": 2887, "human written": 13880, "using automated": 34735, "numerous tasks": 23189, "provided natural": 26741, "models predicting": 21831, "models bias": 21026, "long document": 19170, "document summarization": 8507, "resource setting": 28416, "industrial settings": 14742, "document length": 8504, "compress long": 5402, "algorithm based": 1702, "perplexity scores": 24873, "baselines furthermore": 3266, "human labeling": 13836, "syntax trees": 31834, "performances various": 24822, "syntactic information": 31817, "information syntactic": 14914, "crucial success": 6451, "effectively efficiently": 8915, "paper address": 24002, "problem proposing": 26006, "architecture experiments": 2443, "experiments various": 10498, "datasets natural": 7152, "achieve consistent": 958, "types pretraining": 34069, "architectures including": 2464, "tasks main": 32410, "main categories": 19389, "unconditional generation": 34131, "generation conditional": 12475, "positional encodings": 25188, "varying number": 35177, "conditional unconditional": 5573, "given model": 12755, "sizes data": 30297, "bert large": 3516, "context generation": 5892, "successful application": 31532, "boost accuracy": 3815, "responsible extracting": 28523, "networks way": 22718, "showing proposed": 29864, "representations learned": 28166, "stateoftheart transformerbased": 31004, "context training": 5923, "novel effective": 23074, "bert variants": 3536, "results zeroshot": 28714, "computer pc": 5503, "prompts condition": 26408, "prompts used": 26446, "model tuning": 20844, "weights tuned": 35516, "model multiple": 20649, "attention based": 2713, "toxic nontoxic": 33311, "gpt2 glove": 12899, "results experimental": 28608, "span tokens": 30592, "benchmark natural": 3402, "visionlanguage tasks": 35324, "recently increasing": 27601, "methods lack": 20056, "evaluation frameworks": 9953, "scarcity datasets": 29190, "introduce evil": 15505, "provides comprehensive": 26748, "approaches generate": 2374, "largest existing": 17392, "generation surpasses": 12609, "task identifying": 32137, "received attention": 27477, "attention language": 2720, "analyze capabilities": 1988, "educational settings": 8845, "offtheshelf language": 23327, "results raise": 28665, "adopt curriculum": 1401, "data simple": 6866, "set conditions": 29678, "learning procedure": 17633, "ai model": 1611, "uses gpt2": 34711, "model order": 20665, "recently models": 27611, "apply new": 2211, "language description": 16060, "poses new": 25171, "stateoftheart vision": 31006, "models transformerbased": 22083, "endtoend manner": 9436, "work qualitative": 35770, "experiments verify": 10501, "work pave": 35742, "way future": 35433, "meaning neural": 19719, "effectiveness neural": 8962, "contextual word": 5956, "functional similarities": 11965, "dynamic semantics": 8763, "massively multilingual": 19635, "investigate impact": 15585, "modeling objectives": 20902, "making hard": 19504, "tasks 34": 32227, "come important": 4968, "highlighting need": 13646, "focus zeroshot": 11659, "pretraining tasks": 25845, "relative position": 27882, "cross entropy": 6405, "knowledge language": 15869, "multiple facts": 22393, "efficiency propose": 9011, "popular pretrained": 25136, "leads faster": 17493, "faster training": 11003, "training higher": 33527, "representation models": 28147, "models preserve": 21837, "contextual knowledge": 5951, "relationships input": 27875, "textual modality": 33033, "visual language": 35341, "modalities images": 20323, "process interpretability": 26065, "bias detection": 3643, "stateoftheart multimodal": 30960, "provide services": 26728, "openai gpt": 23434, "showed finetuned": 29856, "compared pretrained": 5161, "social bias": 30417, "social biases": 30418, "biases study": 3686, "assessing bias": 2609, "biases present": 3682, "questionanswering systems": 27088, "risks posed": 28895, "datasets like": 7143, "current popular": 6523, "suffer issues": 31550, "tackle problems": 32000, "text better": 32822, "capacity models": 4128, "generate potential": 12314, "model including": 20577, "finetuning representation": 11508, "benchmarks method": 3461, "log analysis": 19151, "recently received": 27618, "answer candidates": 2040, "approach does": 2261, "increasing performance": 14627, "annotated examples": 2021, "bert generative": 3505, "bert bidirectional": 3498, "language prior": 16773, "rate reduction": 27268, "documents leveraging": 8518, "addresses problem": 1367, "particular study": 24341, "systems including": 31901, "components natural": 5315, "critical component": 6384, "easily extendable": 8797, "toxic responses": 33313, "study controllable": 31311, "applying method": 2219, "problem pretrained": 26003, "unsatisfactory performance": 34431, "design novel": 7712, "entity generation": 9644, "generation experimental": 12496, "dataset demonstrate": 6969, "performance automatic": 24527, "current applications": 6481, "rl finetuning": 28902, "making available": 19497, "10 absolute": 25, "outside training": 23901, "gpt2 decoder": 12880, "capability generating": 4090, "similar gpt2": 30103, "modeling generation": 20894, "codes models": 4853, "existing linguistic": 10287, "models consistent": 21099, "systems recently": 31917, "inference model": 14793, "challenging previous": 4392, "conducted benchmark": 5629, "vital tool": 35372, "gpt2 work": 12968, "different modules": 8110, "tasks labeled": 32385, "plms paper": 25049, "raw input": 27283, "downstream natural": 8678, "promising performance": 26293, "performance lack": 24639, "communication people": 5052, "responses model": 28500, "generate invalid": 12296, "stateoftheart solutions": 30991, "generation lack": 12530, "deteriorates performance": 7892, "bert transformer": 3535, "groups based": 13304, "reasonably good": 27364, "deployment language": 7649, "evaluate multilingual": 9852, "multiclass classification": 22273, "models predict": 21830, "incontext fewshot": 14545, "results language": 28635, "specifically study": 30756, "examples include": 10126, "simpler tasks": 30168, "compare zeroshot": 5116, "tasks categories": 32258, "categories compared": 4222, "effective future": 8872, "produce fluent": 26145, "fluent text": 11638, "additional models": 1261, "approach works": 2360, "leads diverse": 17491, "user studies": 34674, "method leverages": 19942, "model time": 20830, "method directly": 19902, "recurrent model": 27680, "open book": 23384, "closed book": 4675, "given significant": 12771, "settings propose": 29742, "texts social": 33000, "based review": 3218, "t5 finetuned": 31945, "performance suggesting": 24772, "general nlp": 12180, "provides useful": 26766, "traditional nlp": 33350, "task training": 32202, "symbolic reasoning": 31803, "example training": 10111, "promising area": 26283, "area nlp": 2481, "nlp field": 22933, "model method": 20641, "domains compared": 8614, "furthermore evaluated": 11999, "evaluated proposed": 9882, "comprehensive ablation": 5351, "structured prediction": 31227, "form knowledge": 11739, "distillation kd": 8339, "teacher using": 32586, "different prompt": 8126, "hallucination rate": 13383, "significantly higher": 30054, "using examples": 34774, "requiring training": 28276, "inference systems": 14812, "paper revisit": 24131, "respond appropriately": 28467, "specifically finetuning": 30741, "finetuning propose": 11499, "coherent responses": 4894, "generation providing": 12581, "associated lower": 2650, "core idea": 6153, "novelty lies": 23127, "method approach": 19880, "improve accuracy": 14256, "leverage additional": 17743, "adding additional": 1232, "model predicts": 20717, "given input": 12749, "input image": 15012, "present simple": 25553, "approach address": 2232, "clip model": 4666, "contains rich": 5839, "model additional": 20357, "clip language": 4665, "quantitative evaluation": 26992, "meaning representation": 19721, "utilize pretrained": 34962, "performance response": 24740, "experiments response": 10477, "growth training": 13323, "community witnessed": 5061, "analysis widely": 1979, "adopted transformer": 1405, "xlnet electra": 35879, "superior results": 31657, "prompt based": 26308, "based method": 3194, "relatively fewer": 27886, "structural information": 31210, "baselines significant": 3269, "problem annotating": 25986, "presented task": 25568, "require costly": 28213, "generating valid": 12446, "approach jointly": 2304, "models benefit": 21014, "approach effectively": 2266, "data outperform": 6790, "substantial margin": 31469, "knowledge topic": 15913, "models assess": 20989, "tuning gpt2": 33980, "model parameterefficient": 20688, "industrial applications": 14741, "applications diverse": 2149, "adapt new": 1167, "overhead work": 23938, "parameters prime": 24279, "systems recent": 31916, "recent development": 27513, "achieving stateoftheart": 1106, "generate responses": 12320, "study effectiveness": 31322, "substantial performance": 31473, "gptbased models": 13141, "understanding paper": 34259, "model relatively": 20749, "robustness performance": 28949, "class similar": 4586, "results common": 28579, "including finetuned": 14476, "remarkable consistency": 28040, "performance adversarial": 24521, "image classifiers": 14063, "gender race": 12152, "people different": 24451, "images using": 14090, "model apply": 20372, "text finetuned": 32859, "model frozen": 20539, "accuracy raw": 906, "large size": 17277, "theory experiments": 33058, "token time": 33204, "bias machine": 3655, "text uses": 32961, "representation words": 28152, "tasks maintains": 32415, "predict masked": 25409, "masked tokens": 19618, "methods problem": 20079, "multiple words": 22428, "method paper": 19954, "hidden layer": 13536, "tokens time": 33249, "time explore": 33125, "time consumption": 33115, "application large": 2130, "high variance": 13589, "environments recent": 9669, "language finetuned": 16078, "domains results": 8637, "models hope": 21360, "modeling techniques": 20910, "tasks completely": 32270, "original prompt": 23719, "prompt model": 26336, "taskspecific model": 32565, "model output": 20676, "prompt outputs": 26339, "prompt models": 26337, "prompt continuous": 26316, "continuous vectors": 6000, "model models": 20645, "performance challenging": 24540, "challenging datasets": 4381, "datasets currently": 7088, "models image": 21369, "number trainable": 23167, "gpt2 vision": 12967, "vision encoder": 35299, "framework achieves": 11824, "baseline systems": 3259, "fewer trainable": 11092, "fewer data": 11086, "generation recently": 12592, "learning method": 17602, "scratch using": 29292, "model lstm": 20632, "synthesized dataset": 31841, "model orders": 20666, "provide useful": 26732, "evaluation experiments": 9945, "textual modalities": 33032, "training phase": 33586, "provides stateoftheart": 26763, "directly finetuning": 8237, "gpt2 generation": 12897, "set small": 29706, "methods achieve": 20000, "results especially": 28603, "representation produced": 28149, "gpt2 text": 12957, "method reduces": 19965, "example words": 10114, "early layer": 8777, "lexical word": 17804, "words semantically": 35661, "providing natural": 26776, "improving task": 14423, "extremely computationally": 10796, "models feasible": 21264, "approach improving": 2298, "humans automatically": 13920, "430 percentage": 390, "accuracy code": 864, "contextualizing language": 5966, "related work": 27859, "semantic properties": 29465, "adapts gpt2": 1225, "significantly mitigates": 30069, "visual representations": 35356, "study generative": 31336, "foster research": 11786, "make attempt": 19451, "comparison extractive": 5194, "short context": 29812, "outperforms standard": 23851, "study effect": 31321, "fail generalize": 10901, "pretrained natural": 25735, "highquality short": 13699, "longer texts": 19202, "time control": 33116, "text domain": 32848, "methods finetuning": 20039, "text structure": 32950, "text length": 32908, "analysis largescale": 1938, "predicting human": 25417, "despite advances": 7769, "largescale annotated": 17343, "dataset assess": 6940, "set best": 29672, "test generated": 32769, "models observe": 21763, "generations finetuned": 12643, "build generative": 3911, "increases model": 14614, "data lowresource": 6761, "time costs": 33118, "upstream data": 34487, "uses update": 34717, "straightforward effective": 31093, "method combines": 19890, "retrieval effective": 28740, "outperforms nonretrieval": 23838, "united states": 34368, "lack research": 16001, "standard dataset": 30872, "finetuning achieved": 11368, "generation building": 12465, "difficult train": 8174, "task lie": 32152, "effective ways": 8907, "constructed data": 5806, "ones experiments": 23347, "superiority method": 31664, "incurs significant": 14666, "time speedups": 33144, "decoderonly architecture": 7252, "results comparable": 28580, "efficient neural": 9051, "neural rankers": 22756, "models modern": 21737, "modern baselines": 22156, "vocabulary input": 35383, "produce correct": 26142, "networks bert": 22708, "bert embeddings": 3501, "art performance": 2519, "diverse generation": 8430, "robust adversarial": 28930, "adversarial samples": 1518, "language prompts": 16807, "predicted output": 25414, "performance settings": 24750, "lags far": 16017, "explore methods": 10592, "advantage fact": 1498, "multiple prompts": 22413, "data directly": 6678, "stateoftheart zeroshot": 31008, "accuracy gains": 883, "examples language": 10132, "generation remains": 12594, "modalities text": 20326, "semantically related": 29485, "zeroshot image": 35979, "visually grounded": 35367, "image text": 14076, "prompt sentence": 26342, "does introduce": 8532, "use evaluation": 34527, "presents unique": 25599, "unique challenge": 34355, "effectiveness context": 8940, "pretraining setup": 25837, "setup paper": 29749, "universally effective": 34374, "effective datasets": 8865, "present generalized": 25533, "unified perspective": 34335, "different pretraining": 8125, "downstream finetuning": 8677, "memory storage": 19830, "storage costs": 31076, "processing training": 26131, "methods offers": 20070, "offers alternative": 23306, "lower computational": 19285, "way introduce": 35438, "peft method": 24436, "stronger performance": 31201, "relatively tiny": 27895, "used experiments": 34600, "efficient trainingfree": 9062, "data significant": 6863, "study propose": 31381, "generation need": 12561, "need training": 22644, "process effectively": 26056, "applied gpt2": 2190, "baselines terms": 3272, "overall quality": 23911, "mainstream approach": 19409, "explore possibility": 10596, "model support": 20816, "reduce demand": 27708, "training separate": 33607, "model similar": 20785, "similar gpt3": 30104, "finetuning negligible": 11463, "employ techniques": 9255, "early exiting": 8775, "reduce inference": 27715, "size demonstrate": 30246, "personalized content": 24889, "content creation": 5855, "humanlevel performance": 13905, "spectrum natural": 30772, "largely unexplored": 17312, "text work": 32967, "directly training": 8244, "match score": 19646, "method advantage": 19874, "large transformer": 17280, "text image": 32894, "increasing size": 14630, "size language": 30253, "texttoimage models": 33007, "latent diffusion": 17406, "biases promptbased": 3684, "largescale multitask": 17366, "different forms": 8078, "unlike training": 34406, "data released": 6833, "behavior models": 3321, "internal states": 15442, "study present": 31376, "available dataset": 2971, "decoder models": 7248, "stateoftheart natural": 30962, "selects salient": 29402, "demonstrate lightweight": 7471, "evaluating robustness": 9914, "reasoning understanding": 27463, "understanding underlying": 34278, "experiments roberta": 10479, "showing models": 29860, "models robust": 21948, "evaluation sets": 10009, "generation context": 12478, "training context": 33457, "demonstrate substantial": 7502, "showing gains": 29859, "main challenge": 19390, "achieve coverage": 959, "empirically study": 9250, "neuron activation": 22766, "models integrating": 21402, "objective help": 23205, "accurately achieve": 931, "largescale neural": 17369, "models preference": 21835, "findings propose": 11245, "quality extensive": 26960, "learning words": 17670, "larger larger": 17325, "increase computational": 14593, "requirements recent": 28242, "recent models": 27535, "research proposing": 28350, "generation reranking": 12595, "reranking approach": 28279, "output large": 23869, "produce impressive": 26150, "scenarios requiring": 29218, "key information": 15772, "information long": 14885, "current models": 6516, "models offer": 21765, "variety domains": 35059, "novel way": 23125, "generating sentence": 12443, "high average": 13551, "work considers": 35681, "entire sentence": 9626, "generated sentence": 12388, "past year": 24391, "highlighting importance": 13645, "research opendomain": 28338, "retrieval module": 28749, "area natural": 2478, "model naturally": 20654, "lm perform": 19060, "operations recent": 23574, "ordinary differential": 23686, "differential equations": 8163, "relevant data": 27938, "cognitive overload": 4879, "method domain": 19905, "domain pretrained": 8583, "tackling problem": 32007, "zeroshot scenario": 35993, "rely heavily": 27970, "language construct": 16053, "randomly selected": 27183, "codeswitching datasets": 4859, "making possible": 19513, "reasonable time": 27362, "diverse dataset": 8423, "premises conclusions": 25495, "annotations automatically": 2030, "automatically constitute": 2905, "gptneox opt": 13161, "unlike image": 34395, "problem incorporating": 25991, "models clip": 21055, "generation incorporating": 12520, "generation conduct": 12476, "acquire general": 1116, "use different": 34525, "scores using": 29284, "clinical data": 4657, "sql generation": 30839, "predictive accuracy": 25448, "requires expensive": 28250, "generate valid": 12338, "performance benchmark": 24530, "generation finally": 12505, "lms large": 19093, "does hold": 8529, "125m 175b": 98, "lms provided": 19107, "lm types": 19065, "average score": 3024, "highlighting critical": 13643, "study prompt": 31380, "50 fewer": 421, "model lightweight": 20613, "designed test": 7746, "huge model": 13779, "modeling capabilities": 20889, "capabilities remains": 4067, "perform competitively": 24475, "generalization downstream": 12211, "unlabeled corpus": 34380, "language modelbased": 16213, "models opensourced": 21772, "supports various": 31719, "demo video": 7421, "llms memory": 18798, "sampling produces": 29095, "powerful paradigm": 25350, "knowledgeintensive nlp": 15930, "challenges particularly": 4366, "model offers": 20661, "consistently significantly": 5757, "largest chinese": 17391, "leverage unique": 17761, "post training": 25221, "performance loss": 24667, "models importantly": 21371, "2080 ti": 245, "code training": 4826, "training logs": 33556, "testing human": 32804, "achieve accuracy": 942, "trains lm": 33654, "lm generate": 19056, "lm trained": 19062, "14 tasks": 135, "20 average": 207, "received recent": 27483, "humanlevel accuracy": 13904, "attention paper": 2730, "manipulated adversarial": 19541, "reduce computation": 27701, "efficiency significantly": 9013, "generate test": 12329, "systematic evaluation": 31870, "energy consumption": 9447, "solving linear": 30509, "proven difficult": 26673, "works inference": 35814, "external sources": 10734, "using highquality": 34794, "web search": 35478, "demonstrate retrieval": 7490, "improve effectiveness": 14263, "clinical domain": 4658, "unseen languages": 34440, "japanese russian": 15700, "russian chinese": 29020, "carefully aligned": 4171, "finetuning different": 11389, "result shows": 28546, "languages pretraining": 16905, "medicine finance": 19772, "neural autoregressive": 22722, "models queries": 21882, "importance sampling": 14191, "generative architecture": 12651, "systems employ": 31894, "memory compute": 19807, "generation extensive": 12503, "capability llms": 4098, "llms popular": 18855, "fact verification": 10856, "research code": 28297, "challenging scarcity": 4397, "scarcity labeled": 29192, "highquality domain": 13687, "propose prompt": 26560, "prompts induce": 26424, "texts generated": 32992, "methods addition": 20003, "goal generate": 12806, "task existing": 32117, "lms code": 19075, "approach code": 2249, "lm codex": 19055, "nlp classification": 22924, "toxicity detection": 33319, "classification performs": 4603, "practical approach": 25362, "gained attention": 12060, "integrate goal": 15320, "evaluation human": 9959, "limited performance": 17959, "models texttoimage": 22059, "synthesis tasks": 31837, "scene graph": 29224, "operations extensive": 23570, "address shortcomings": 1357, "shortcomings propose": 29822, "strategies require": 31112, "t5 text": 31964, "text ranking": 32927, "ranking based": 27231, "limited studies": 17967, "classification rely": 4608, "achieve substantial": 994, "constrained decoding": 5780, "showing significant": 29865, "obtain consistent": 23250, "data underlying": 6899, "underlying difficulty": 34153, "report describes": 28112, "allows use": 1817, "use external": 34529, "single nvidia": 30217, "v100 gpu": 34982, "tuning prompt": 34009, "parameter efficiency": 24178, "data prompt": 6810, "tuning performs": 34005, "performs comparably": 24847, "samples fewshot": 29077, "fails match": 10915, "match performance": 19645, "approaches source": 2394, "contrastive search": 6024, "text autoregressive": 32819, "great importance": 13250, "model obtained": 20660, "autoregressive lms": 2951, "training study": 33626, "languages experimental": 16872, "set multimodal": 29697, "modeling image": 20896, "captioning visual": 4138, "storytelling speech": 31090, "comparable stateoftheart": 5091, "larger lms": 17327, "produces higher": 26161, "works model": 35818, "subjectverb agreement": 31429, "contextual representations": 5954, "report results": 28125, "manually crafted": 19564, "perform par": 24499, "diffusion language": 8181, "despite growing": 7782, "diffusionbased language": 8187, "model key": 20597, "blocks text": 3778, "generation benchmarks": 12464, "extra advantage": 10738, "natural solution": 22581, "underexplored work": 34144, "work conduct": 35679, "extensive studies": 10713, "task including": 32138, "model exceeds": 20497, "models apply": 20984, "various stateoftheart": 35147, "machinetranslated english": 19375, "language dataset": 16057, "models learning": 21442, "demonstration examples": 7595, "perform various": 24507, "learning examples": 17564, "acquire information": 1118, "propose reinforcement": 26561, "strong abilities": 31159, "models suggesting": 22029, "lack domain": 15984, "produces stateoftheart": 26163, "generate artificial": 12265, "results deep": 28585, "predictive performance": 25453, "lms lack": 19092, "ranging 1b": 27218, "176b parameters": 179, "parameters different": 24240, "content unfaithful": 5874, "faithfulness generated": 10931, "generated summaries": 12389, "datasets observe": 7156, "news datasets": 22879, "datasets given": 7126, "new metric": 22822, "model paradigm": 20685, "models considering": 21098, "limited use": 17973, "distilling reasoning": 8358, "approaches like": 2380, "effective inducing": 8875, "given new": 12758, "finally investigate": 11197, "models sentence": 21964, "evaluated accuracy": 9872, "accuracy identifying": 889, "methods demonstrate": 20019, "fail identify": 10903, "exhibit emergent": 10215, "ability learn": 694, "sentiment labels": 29570, "learning new": 17622, "fewshot evaluation": 11101, "models reliance": 21923, "models memory": 21715, "models sensitive": 21962, "turing test": 34026, "task challenges": 32091, "prompt chatgpt": 26311, "original generated": 23705, "specific inputs": 30696, "generally applied": 12240, "results approach": 28570, "performance bert": 24533, "roberta bart": 28915, "performance faster": 24596, "faster inference": 11000, "minimal modifications": 20190, "model analysis": 20365, "majority inference": 19448, "achieving state": 1104, "finetune student": 11301, "larger teacher": 17338, "arithmetic commonsense": 2500, "commonsense symbolic": 5044, "generation prompting": 12578, "applied text": 2199, "suffer low": 31552, "approach text": 2347, "data representations": 6836, "span multiple": 30591, "fewshot baselines": 11097, "transformers large": 33788, "llms subject": 18974, "significantly advancing": 30032, "advancing field": 1492, "bloom llms": 3787, "summarization text": 31627, "efforts focus": 9091, "syntax semantics": 31833, "field paper": 11149, "llms automated": 18439, "achieve goal": 963, "behavior terms": 3322, "length reduced": 17710, "varying complexities": 35169, "common nlp": 5010, "analysis indicates": 1928, "plms t5": 25050, "large publicly": 17272, "prohibitively large": 26242, "work apply": 35670, "effective improving": 8873, "models addition": 20958, "addition discover": 1238, "add new": 1228, "following task": 11703, "languages code": 16865, "speech target": 30789, "crossmodal representation": 6424, "representation alignment": 28138, "trained public": 33420, "matches performance": 19656, "despite using": 7825, "modelbased evaluation": 20880, "metrics text": 20148, "proposed evaluation": 26598, "built gpt2": 3933, "reliable evaluation": 27954, "increasing scale": 14629, "new qualitative": 22835, "gpt3 results": 13005, "design large": 7707, "large computation": 16935, "multitask settings": 22455, "scarcity long": 29194, "knowledge knowledge": 15868, "plan make": 24995, "attribute relation": 2758, "text snippets": 32945, "attributes types": 2763, "scaling language": 29165, "meta learning": 19858, "shown finetuning": 29877, "tasks described": 32293, "understanding performance": 34260, "scale diversity": 29132, "benchmark different": 3382, "different task": 8148, "finally finetuning": 11195, "paper characterize": 24020, "model benchmark": 20393, "end create": 9410, "task categories": 32090, "framework measure": 11882, "present insights": 25538, "different evaluation": 8075, "tasks input": 32374, "promptsource flan": 26450, "additional layer": 1258, "provided gpt2": 26739, "massive text": 19631, "readable text": 27297, "precision model": 25392, "years tasks": 35899, "finetune models": 11296, "models specific": 21998, "datasets necessary": 7154, "techniques paper": 32654, "retrieval models": 28748, "gptj 6b": 13146, "accuracy interpretability": 893, "models highly": 21358, "positions sequence": 25191, "sizes configurations": 30296, "observations propose": 23223, "matching visual": 19661, "text information": 32897, "motivated propose": 22229, "text propose": 32924, "task sequentially": 32192, "generative design": 12660, "compared proprietary": 5167, "prompt contrast": 26317, "average gain": 3018, "texts using": 33004, "automatic quantitative": 2892, "using templatebased": 34926, "create set": 6353, "similar large": 30106, "accuracy model": 898, "better training": 3632, "finetuned english": 11308, "provide analysis": 26684, "limited model": 17957, "specific target": 30717, "balance tradeoff": 3081, "scaling curve": 29161, "data format": 6717, "model checkpoint": 20416, "selection method": 29392, "semantic coherence": 29449, "learning recent": 17642, "capture abstract": 4144, "approach named": 2317, "datasets pretrained": 7161, "quality generation": 26965, "generation issue": 12528, "issue given": 15653, "zeroshot instruction": 35981, "ranging size": 27220, "quality assurance": 26942, "time budget": 33109, "stakeholders including": 30863, "t5 chatgpt": 31938, "emerging research": 9197, "empower users": 9266, "language focus": 16079, "position embeddings": 25182, "using constrained": 34756, "clinical language": 4659, "trained primarily": 33419, "safety critical": 29046, "critical domains": 6386, "smaller domainspecific": 30374, "domainspecific language": 8652, "experiments train": 10493, "data pretraining": 6805, "models match": 21702, "representative set": 28186, "configurations large": 5657, "set fewshot": 29687, "text explore": 32856, "text generative": 32887, "model assess": 20377, "assess generated": 2593, "nli task": 22913, "error types": 9717, "creative writing": 6371, "generation approaches": 12459, "amazon mechanical": 1869, "written humans": 35862, "possibilities future": 25205, "support systems": 31712, "generation prompt": 12577, "generate outputs": 12310, "mitigation strategies": 20267, "answering vqa": 2081, "models visual": 22118, "content particular": 5868, "evaluating multilingual": 9908, "used benchmark": 34586, "present details": 25524, "vit pretrained": 35369, "pretrained vision": 25775, "researchers explore": 28376, "lms increasingly": 19091, "popular generative": 25117, "overall observe": 23909, "behaviors models": 3328, "users requirements": 34702, "existing zeroshot": 10329, "tasks little": 32406, "little research": 18052, "translation particularly": 33843, "data limited": 6757, "given document": 12747, "report empirically": 28114, "use various": 34580, "various prompts": 35136, "different paradigms": 8116, "endtoend pipeline": 9439, "compared finetuned": 5133, "using multidimensional": 34846, "interact users": 15381, "task finetuned": 32124, "process based": 26051, "performance datasets": 24562, "aspects including": 2575, "approach efficiently": 2267, "transferable prompt": 33687, "efficiently adapt": 9069, "cases despite": 4199, "despite tuning": 7824, "transfer capability": 33670, "tasks adaptation": 32233, "data does": 6684, "visual inputs": 35336, "information visual": 14926, "input experiments": 15010, "models extended": 21244, "range social": 27211, "use human": 34536, "approach uses": 2355, "model reward": 20762, "various kinds": 35102, "control format": 6049, "architectures focus": 2462, "help bridge": 13504, "gap different": 12088, "signals different": 29944, "effectiveness efficiency": 8943, "tasks dynamic": 32303, "reinforcement learningbased": 27847, "determine optimal": 7898, "time request": 33139, "synthetic realworld": 31859, "alternative approaches": 1850, "specifically demonstrate": 30733, "use small": 34570, "approach help": 2293, "output models": 23876, "compared different": 5130, "prompting multilingual": 26391, "recent proliferation": 27545, "systems generating": 31899, "capabilities generating": 4021, "chatgpt generates": 4473, "generates fluent": 12401, "enable users": 9289, "user experiences": 34648, "data user": 6904, "works phases": 35819, "phases phase": 24920, "taskspecific training": 32570, "final phase": 11180, "experimental analysis": 10383, "observed medical": 23240, "addition model": 1242, "allowing model": 1806, "led astray": 17683, "features significantly": 11038, "standard datasets": 30873, "models core": 21112, "compared gpt3": 5136, "gpt3 despite": 12990, "times smaller": 33165, "dataset conducted": 6958, "efficiently finetune": 9072, "instructionfollowing model": 15235, "hour finetuning": 13765, "tokens higher": 33231, "preserves pretrained": 25607, "extended multimodal": 10661, "multimodal instructions": 22348, "benchmarks furthermore": 3443, "models vit": 22119, "tasks demonstrating": 32290, "task acquiring": 32073, "second step": 29328, "key metrics": 15778, "study demonstrate": 31314, "training mechanism": 33560, "follow uniform": 11679, "quality using": 26983, "modelgenerated responses": 20884, "quality responses": 26976, "quality degradation": 26952, "documents models": 8519, "generate hallucinated": 12279, "approximation fisher": 2419, "fisher information": 11569, "information matrix": 14887, "multiple datasets": 22385, "method extended": 19918, "success heavily": 31511, "potential building": 25247, "challenges achieving": 4333, "maintaining consistency": 19423, "consistency human": 5731, "comprehensive studies": 5391, "multiagent systems": 22268, "human instructions": 13826, "resulting suboptimal": 28563, "chatgpt shown": 4496, "pipeline automatically": 24964, "model resulting": 20756, "furthermore propose": 12010, "new technique": 22858, "feedback improve": 11063, "document generation": 8503, "generate different": 12272, "applying pretrained": 2221, "consisting 100": 5760, "gpt4 outperformed": 13106, "observed human": 23238, "groups evaluating": 13305, "demonstrated surprising": 7554, "outperform chatgpt": 23767, "arithmetic tasks": 2505, "llama various": 18150, "codes released": 4856, "multimodal neural": 22365, "diversity data": 8477, "data difficulty": 6677, "captioning datasets": 4137, "images videos": 14091, "used variety": 34635, "poses challenge": 25166, "challenge diverse": 4310, "issues present": 15671, "datasets approach": 7066, "input position": 15020, "embeddings pretrained": 9145, "approach offers": 2320, "llms t5": 18988, "embeddings language": 9142, "generation technique": 12618, "studies multilingual": 31277, "strong supervised": 31193, "better task": 3629, "model demonstrated": 20456, "model accessible": 20341, "models efficiently": 21185, "margin work": 19586, "users preference": 34697, "works used": 35829, "taken account": 32023, "tasks prompt": 32459, "information news": 14892, "different users": 8156, "vast number": 35189, "diverse corpora": 8419, "specifically pretrain": 30752, "using original": 34868, "original pretraining": 23718, "systems struggle": 31919, "small mediumsized": 30356, "datasets results": 7170, "tasks leads": 32396, "investigated models": 15602, "visual instruction": 35337, "tuning instruction": 33983, "using machinegenerated": 34833, "capabilities new": 4052, "present attempt": 25512, "attempt use": 2705, "data introduce": 6742, "large multimodal": 17245, "multimodal model": 22362, "llm generalpurpose": 18312, "early experiments": 8776, "multimodal instructionfollowing": 22347, "llava gpt4": 18244, "gpt4 generated": 13081, "revolutionizing natural": 28854, "exponentially increasing": 10629, "unidirectional attention": 34320, "techniques employed": 32636, "analysis furthermore": 1923, "encoder models": 9353, "autoregressive causal": 2936, "heads task": 13482, "trained joint": 33403, "graph information": 13221, "abilities directly": 624, "visionlanguage models": 35315, "technical details": 32605, "multimodal generation": 22344, "encoder frozen": 9348, "vicuna using": 35256, "projection layer": 26250, "work time": 35794, "detailed image": 7838, "collected dataset": 4922, "image semantic": 14075, "models fms": 21287, "contexts minimal": 5944, "tuning code": 33969, "llm backbone": 18274, "exploratory research": 10568, "presented major": 25566, "token position": 33196, "transformers language": 33786, "shown stateoftheart": 29917, "known suffer": 15937, "specific issue": 30697, "indepth evaluation": 14677, "decoders gpt2": 7267, "propose methods": 26530, "methods random": 20083, "process results": 26084, "results improvement": 28631, "improvement approx": 14328, "llms showcased": 18936, "models frequently": 21297, "powerful opensource": 25349, "finetuning alignment": 11370, "alignment domainspecific": 1756, "domainspecific instructions": 8650, "comprehensive dataset": 5363, "recently popular": 27613, "training llm": 33553, "demonstrates potential": 7563, "llms generalize": 18632, "fusion strategy": 12026, "visual tokens": 35359, "llm layers": 18331, "imagetext pairs": 14094, "achieves strong": 1074, "dataset inference": 7003, "incorporate additional": 14569, "expert models": 10512, "image understanding": 14077, "costs compared": 6268, "software engineering": 30455, "algorithms generate": 1718, "powerful capabilities": 25336, "fields including": 11155, "applications models": 2169, "models discuss": 21160, "discuss limitations": 8294, "point future": 25064, "tuning framework": 33979, "align large": 1728, "potential use": 25304, "recommendation systems": 27651, "data end": 6690, "framework aligning": 11827, "fewer 100": 11085, "100 samples": 38, "furthermore finetuned": 12002, "llm exhibits": 18299, "final results": 11184, "llms propose": 18875, "efficient search": 9056, "approach surpasses": 2343, "results llama2": 28640, "demonstrate efficiency": 7452, "robustness code": 28943, "visual prompt": 35347, "developing new": 7946, "multimodal llm": 22360, "existing llm": 10289, "alternative solution": 1856, "existing mllms": 10297, "solution reduce": 30478, "transfer different": 33672, "different llm": 8094, "significantly speed": 30087, "finally showcase": 11204, "mllms including": 20298, "released llama": 27924, "llms automatically": 18440, "generations different": 12642, "smallscale study": 30406, "study compare": 31306, "medical domains": 19768, "undesirable biases": 34292, "second use": 29329, "responses users": 28515, "desirable responses": 7759, "develop ai": 7909, "lines human": 18002, "including textdavinci003": 14521, "using vicuna": 34939, "vicuna large": 35250, "fewshot capabilities": 11098, "problems paper": 26030, "performance shot": 24751, "vicuna multiple": 35255, "generally requires": 12244, "requires large": 28256, "range nlp": 27205, "scientific domain": 29250, "recent advancement": 27488, "recognition tasks": 27641, "plms based": 25040, "works limited": 35815, "demonstrated significant": 7548, "introduce instruction": 15511, "required training": 28233, "huggingface transformers": 13788, "models customized": 21120, "customized training": 6565, "inference pipelines": 14798, "representations query": 28173, "available paper": 2995, "languages training": 16917, "training effective": 33506, "method results": 19971, "results experiments": 28610, "gpt4 based": 13059, "unfortunately model": 34314, "multimodal information": 22345, "dataset conduct": 6957, "multiround dialogue": 22437, "generating detailed": 12419, "lowrank adapter": 19303, "tuning make": 33997, "enhance ability": 9501, "effectively improves": 8921, "biomedical text": 3748, "based encoder": 3154, "legal domain": 17696, "complex datasets": 5272, "attention research": 2740, "learn underlying": 17515, "different approach": 8047, "llms key": 18732, "llms understand": 19017, "instead using": 15126, "general instruction": 12167, "manually design": 19569, "learn language": 17510, "plms existing": 25045, "image encoder": 14065, "encoder visionlanguage": 9358, "models vlms": 22121, "pretrained vlms": 25779, "large visionlanguage": 17291, "models enhanced": 21206, "exceptional proficiency": 10174, "diverse linguistic": 8437, "minigpt4 llava": 20177, "established benchmarks": 9774, "learning reason": 17641, "benchmark compare": 3358, "generalizability llmbased": 12201, "promising potential": 26294, "struggle produce": 31243, "parameters gptneo": 24254, "hundreds millions": 13945, "millions parameters": 20168, "attention work": 2745, "generated gpt35": 12361, "models suggest": 22028, "models output": 21785, "score model": 29273, "language capabilities": 16046, "knowledge enhancement": 15844, "task automatically": 32083, "approach grounded": 2291, "knowledge different": 15829, "used generating": 34604, "llms exploit": 18591, "gpt3 llama": 13000, "induce implicit": 14731, "code open": 4794, "case semantic": 4194, "propose using": 26584, "given collection": 12742, "collection usage": 4934, "usage examples": 34503, "demonstrate resulting": 7489, "finetuning prompting": 11498, "open pretrained": 23411, "transformers opt": 33792, "entails finetuning": 9617, "outofdomain tasks": 23753, "techniques comprehensive": 32631, "significant impact": 29987, "explicitly tailored": 10550, "bias potential": 3659, "gap paper": 12101, "distillation methods": 8345, "results imply": 28627, "misinformation detection": 20213, "spreading misinformation": 30830, "domains remains": 8636, "task misinformation": 32156, "good data": 12819, "initial model": 14960, "performance domain": 24573, "linguistic characteristics": 18008, "languages introduce": 16881, "evaluation conducted": 9931, "families demonstrate": 10966, "chatgpt openai": 4490, "googles bard": 12832, "products services": 26173, "data experiments": 6705, "demands large": 7416, "expensive propose": 10366, "strategy leverages": 31126, "model datasets": 20452, "techniques perform": 32656, "leads competitive": 17490, "performance quality": 24728, "architectures using": 2474, "using roberta": 34904, "morphological syntactic": 22220, "analysis existing": 1920, "novel generative": 23083, "resources large": 28438, "existing efforts": 10270, "relied supervised": 27964, "generalization new": 12223, "llms capability": 18457, "attempt investigate": 2704, "investigate feasibility": 15583, "extensive ablation": 10675, "distillation proprietary": 8346, "chatgpt work": 4499, "prompts use": 26445, "model aligned": 20362, "aligned language": 1739, "outperforms recent": 23849, "opensourced models": 23556, "framework code": 11835, "parameters present": 24277, "present challenges": 25518, "deployment previous": 7658, "studies try": 31288, "cot finetuning": 6280, "data contains": 6658, "capabilities work": 4084, "reasoning program": 27440, "baselines significantly": 3270, "smaller scale": 30395, "dataset evaluating": 6984, "exciting recent": 10185, "power robustness": 25329, "predict future": 25408, "contrast large": 6013, "flan collection": 11587, "finetuning flant5": 11405, "lms better": 19074, "terms zeroshot": 32753, "task accuracy": 32071, "furthermore instruction": 12003, "language modelslms": 16762, "concepts essential": 5531, "design benchmark": 7698, "objects ii": 23215, "does apply": 8523, "clip blip": 4663, "visual representation": 35355, "valuable source": 35018, "inspired propose": 15098, "propose distillation": 26505, "detecting factual": 7855, "including vanilla": 14527, "llms able": 18407, "learning incontext": 17586, "llms providing": 18881, "underlying mechanism": 34158, "compression technique": 5428, "llama outperforms": 18138, "generated dataset": 12350, "nearperfect accuracy": 22604, "evaluation effectiveness": 9943, "hallucinate wrong": 13368, "12 billion": 88, "improve factuality": 14267, "used finetune": 34601, "alpaca experimental": 1828, "highquality instructional": 13693, "finetuning instruction": 11422, "designed diverse": 7726, "largescale dataset": 17346, "leading opensource": 17480, "remarkable advancements": 28028, "selecting appropriate": 29385, "objective investigate": 23206, "compare various": 5115, "performs poorly": 24852, "poorly context": 25107, "highquality examples": 13688, "examples exhibit": 10122, "test examples": 32767, "evaluation finegrained": 9947, "quality language": 26971, "high correlation": 13560, "including based": 14460, "gpt3 gpt4": 12998, "loss quality": 19252, "latency cost": 17401, "gpt4 compared": 13067, "robustness finetuned": 28946, "tasks shown": 32500, "shown effective": 29872, "work studying": 35791, "bert finetuned": 3503, "layers using": 17449, "study robustness": 31391, "text perturbations": 32916, "like summarization": 17894, "generation question": 12585, "types input": 34064, "perturbation models": 24909, "aim generate": 1643, "texts lack": 32995, "lack clarity": 15976, "based specific": 3224, "baselines based": 3262, "observed finetuned": 23236, "models address": 20961, "propose explicit": 26510, "gains transformer": 12074, "decoderonly large": 7257, "queries learning": 27023, "reverse engineering": 28823, "development design": 7953, "developed predict": 7932, "generated code": 12347, "designed establish": 7730, "evaluations stateoftheart": 10040, "different transfer": 8153, "reveal significant": 28806, "significant room": 30024, "examples analysis": 10117, "avenues future": 3006, "candidates based": 3995, "significant time": 30027, "time effort": 33120, "tulu llama2": 33954, "variable values": 35035, "involves exploring": 15628, "model reasoning": 20743, "llm agent": 18265, "plan generation": 24994, "typically covered": 34077, "problem models": 25996, "models access": 20939, "use proposed": 34563, "closed models": 4678, "models struggling": 22018, "intelligence existing": 15355, "image language": 14071, "algorithm help": 1708, "single multimodal": 30214, "llm called": 18278, "demonstrate competitive": 7441, "training hours": 33528, "extremescale language": 10805, "tasks toxicity": 32532, "brings significant": 3880, "models outperforms": 21784, "highlight potential": 13635, "comprehensive model": 5387, "leveraging advanced": 17778, "data enhance": 6693, "documentation essential": 8511, "efficiency text": 9015, "parallel context": 24166, "context windows": 5929, "limitations evaluation": 17918, "positional embedding": 25187, "inference based": 14762, "enabling language": 9323, "harnessing power": 13467, "literature paper": 18043, "gpt35 achieve": 13015, "performance gpt4": 24620, "levels complexity": 17740, "validity generated": 35009, "abilities various": 646, "integrates llms": 15328, "specifically design": 30734, "generation reasoning": 12589, "editing various": 8830, "study task": 31401, "experiment different": 10377, "participants evaluate": 24327, "different modalities": 8103, "text video": 32965, "models word": 22132, "current paper": 6522, "media data": 19759, "common words": 5020, "impact model": 14131, "tasks researchers": 32486, "approach captures": 2247, "original input": 23709, "mechanism evaluate": 19750, "backpack language": 3065, "neural architecture": 22720, "modeling performance": 20904, "sense vectors": 29509, "linear combination": 17985, "linear projection": 17993, "change models": 4407, "finally present": 11200, "gender bias": 12149, "process work": 26088, "model synthesize": 20819, "fusion layer": 12025, "analyzing generated": 2003, "generated output": 12376, "model reveal": 20761, "primary challenge": 25919, "lack understanding": 16009, "propose explore": 26511, "furthermore investigate": 12005, "makes mistakes": 19492, "challenging work": 4404, "building better": 3919, "improves generalization": 14378, "trained small": 33426, "emotional state": 9205, "joint prediction": 15714, "result attain": 28540, "inference times": 14818, "new era": 22798, "results llms": 28641, "making model": 19511, "determine final": 7897, "approach successfully": 2342, "successfully mitigates": 31543, "bias resulting": 3662, "augmenting large": 2825, "languages making": 16896, "training llama": 33551, "largescale parallel": 17371, "chatgpt google": 4474, "tools allow": 33268, "based preceding": 3207, "addresses challenges": 1363, "benchmark furthermore": 3388, "demonstrates robustness": 7565, "prompt efficiency": 26320, "reducing model": 27756, "gpt35 7b": 13014, "poses challenges": 25167, "assess existing": 2592, "manual automatic": 19555, "improve explainability": 14265, "concerns data": 5541, "llms augmented": 18438, "propose neural": 26535, "performance small": 24755, "larger parameters": 17335, "potential tool": 25302, "sophisticated prompt": 30527, "typically rely": 34080, "prohibitive computational": 26236, "data address": 6594, "various multimodal": 35123, "multimodal contexts": 22339, "unseen tools": 34445, "alpaca 7b": 1822, "developed model": 7930, "participants able": 24326, "critical research": 6392, "research problem": 28347, "lms typically": 19118, "gpt llama2": 12855, "features used": 11043, "key innovation": 15773, "decisionmaking process": 7237, "informative features": 14932, "furthermore method": 12006, "times improvement": 33163, "method extends": 19919, "excessive memory": 10179, "memory overhead": 19823, "overhead paper": 23937, "focus exploring": 11647, "based observations": 3204, "tasks short": 32498, "tasks apply": 32245, "instructiontuning language": 15305, "observation propose": 23219, "like alpaca": 17844, "rapid progress": 27253, "costefficient approach": 6261, "use gpt4": 34534, "finetune large": 11285, "method specifically": 19976, "openended instruction": 23458, "multimodal research": 22366, "api calls": 2102, "contexts given": 5939, "simple sequences": 30163, "models unable": 22089, "investigates effectiveness": 15605, "training scheme": 33605, "datasets considerable": 7082, "leverages recent": 17773, "tasks growing": 32352, "effectiveness flexibility": 8946, "understand adaptability": 34187, "claude vicuna": 4637, "introduce additional": 15497, "requiring finetuning": 28272, "algorithm significantly": 1714, "researchers developers": 28374, "develop advanced": 7908, "multilingual nature": 22322, "capability plms": 4100, "using parameterefficient": 34869, "verification tasks": 35210, "experiments public": 10471, "framework empowers": 11844, "capability understanding": 4104, "audio encoders": 2777, "audio signals": 2780, "pretrained audio": 25626, "audio encoder": 2776, "content generate": 5859, "auditory information": 2788, "llms difficult": 18541, "inferencetime approach": 14827, "semantic constraints": 29452, "syntactic constraints": 31814, "domainadaptive pretraining": 8607, "adaptation methods": 1185, "introduce inferencetime": 15509, "truthfulness large": 33940, "model activations": 20354, "number attention": 23139, "technique data": 32619, "data efficient": 6689, "reasoning traces": 27462, "use state": 34572, "constrain generation": 5778, "critical training": 6397, "million chinese": 20163, "decoderonly model": 7262, "emphasizes need": 9213, "tools help": 33270, "sentences abstracts": 29550, "method finding": 19920, "task specifically": 32194, "dataset does": 6978, "emphasizing importance": 9216, "task code": 32093, "specific llm": 30703, "user query": 34668, "prompts generated": 26420, "trained llama": 33407, "demonstrated ability": 7515, "learning requires": 17644, "scarcity data": 29189, "settings findings": 29734, "setting instruction": 29723, "25 downstream": 271, "conduct analysis": 5584, "learning additionally": 17532, "additionally observe": 1294, "contrary previous": 6009, "generation coherent": 12473, "like large": 17879, "align human": 1726, "components model": 5314, "achieving optimal": 1098, "question using": 27077, "distributional properties": 8400, "time hypothesis": 33127, "text sampling": 32937, "text findings": 32858, "test perplexity": 32779, "domainspecific settings": 8656, "contrast traditional": 6018, "consistently underperforms": 5758, "reveal llm": 28802, "taskagnostic manner": 32213, "performance outperforms": 24707, "augment pretrained": 2792, "specifically identify": 30745, "identify address": 14003, "efficiency costeffectiveness": 8999, "systems conduct": 31890, "designs existing": 7756, "models latest": 21436, "simple linear": 30156, "process approach": 26050, "domain large": 8571, "vanilla finetuning": 35029, "analysis results": 1956, "llms step": 18969, "including opensource": 14510, "tuning approach": 33967, "development healthcare": 7955, "used models": 34614, "challenges paper": 4365, "research investigating": 28329, "domains computer": 8615, "hierarchical data": 13542, "results similar": 28684, "impact performance": 14136, "using parameters": 34872, "great improvement": 13251, "necessary achieve": 22607, "results solving": 28688, "efficient communication": 9029, "human understanding": 13872, "tasks focus": 32341, "compelling evidence": 5208, "substantial improvement": 31466, "direction future": 8224, "information transformerbased": 14922, "amr parsing": 1899, "abstract meaning": 770, "representation amr": 28139, "text current": 32840, "approaches based": 2368, "sentence paper": 29540, "method explores": 19917, "data release": 6831, "finetuning final": 11404, "fair comparison": 10923, "determine practical": 7899, "model extensive": 20506, "significant difference": 29977, "large vision": 17287, "experiments largescale": 10457, "llama code": 18087, "llm llm": 18336, "llm used": 18377, "domain prompt": 8585, "prompt methods": 26335, "methods effectively": 20023, "instructions like": 15261, "tackle propose": 32001, "highly accurate": 13657, "detection performance": 7876, "language using": 16852, "prediction approach": 25421, "surpassing counterparts": 31753, "remains relatively": 28010, "relatively modest": 27890, "superior capability": 31646, "furthermore recent": 12011, "use publicly": 34564, "dataset prompt": 7024, "achieving accuracy": 1083, "model natural": 20652, "online content": 23363, "outperform finetuned": 23774, "benchmarks using": 3476, "best approach": 3554, "using prompt": 34884, "possible achieve": 25212, "domain recent": 8587, "advancements language": 1464, "led emergence": 17685, "capabilities wide": 4082, "models fewer": 21266, "aims provide": 1671, "based extensive": 3157, "ner tasks": 22681, "llms fewshot": 18605, "findings introduce": 11240, "relevant examples": 27940, "model generative": 20550, "unexplored paper": 34300, "innovative approach": 14995, "novel llm": 23094, "llm directly": 18291, "ability interpret": 686, "human intent": 13828, "llms align": 18429, "machine generated": 19341, "despite huge": 7785, "checkpoint model": 4519, "perception models": 24463, "number instructions": 23147, "generation prowess": 12582, "modular framework": 22186, "tasks efficiently": 32305, "methods exhibit": 20030, "method does": 19903, "input video": 15037, "model joint": 20596, "compared supervised": 5175, "supervised methods": 31687, "methods evaluated": 20028, "potential aligning": 25238, "requirements associated": 28236, "solution selectively": 30479, "finetuning small": 11528, "adaptation study": 1193, "adapter layer": 1200, "additionally propose": 1297, "datasets comparing": 7079, "tasks observe": 32434, "abilities specific": 642, "knowledge especially": 15846, "advance field": 1418, "integration large": 15340, "enabling better": 9317, "textbased large": 32973, "training smaller": 33618, "data conduct": 6652, "model multimodal": 20648, "largescale transformerbased": 17385, "architectural changes": 2434, "emergent cognitive": 9185, "enhance problemsolving": 9526, "based task": 3229, "compared using": 5180, "effectively reduces": 8929, "capabilities additionally": 4000, "comparative experiments": 5099, "development code": 7951, "remarkable ability": 28026, "limiting applicability": 17976, "method automatically": 19883, "automatically generates": 2915, "diverse multilingual": 8440, "finetuning assess": 11374, "collect existing": 4915, "surpasses opensource": 31747, "corpus pretraining": 6186, "smaller training": 30398, "based statistical": 3225, "various prompt": 35134, "lms llms": 19097, "results strategy": 28690, "model outperform": 20668, "prior approaches": 25935, "approaches utilize": 2403, "established baselines": 9773, "ability various": 730, "language especially": 16069, "incorporating multimodal": 14577, "including image": 14494, "image video": 14078, "effectiveness generating": 8948, "ability ground": 681, "user experience": 34647, "audio language": 2779, "twostage training": 34047, "open foundation": 23393, "release llama": 27909, "llama 2chat": 18063, "cases models": 4205, "helpfulness safety": 13520, "order enable": 23671, "work contribute": 35682, "responsible development": 28521, "help identify": 13505, "potentially support": 25315, "discovery paper": 8275, "engine generate": 9459, "models static": 22011, "sensitive perturbations": 29517, "incorrect irrelevant": 14585, "metrics evaluating": 20136, "overall work": 23917, "demonstrates training": 7578, "identifying interpretable": 14021, "explanation using": 10539, "like clip": 17857, "models 20": 20926, "tasks finally": 32330, "33 billion": 330, "parameters small": 24291, "a100 80gb": 615, "exhibiting impressive": 10241, "distinct advantage": 8363, "vicuna llama": 35252, "using vanilla": 34935, "able solve": 754, "prepending sequence": 25501, "studies investigate": 31273, "maintain original": 19416, "embeddings results": 9147, "biomedical natural": 3745, "certain tasks": 4281, "variety applications": 35057, "llms field": 18606, "evaluation multiple": 9978, "alpaca alpacalora": 1823, "flant5 gpt35": 11594, "finetuning results": 11512, "experiments instruction": 10451, "finetuning significantly": 11524, "tasks simultaneously": 32506, "outperform best": 23766, "balanced accuracy": 3083, "model conduct": 20437, "study llms": 31359, "tasks illustrating": 32357, "illustrating promising": 14051, "racial gender": 27145, "various modalities": 35118, "generative visionlanguage": 12713, "applications data": 2147, "continue pretraining": 5987, "evaluate datasets": 9824, "including novel": 14507, "problems furthermore": 26027, "research paper": 28339, "hallucinations large": 13391, "reduce hallucinations": 27714, "leading llms": 17478, "including text": 14520, "promoting transparency": 26304, "development safer": 7973, "safer reliable": 29040, "exploring capabilities": 10615, "text space": 32946, "use autoregressive": 34514, "recipe training": 27631, "based multimodal": 3200, "results recently": 28668, "shot setting": 29832, "art natural": 2516, "open resources": 23420, "specifically tuned": 30759, "users prompts": 34700, "instruction prompts": 15175, "ability handle": 682, "detect using": 7852, "highly systematic": 13670, "training evaluating": 33512, "evaluations finetuned": 10029, "openais gpt3": 23444, "gpt3 llms": 13001, "framework training": 11898, "large autoregressive": 16929, "local training": 19136, "local llms": 19132, "reduced precision": 27730, "datasets demonstrating": 7094, "presents effective": 25580, "data influence": 6736, "parameter count": 24176, "improving model": 14415, "model performances": 20707, "rejection sampling": 27851, "samples multiple": 29085, "llm foundation": 18309, "models emergent": 21189, "sentences task": 29560, "hallucinations llms": 13394, "provide results": 26727, "generation test": 12620, "improvement using": 14350, "study aim": 31296, "construction model": 5811, "construct largescale": 5801, "text descriptions": 32844, "comprehensively assess": 5397, "multimodal foundation": 22342, "surpassing existing": 31754, "distillation large": 8340, "models alpaca": 20978, "original llms": 23712, "applications paper": 2170, "extraction using": 10776, "distilled smaller": 8355, "benchmark date": 3376, "attains remarkable": 2699, "tens thousands": 32719, "models facilitate": 21254, "general use": 12189, "llms rely": 18902, "training pipeline": 33587, "given unique": 12781, "baselines various": 3274, "safety code": 29045, "capabilities increasingly": 4026, "collect dataset": 4914, "commercial opensource": 4993, "including variations": 14528, "better alignment": 3589, "advance language": 1419, "role current": 28955, "datasets extensive": 7114, "remains understudied": 28020, "zeroshot abilities": 35950, "event detection": 10046, "method gpt2": 19928, "limited size": 17966, "detection incontext": 7867, "finetuning note": 11464, "examples model": 10136, "prompting incontext": 26377, "substantial parameter": 31471, "enhanced reasoning": 9538, "method designed": 19899, "models play": 21817, "potential models": 25279, "content specific": 5873, "study investigated": 31347, "gpt4 achieved": 13052, "implications future": 14174, "llms introduces": 18729, "offering unified": 23301, "unified solution": 34338, "solution address": 30468, "privacy data": 25952, "instructionfollowing language": 15229, "models comprehensively": 21079, "comprehensively understand": 5399, "performance largely": 24649, "interpreting complex": 15468, "inherent knowledge": 14949, "additionally compare": 1274, "used conjunction": 34589, "general domainspecific": 12163, "object detection": 23199, "models openais": 21769, "ability detect": 660, "approach adaptively": 2230, "lowrank structure": 19308, "surpassing stateoftheart": 31760, "reasoning boost": 27381, "tasks chainofthought": 32259, "learning multimodal": 17615, "hypothesize large": 13967, "automated detection": 2859, "types models": 34068, "bert pretrained": 3523, "llama closedsource": 18086, "versions gpt3": 35235, "recently developed": 27591, "including model": 14504, "accuracy privacy": 903, "layer transformer": 17432, "insights human": 15077, "identify social": 14015, "models extract": 21251, "extremely valuable": 10803, "bestperforming finetuned": 3583, "models likely": 21461, "settings models": 29739, "models enhance": 21205, "ways using": 35453, "showing potential": 29861, "task ablation": 32070, "exploring instruction": 10617, "models systematic": 22038, "review automation": 28829, "traditional approaches": 33342, "process explore": 26059, "compression inference": 5416, "noteworthy compression": 23038, "achieves compression": 1044, "models demonstrating": 21139, "allows direct": 1812, "direct application": 8211, "models quantitative": 21881, "zero oneshot": 35944, "model prediction": 20715, "using gptj": 34793, "points code": 25071, "conduct set": 5619, "experiments explore": 10441, "google cloud": 12827, "human natural": 13847, "gap language": 12094, "users easily": 34686, "modalities natural": 20324, "models reinforced": 21916, "outperforms chatgpt35": 23813, "chatgpt35 claude": 4501, "public httpsgithubcomnlpxucanwizardlm": 26838, "extend large": 10653, "embeddings designed": 9139, "token count": 33188, "process empirical": 26057, "vqa benchmarks": 35395, "comprehensive multimodal": 5388, "comparing baseline": 5188, "llms employed": 18558, "demonstrate zeroshot": 7513, "chinese large": 4546, "rise popularity": 28888, "utilized training": 34965, "chatgpt conversations": 4462, "learning humans": 17582, "resulting limited": 28554, "demonstrates scalability": 7566, "era llms": 9702, "interactions mental": 15390, "customer service": 6558, "meticulously designed": 20117, "diverse scenarios": 8457, "pivotal step": 24981, "using information": 34799, "retrieval recommend": 28752, "engineering tasks": 9470, "potentially lead": 25313, "ml systems": 20291, "comparative studies": 5100, "significantly advanced": 30031, "tasks enhancing": 32313, "thoroughly investigated": 33077, "llama chatglm": 18083, "investigate effectiveness": 15581, "llms displayed": 18543, "evaluate quality": 9862, "generated different": 12352, "llms enhancing": 18566, "driven recent": 8736, "progress multimodal": 26217, "scarcity highquality": 29191, "highquality instructiontuning": 13695, "data requires": 6838, "mllms generate": 20296, "worth noting": 35843, "tend produce": 32709, "issue paper": 15657, "hallucination leveraging": 13380, "effectively enhances": 8917, "models lvlms": 21694, "set new": 29698, "settings zeroshot": 29746, "benchmarks instructiontuned": 3451, "demonstrates superiority": 7577, "according given": 847, "task difficulties": 32111, "guide language": 13347, "method attains": 19881, "attains stateoftheart": 2700, "relatively smaller": 27894, "recent chatgpt": 27511, "role optimizing": 28959, "scale context": 29131, "lms address": 19069, "32k 2k": 326, "lengths gpt4": 17715, "paper evaluates": 24041, "annotated corpus": 2016, "user goals": 34651, "demonstrated capability": 7517, "despite strong": 7816, "datasets lack": 7136, "anomaly detection": 2038, "lvlm generate": 19333, "impressive fewshot": 14237, "performance accuracy": 24515, "answering reasoning": 2072, "learn pretraining": 17512, "contrastive training": 6025, "additional modalities": 1259, "directly using": 8246, "models multimodal": 21741, "spread misinformation": 30828, "potentially leading": 25314, "relevant evidence": 27939, "accurately evaluate": 934, "experiments widely": 10503, "sufficient context": 31561, "findings implications": 11237, "language audio": 16043, "applications code": 2144, "make generated": 19470, "improves quality": 14391, "responses training": 28514, "sampling method": 29093, "generation training": 12623, "bias problem": 3660, "tools paper": 33273, "text achieves": 32814, "set code": 29676, "audio captioning": 2775, "attention propose": 2737, "text ii": 32893, "process involves": 26066, "text classifier": 32828, "classifier trained": 4626, "sentences present": 29558, "tuning present": 34006, "tuning method": 33998, "conditions including": 5579, "alignment training": 1782, "training training": 33638, "image features": 14066, "notably approach": 23029, "diverse modalities": 8438, "quality code": 26946, "mask token": 19607, "embeddings reduce": 9146, "tuning process": 34008, "parameter tuning": 24202, "parameter updating": 24203, "furthermore experiments": 12001, "using bertbased": 34741, "queries generated": 27022, "based information": 3177, "instructiontuned language": 15284, "level fkgl": 17732, "open closedsource": 23391, "provide empirical": 26696, "considered effective": 5717, "struggle perform": 31242, "approach pinpoint": 2326, "propose mechanism": 26526, "mechanism allows": 19749, "inference enabling": 14773, "attention layer": 2721, "decisions findings": 7241, "sensitive contextual": 29514, "strategies based": 31101, "underlying mechanics": 34157, "requiring complex": 28269, "empirically verify": 9252, "despite various": 7827, "mitigate forgetting": 20251, "light pressing": 17831, "pressing issue": 25616, "different layers": 8091, "layers transformer": 17447, "tradeoffs propose": 33339, "model layers": 20606, "process known": 26067, "architecture trained": 2454, "deployed models": 7635, "human expertise": 13816, "models realworld": 21896, "systems face": 31898, "issues related": 15674, "terms bleu": 32738, "significant obstacle": 29998, "enhances llms": 9546, "generate textual": 12333, "models attain": 20991, "improved truthfulness": 14320, "ethical alignment": 9803, "llama2chat 7b": 18218, "data releasing": 6834, "work explores": 35707, "autoregressive inference": 2941, "need extra": 22629, "model alignment": 20364, "training gradient": 33526, "gradient computation": 13186, "results evaluated": 28604, "gpt4 humans": 13085, "truthfulqa dataset": 33944, "data known": 6746, "llms prompt": 18874, "prompts proposed": 26436, "performance prompts": 24722, "gpt35 bard": 13017, "bard llama2": 3099, "provide novel": 26719, "increasingly crucial": 14635, "create challenging": 6347, "1024 tokens": 57, "objectives transformers": 23212, "applications introduce": 2157, "time maintaining": 33133, "applications reducing": 2175, "text spans": 32947, "models making": 21699, "models producing": 21857, "tackling challenge": 32006, "involves generating": 15630, "training robust": 33602, "represented training": 28192, "data expensive": 6701, "obtain paper": 23251, "textual corpora": 33023, "joint audio": 15711, "text existing": 32855, "existing new": 10300, "dataset key": 7007, "dataset specifically": 7040, "dataset comprises": 6955, "approach yielded": 2361, "yielded exceptional": 35915, "exceptional results": 10175, "tasks dataset": 32283, "domain need": 8579, "used construct": 34590, "audio events": 2778, "llava minigpt4": 18247, "performed using": 24832, "image resolution": 14074, "impact multimodal": 14135, "enhances model": 9547, "finetuning additionally": 11369, "additionally study": 1303, "highlights importance": 13652, "tuning improve": 33982, "makes stateoftheart": 19495, "forgetting multimodal": 11733, "following success": 11702, "llms vision": 19038, "problem multimodal": 25997, "forgetting mllms": 11732, "retain performance": 28717, "interestingly results": 15413, "text visual": 32966, "mllms demonstrate": 20295, "perform wide": 24509, "task explore": 32120, "conduct endtoend": 5600, "model built": 20404, "llm instruction": 18324, "takes input": 32033, "llm embeddings": 18296, "improvements approach": 14355, "llms billions": 18449, "report presents": 28123, "empirical observations": 9230, "observations inspire": 23222, "developers use": 7938, "checkpoints different": 4523, "training stages": 33622, "textual visual": 33041, "input semantic": 15024, "sft training": 29768, "experiments standard": 10483, "particular emphasis": 24337, "encoderonly decoderonly": 9375, "specifically present": 30751, "comprehensive assessment": 5355, "models emerging": 21191, "task especially": 32113, "approach llms": 2313, "finetuning stages": 11535, "achieve average": 943, "datasets performance": 7160, "novel training": 23121, "largescale realworld": 17380, "realworld llm": 27342, "containing million": 5835, "content including": 5862, "perform similarly": 24502, "safety benchmark": 29044, "success existing": 31509, "finetune llama2": 11289, "generate sentences": 12323, "combinatorial optimization": 4955, "optimization problem": 23634, "data structure": 6882, "sentences usually": 29562, "paper highlights": 24056, "generation especially": 12492, "method control": 19894, "task task": 32196, "use chatgpt": 34518, "length 512": 17704, "respectively additionally": 28455, "public health": 26837, "methods applied": 20006, "simplification biomedical": 30172, "detailed explanations": 7837, "predictions results": 25443, "results chatgpt": 28577, "analysis tasks": 1970, "fewshot prompts": 11120, "ensure reliability": 9606, "impressive capability": 14236, "including fully": 14480, "series llms": 29640, "series different": 29633, "datasets llms": 7145, "consistent considerable": 5736, "llms generalise": 18631, "set using": 29715, "proposed enable": 26597, "enable llms": 9288, "speech data": 30780, "area aims": 2477, "generation considering": 12477, "high fidelity": 13568, "process including": 26063, "rlhf large": 28908, "information context": 14857, "algorithm called": 1703, "vision instruction": 35301, "achieves remarkable": 1060, "94 performance": 600, "original image": 23708, "video use": 35266, "factually incorrect": 10897, "constraints specifically": 5792, "discover strong": 8268, "prompts study": 26442, "patterns predict": 24413, "mechanistic understanding": 19757, "involving multiple": 15635, "contributions propose": 6043, "llms openai": 18828, "failure modes": 10919, "implications application": 14173, "bases large": 3278, "need finetuning": 22630, "finetuning retraining": 11514, "query prompt": 27030, "mitigate challenges": 20249, "cover diverse": 6316, "diverse topics": 8469, "analysis comprising": 1914, "tasks previously": 32455, "previously thought": 25902, "comprehensive language": 5383, "alignment techniques": 1781, "utilizing code": 34969, "furthermore developed": 11994, "performance comparison": 24553, "translation engines": 33826, "generalpurpose large": 12250, "llms unified": 19019, "language bias": 16044, "bias llm": 3653, "expensive llm": 10360, "specialized models": 30674, "tuning llm": 33995, "compact model": 5066, "bias llms": 3654, "latency costs": 17402, "various evaluation": 35091, "failure cases": 10918, "works demonstrated": 35811, "general alignment": 12157, "domain specialization": 8593, "aligned models": 1741, "specialized domain": 30670, "unlabelled data": 34386, "data labeled": 6747, "reduce hallucination": 27713, "offers effective": 23307, "llm different": 18290, "combined form": 4959, "efficiency terms": 9014, "gained considerable": 12061, "considerable attention": 5705, "modeling large": 20897, "llama outperform": 18137, "low cost": 19268, "mitigate gap": 20252, "model exhibits": 20499, "making easily": 19502, "employs pretrained": 9264, "llava instructblip": 18245, "systematic exploration": 31872, "100k tokens": 51, "window size": 35613, "summaries despite": 31606, "importance task": 14192, "public llms": 26839, "common types": 5019, "develop automatic": 7910, "evaluation costs": 9934, "syntactically correct": 31830, "task translating": 32203, "language query": 16810, "explore design": 10579, "making llama": 19510, "possess capability": 25202, "advancements recent": 1475, "training recipe": 33596, "visual data": 35328, "diversity human": 8479, "exploiting large": 10559, "coding ability": 4865, "task given": 32134, "given llm": 12753, "previous tasks": 25889, "solving complex": 30507, "code llama": 4772, "training minimal": 33566, "shown potential": 29904, "training approach": 33441, "ppo training": 25358, "communication patterns": 5051, "accuracy results": 909, "backward reasoning": 3071, "question explored": 27068, "information paper": 14896, "paper formally": 24054, "formally define": 11752, "findings significant": 11255, "given problem": 12761, "method resulting": 19970, "resulting substantial": 28564, "llms standard": 18968, "consists key": 5764, "key modules": 15779, "learning module": 17612, "powerful text": 25352, "applying real": 2223, "presents significant": 25596, "biases research": 3685, "llm framework": 18311, "blind reviews": 3773, "completeness relevance": 5256, "value llms": 35024, "propose methodology": 26529, "mbert mt5": 19711, "languages limited": 16891, "reasoning visual": 27464, "extract text": 10746, "information required": 14904, "method pretrained": 19957, "endtoend approach": 9433, "pipeline approach": 24963, "helpfulness harmlessness": 13519, "efficient empirical": 9033, "resources compared": 28431, "process large": 26069, "method boosts": 19886, "method finetune": 19921, "finetune opensource": 11297, "use code": 34519, "highquality datasets": 13686, "language code": 16051, "approach approach": 2238, "models family": 21262, "information provided": 14900, "new form": 22804, "suggest reasoning": 31579, "capturing complex": 4156, "following human": 11691, "alignment simple": 1778, "weights pretrained": 35511, "models weights": 22126, "approach extend": 2277, "models chat": 21052, "results underscore": 28701, "effectiveness wide": 8975, "wide applicability": 35546, "video demonstrations": 35264, "methods generative": 20042, "text andor": 32817, "script generation": 29295, "based demonstration": 3151, "llms helpful": 18668, "users control": 34684, "rlhf stage": 28909, "datasets generates": 7125, "baselines trained": 3273, "digital age": 8189, "techniques particularly": 32655, "stateoftheart framework": 30931, "query resolution": 27031, "intricate tasks": 15485, "collection online": 4932, "opensourced code": 23549, "improved controllability": 14309, "direction finetuning": 8223, "lms prompting": 19103, "backbone lms": 3054, "gpt4 leads": 13088, "diverse finetuning": 8428, "findings regarding": 11247, "provides initial": 26756, "initial set": 14965, "questions language": 27116, "containing specific": 5836, "improve abilities": 14253, "methodology leverages": 19995, "derived pretrained": 7674, "llama2chat model": 18219, "model level": 20610, "llms garnered": 18628, "garnered considerable": 12120, "initial tokens": 14967, "additionally introduce": 1290, "specialized data": 30668, "results realworld": 28667, "training fewshot": 33520, "code generated": 4752, "llms susceptible": 18987, "engineering tactics": 9469, "reduce errors": 27709, "finally discuss": 11192, "code language": 4769, "models optimized": 21780, "models master": 21701, "text code": 32829, "popular entities": 25116, "works pretrained": 35821, "reranking generated": 28280, "poses challenging": 25168, "finegrained multimodal": 11275, "overcome challenges": 23920, "capability leveraging": 4097, "feature extraction": 11023, "consistent patterns": 5740, "including question": 14514, "accuracy respectively": 908, "methods highly": 20044, "uncovering hidden": 34137, "despite commendable": 7771, "meticulously crafted": 20115, "enhancing depth": 9560, "renowned datasets": 28083, "gpt4 series": 13116, "available instructiontuning": 2983, "detailed responses": 7841, "challenges introducing": 4353, "solution designed": 30473, "designed automatically": 7724, "generating instructions": 12431, "conversations chatgpt": 6106, "diversity number": 8481, "problem present": 26002, "sparsity different": 30629, "dataset including": 7002, "hard negative": 13422, "improved capability": 14306, "object hallucination": 23200, "positional bias": 25186, "bias use": 3666, "prompt produce": 26340, "input prompt": 15021, "random perturbations": 27176, "language interaction": 16099, "uses large": 34712, "harnessing large": 13463, "support large": 31709, "substantial promise": 31475, "health care": 13484, "albeit relatively": 1694, "model palm": 20680, "responses llms": 28499, "text retrieval": 32934, "handle longer": 13408, "obviating need": 23265, "categories extensive": 4223, "like openflamingo": 17890, "models incorporating": 21386, "understanding code": 34215, "thousands words": 33087, "hundreds thousands": 13947, "touvron et": 33304, "effectively handle": 8919, "tasks widely": 32551, "suboptimal quality": 31440, "effectively leverage": 8923, "paper available": 24016, "llms help": 18667, "capacity llms": 4127, "capabilities approach": 4001, "tasks enabling": 32309, "wider range": 35585, "training based": 33442, "efficiency llm": 9008, "adversely affecting": 1527, "finetuning opensource": 11466, "replacing entities": 28106, "pretraining llms": 25817, "like medicine": 17887, "technique based": 32617, "accuracy 92": 860, "requiring minimal": 28274, "study pretrained": 31378, "make predictions": 19478, "tuning learning": 33991, "vs llama": 35401, "llms match": 18795, "match surpass": 19647, "instructiontuning methods": 15308, "contributions opensource": 6041, "systematically evaluating": 31880, "bilingual evaluation": 3710, "evaluation understudy": 10023, "evaluation rouge": 10004, "according experiment": 846, "domain work": 8604, "models alignment": 20973, "identify important": 14009, "simple implement": 30154, "lines code": 18001, "larger batch": 17316, "increase throughput": 14607, "pretraining code": 25787, "model suite": 20813, "code replicate": 4809, "techniques fall": 32638, "works propose": 35823, "fundamental limitations": 11978, "searches efficient": 29315, "solve single": 30496, "method achieve": 19867, "level accuracy": 17730, "llama approach": 18075, "numerous downstream": 23183, "development nlp": 7964, "obtained finetuning": 23256, "promising technique": 26299, "information using": 14924, "fail produce": 10905, "benchmark model": 3398, "adapts pretrained": 1226, "text specific": 32948, "parametric knowledge": 24297, "number retrieved": 23159, "tokens generating": 33230, "textual description": 33026, "extraction methods": 10769, "potential using": 25305, "gpt4 opensource": 13102, "average f1score": 3017, "safe reinforcement": 29030, "regarding helpfulness": 27810, "cost models": 6251, "llms optimization": 18833, "method solve": 19975, "harmful responses": 13443, "llms open": 18826, "llms central": 18460, "tool utilization": 33261, "llms compromising": 18482, "compromising general": 5440, "general abilities": 12155, "method enhance": 19912, "capabilities open": 4055, "encoder layers": 9350, "trained solely": 33427, "data surprisingly": 6885, "previously overlooked": 25899, "directly process": 8240, "associated language": 2645, "prompts inputs": 26425, "visual recognition": 35353, "effectiveness pretrained": 8963, "visual encoding": 35330, "simple baseline": 30142, "approaches method": 2384, "require access": 28210, "encoder model": 9352, "images texts": 14089, "model ability": 20337, "ability extract": 665, "features input": 11033, "attention patterns": 2731, "llama simple": 18145, "instructionfollowing abilities": 15222, "domainspecific llms": 8653, "affecting performance": 1542, "provide public": 26723, "gap presenting": 12103, "demonstrate gpt2": 7459, "corresponding predictions": 6230, "various model": 35119, "datasets highlight": 7128, "ability outofdistribution": 707, "observe significant": 23233, "remarkable performances": 28051, "suboptimal results": 31441, "leading model": 17479, "hallucinations address": 13387, "encouraging model": 9402, "incorrect answers": 14582, "small fraction": 30343, "data response": 6841, "generation sota": 12602, "chatgpt large": 4482, "single turn": 30227, "requires users": 28266, "establish strong": 9770, "experiments effectiveness": 10438, "plays significant": 25031, "issue mainly": 15656, "llm particular": 18347, "instruct tuning": 15131, "inject domain": 14979, "suitable dataset": 31597, "notable performance": 23027, "models higher": 21354, "code work": 4830, "hours training": 13767, "final result": 11183, "chat benchmarks": 4441, "personalized generative": 24890, "efficiency code": 8997, "approach enhancing": 2272, "offering flexible": 23297, "leveraging recent": 17794, "methods training": 20104, "potential multimodal": 25280, "performance limitations": 24658, "dynamic field": 8759, "novel methodology": 23098, "language features": 16075, "optimizing various": 23658, "various facets": 35092, "including improved": 14495, "training respectively": 33600, "performance chinese": 24542, "spur future": 30832, "make fewer": 19469, "effect adding": 8850, "hallucinations challenging": 13389, "nature information": 22590, "based provided": 3213, "curated instructions": 6472, "comparing llms": 5192, "findings align": 11230, "dataset serves": 7036, "difficulty task": 8178, "evaluate use": 9868, "dataset synthetic": 7043, "models hallucination": 21345, "domain nlp": 8580, "requires highquality": 28254, "task focus": 32125, "image audio": 14055, "sequence text": 29609, "taking step": 32038, "specialized knowledge": 30673, "model enables": 20486, "approach producing": 2328, "gpt35turbo using": 13046, "useful various": 34642, "promise large": 26276, "languages bangla": 16864, "performance effect": 24579, "effect scaling": 8856, "work identify": 35720, "factors affecting": 10868, "potential performance": 25288, "computationally intensive": 5488, "data resolve": 6840, "derive simple": 7671, "manipulation framework": 19544, "opensource vlms": 23546, "comprehension models": 5346, "behavior different": 3312, "model gptj": 20561, "learningbased approach": 17674, "data observe": 6786, "varies widely": 35054, "2023 demonstrated": 233, "icl ability": 13974, "llms enabling": 18562, "incorrect predictions": 14587, "specific examples": 30693, "standard setting": 30881, "reveals current": 28814, "learning designed": 17557, "datasets languages": 7137, "quality human": 26967, "outputs code": 23887, "process challenging": 26052, "vast datasets": 35185, "linear programming": 17992, "current evaluation": 6488, "alignment method": 1771, "sacrificing performance": 29027, "codes checkpoints": 4850, "related questions": 27855, "space input": 30579, "inner product": 14988, "language structure": 16825, "pairs experiments": 23979, "widespread access": 35590, "models primarily": 21853, "models noteworthy": 21759, "language case": 16049, "alignment strategies": 1779, "video datasets": 35263, "understanding diverse": 34218, "finegrained perception": 11276, "overall framework": 23907, "learning use": 17667, "activate relevant": 1134, "news social": 22885, "evaluation introduce": 9962, "tasks assess": 32247, "bias models": 3658, "leading suboptimal": 17485, "dataset subset": 7041, "generation potential": 12572, "making models": 19512, "finetuning chatgpt": 11379, "pivotal role": 24980, "userfriendly interface": 34680, "increasing popularity": 14628, "investigating finetuning": 15608, "capability particularly": 4099, "study design": 31317, "direct responses": 8217, "finetuning especially": 11397, "news consumption": 22877, "work extend": 35708, "using carefully": 34745, "model utilize": 20855, "opendomain tasks": 23452, "need study": 22643, "execute complex": 10191, "task introduce": 32144, "llms combined": 18471, "paper seek": 24132, "specifically analyze": 30728, "applications various": 2182, "various fields": 35094, "effective use": 8905, "llms date": 18506, "support future": 31708, "speechbased slot": 30792, "proposed improve": 26602, "proposed integrate": 26603, "including gpt35turbo": 14487, "studies highlighted": 31271, "models solely": 21990, "solely focus": 30463, "preceding context": 25386, "entire context": 9623, "exhibits better": 10243, "designed mitigate": 7735, "task designed": 32109, "descriptions generate": 7686, "generate instructionfollowing": 12293, "derived image": 7673, "visual context": 35326, "trained realworld": 33421, "based proposed": 3212, "multimodal understanding": 22368, "models adapting": 20957, "distinct linguistic": 8366, "llm significantly": 18368, "information gain": 14870, "benchmark using": 3418, "diverse perspectives": 8447, "demographic groups": 7429, "express diverse": 10638, "certain groups": 4274, "datasets collected": 7076, "online reviews": 23368, "analysis common": 1913, "generation attracted": 12460, "paradigm instructiontuning": 24157, "neglecting potential": 22669, "student teacher": 31257, "distillation framework": 8338, "teacher student": 32585, "baselines zeroshot": 3275, "reliable systems": 27955, "required generate": 28229, "given partially": 12760, "time experiment": 33122, "algorithm enables": 1705, "possible model": 25215, "generated existing": 12355, "systems novel": 31909, "factual error": 10881, "investigation large": 15613, "llms marked": 18793, "usage memory": 34509, "multiagent environments": 22267, "enhancing llms": 9566, "highlighting significant": 13648, "methods face": 20033, "novel pipeline": 23104, "dataset case": 6947, "finetuning alpaca": 11371, "code implementation": 4766, "text distribution": 32846, "data distributions": 6680, "models degenerate": 21129, "model notably": 20658, "apply approach": 2203, "outputs finetuning": 23888, "tasks related": 32478, "model llmbased": 20627, "llmbased methods": 18389, "involves injecting": 15631, "reasoning information": 27412, "model consists": 20440, "sentences based": 29551, "propose search": 26564, "labels training": 15969, "results additionally": 28568, "end construct": 9409, "dataset variety": 7055, "tuning evaluating": 33976, "llms develop": 18537, "compared base": 5121, "model showing": 20779, "potentially causing": 25310, "improving robustness": 14421, "documents enabling": 8517, "aim explore": 1642, "languages investigate": 16882, "methods lora": 20065, "llama results": 18141, "llms chain": 18461, "human brain": 13799, "ability significantly": 721, "gpt4v llava": 13137, "intermediate representations": 15431, "construct benchmark": 5794, "methods achieving": 20002, "training instance": 33535, "automated manual": 2868, "programs written": 26205, "languages python": 16909, "accuracy various": 915, "types llama": 34066, "leads improved": 17494, "majority cases": 19446, "assessing models": 2612, "llms longer": 18784, "performance long": 24666, "techniques designed": 32634, "mixed results": 20270, "propose transform": 26578, "pretraining supervised": 25842, "unified simple": 34337, "inputoutput pair": 15039, "validate new": 34997, "llms notably": 18819, "modern large": 22161, "systems introduce": 31902, "models 3b": 20927, "3b parameters": 367, "projection layers": 26251, "respectively notably": 28463, "llms parameters": 18843, "icl changes": 13976, "llms hidden": 18669, "demonstrations overall": 7597, "work offers": 35738, "offers unique": 23314, "unique perspective": 34362, "capable answering": 4106, "enhance computational": 9509, "efficiency paper": 9009, "transformer training": 33743, "outperforming llms": 23799, "deployment resourceconstrained": 7659, "datasets larger": 7142, "work highlights": 35718, "generation roberta": 12598, "gptj models": 13151, "highlighted importance": 13640, "research reports": 28358, "accurate way": 929, "evaluation encompasses": 9944, "single linear": 30210, "existing video": 10323, "work serve": 35777, "practical scenarios": 25371, "aims analyze": 1658, "models extending": 21245, "llava model": 18248, "work builds": 35675, "captured existing": 4153, "pursuit artificial": 26889, "significant milestone": 29997, "perception understanding": 24464, "analyzing evaluating": 2002, "gap existing": 12089, "diffusion image": 8180, "prompt image": 26329, "introduce text": 15538, "dataset text": 7045, "recently experienced": 27597, "experienced rapid": 10373, "alignment capabilities": 1755, "strong alignment": 31161, "semantic comprehension": 29450, "finetuning lora": 11451, "small highquality": 30345, "dataset long": 7009, "alignment machine": 1769, "native language": 22499, "dataefficient alignment": 6928, "present automatic": 25514, "bert llama": 3517, "uncertainty estimates": 34117, "models original": 21781, "successful integration": 31534, "synthetic benchmark": 31846, "models testing": 22056, "llama2chat models": 18220, "finetuning similar": 11525, "opensource development": 23500, "models ai": 20971, "recognition textbased": 27642, "processes input": 26091, "enhancing overall": 9572, "creating efficient": 6366, "applications recent": 2174, "plms text": 25051, "widely explored": 35574, "encoderdecoder plms": 9372, "decoderonly llm": 7260, "strategy experimental": 31120, "computational burdens": 5456, "context token": 5922, "visual cues": 35327, "strategy significantly": 31128, "upper limit": 34484, "progress ai": 26208, "training introduce": 33536, "llms llama213b": 18779, "prompt types": 26356, "truefalse questions": 33927, "explicit implicit": 10545, "llm respectively": 18360, "effectively align": 8910, "increasing demand": 14621, "llmbased chatbots": 18386, "diffusion xl": 8185, "experiments validate": 10497, "average success": 3025, "rate base": 27263, "different instruction": 8084, "realworld deployment": 27339, "task work": 32209, "long prompt": 19175, "context short": 5917, "performance generalpurpose": 24614, "gpt35turbo training": 13045, "evaluation t5": 10017, "prompt settings": 26344, "baseline code": 3244, "reveal finetuned": 28797, "llms surpass": 18985, "points exact": 25073, "models encounter": 21202, "challenges field": 4344, "performance conditional": 24558, "employing lora": 9261, "achieving highest": 1093, "direction enhancing": 8222, "robust zeroshot": 28940, "opensource counterparts": 23495, "models persists": 21814, "code necessary": 4793, "necessary reproduce": 22608, "common style": 5016, "trainingfree method": 33650, "benchmark analysis": 3353, "increasingly recognized": 14644, "captions address": 4142, "visual prompts": 35348, "multiplechoice tasks": 22432, "findings based": 11231, "certain size": 4280, "logical thinking": 19158, "spatial localization": 30639, "automatically extracting": 2911, "addition provide": 1247, "given single": 12772, "single image": 30206, "additionally framework": 1288, "framework utilizes": 11904, "frozen large": 11936, "datasets evaluation": 7105, "studies primarily": 31278, "field challenges": 11134, "mainly relies": 19407, "showcasing immense": 29850, "content online": 5866, "online inference": 23364, "approach relies": 2334, "achieve reasonable": 980, "equipped efficient": 9681, "variable names": 35034, "toolaugmented llms": 33263, "enabling direct": 9318, "leverages knowledge": 17767, "opensource pretrained": 23540, "enabling arbitrary": 9316, "data serve": 6858, "matches exceeds": 19650, "generation integration": 12526, "original clip": 23700, "ability specifically": 723, "new document": 22793, "unlike traditional": 34405, "bert classification": 3500, "models grasp": 21339, "diverse attributes": 8413, "properties flexibility": 26472, "methods various": 20110, "achieving significantly": 1101, "work results": 35774, "opensourced model": 23555, "technique finetuning": 32622, "35 gpt": 340, "provide comparative": 26689, "outperforms established": 23818, "robust performance": 28938, "effective tool": 8902, "alignment aligning": 1753, "effectiveness llm": 8956, "methods paper": 20071, "datasets investigate": 7135, "modeling analysis": 20887, "alpaca7b model": 1836, "key metric": 15776, "metric evaluating": 20121, "prominent models": 26271, "pivotal insights": 24978, "reasoning enhanced": 27406, "prominent method": 26270, "algorithm achieves": 1700, "moving average": 22240, "average ema": 3014, "research aim": 28287, "incorporating external": 14575, "knowledge used": 15918, "methods limitations": 20061, "approaches straightforwardly": 2396, "commonly known": 5026, "known hallucination": 15934, "position encoding": 25183, "boosting llm": 3823, "pruning large": 26810, "datasets achieving": 7059, "compatible existing": 5204, "model vlm": 20861, "art model": 2515, "model codes": 20426, "enables dynamic": 9296, "examples behavior": 10118, "execution accuracy": 10198, "exhibit high": 10219, "accuracy relevance": 907, "strong capabilities": 31165, "techniques reinforcement": 32659, "models behave": 21010, "ways difficult": 35450, "model test": 20828, "naive finetuning": 22478, "work simple": 35787, "understanding identifying": 34231, "pull requests": 26877, "fostering collaboration": 11788, "nature software": 22591, "software projects": 30458, "communication channels": 5049, "explore zeroshot": 10606, "available models": 2989, "using closedsource": 34751, "7b13b 70b": 544, "model enhance": 20490, "dataset utilizing": 7054, "data conditions": 6651, "proprietary counterparts": 26635, "look leap": 19220, "challenging problems": 4394, "spanning domains": 30598, "coding task": 4868, "apply causal": 2204, "causal analysis": 4236, "models sizes": 21984, "125 million": 96, "requiring human": 28273, "single input": 30208, "sentences using": 29561, "models objective": 21762, "various strategies": 35148, "evaluation construct": 9933, "sampling techniques": 29098, "settings results": 29743, "impressive incontext": 14238, "shot learning": 29831, "pretrained capabilities": 25632, "current instruction": 6493, "ensuring data": 9611, "degrade model": 7379, "novel efficient": 23075, "candidate examples": 3992, "tasks deployment": 32291, "memory demands": 19812, "language built": 16045, "methods usually": 20108, "suffer significant": 31554, "significance llms": 29948, "llms utilizing": 19032, "utilizing external": 34970, "framework comprises": 11836, "parsing framework": 24320, "tasks determine": 32295, "tasks provide": 32464, "analysis effectively": 1919, "llms superior": 18982, "models vicuna7b": 22116, "evaluate llm": 9844, "llm robustness": 18364, "tendency hallucinate": 32712, "extensive research": 10711, "advantage unique": 1500, "struggle generating": 31241, "models codellms": 21059, "adapter module": 1202, "starcoder model": 30895, "code tokens": 4823, "novel datasets": 23072, "adverse effect": 1524, "llama generate": 18106, "lvlm llava": 19334, "images experimental": 14083, "development process": 7971, "used model": 34613, "unlike current": 34393, "automatic data": 2878, "decreased performance": 7300, "objective enhance": 23203, "model demonstrating": 20458, "mistral 7bs": 20230, "chatgpt gpt35turbo": 4477, "efficient llms": 9046, "additionally adaptive": 1270, "gains achieved": 12070, "rapid expansion": 27252, "offer opportunity": 23291, "models perspective": 21815, "present work": 25563, "training validation": 33643, "like falcon": 17861, "performance interpretability": 24635, "interpretability study": 15459, "content detection": 5856, "achieved humanlevel": 1010, "potential path": 25287, "feedback extensive": 11059, "human intervention": 13831, "model chatgpt": 20415, "unsupervised supervised": 34458, "demographic information": 7430, "inputs using": 15051, "given llms": 12754, "llms strong": 18970, "tokens input": 33234, "predict tokens": 25410, "performances variety": 24821, "context sizes": 5920, "t5 sequencetosequence": 31963, "models approaches": 20986, "code scripts": 4816, "language visual": 16855, "considerable computational": 5707, "addressing issues": 1375, "gpu cpu": 13169, "effective language": 8879, "devices work": 7991, "model gpt35": 20558, "long input": 19173, "leads significant": 17495, "benchmark method": 3397, "outperforming previous": 23802, "results accuracy": 28566, "augmenting llms": 2828, "synthesis capabilities": 31836, "text encoder": 32851, "performance making": 24671, "outperform original": 23781, "failures large": 10921, "assistance code": 2635, "chatgpt demonstrated": 4463, "llms suffer": 18979, "skills based": 30309, "vicuna guanaco": 35249, "rate 25": 27261, "examples incontext": 10127, "research computational": 28300, "computational framework": 5467, "greatly increased": 13273, "significantly limited": 30066, "highrisk setting": 13710, "novel computational": 23067, "13 different": 109, "higher degree": 13597, "ensure quality": 9605, "textual contexts": 33022, "strategically partitioning": 31099, "demand extensive": 7411, "availability highquality": 2963, "datasets remains": 7169, "imagetext tasks": 14095, "videotext tasks": 35270, "exhibit limitations": 10223, "traditional techniques": 33352, "problemsolving capabilities": 26039, "diverse problem": 8449, "problem scenarios": 26010, "scenarios extensive": 29204, "performance adaptability": 24516, "overcoming limitations": 23928, "instructions complete": 15247, "offline evaluation": 23321, "new online": 22826, "evaluation setting": 10010, "paper leverages": 24076, "improvement code": 14335, "datasets study": 7175, "findings lead": 11241, "discussion performance": 8300, "based transformers": 3233, "decrease general": 7297, "exhibits stateoftheart": 10252, "highlighting effectiveness": 13644, "datasets benchmarks": 7070, "lack proper": 15998, "advancement realm": 1458, "27b parameters": 285, "parameters effectively": 24242, "commendable performance": 4978, "enhance accuracy": 9503, "chatgpt 35": 4456, "offering promising": 23300, "sheer number": 29802, "retrieval specifically": 28754, "multiple images": 22395, "visual details": 35329, "relevant images": 27941, "image information": 14069, "range opensource": 27207, "opensource closedsource": 23488, "inputs based": 15043, "knowledge apply": 15812, "ai specifically": 1617, "llms offers": 18825, "offers promising": 23312, "retrieve information": 28767, "resistance hallucinations": 28397, "terms model": 32747, "model classification": 20420, "portuguese language": 25153, "stronger smaller": 31203, "benefit llms": 3482, "understanding query": 34262, "leverage models": 17758, "increase accuracy": 14592, "context results": 5914, "90 times": 592, "similar bert": 30097, "propose adversarial": 26493, "representation text": 28151, "unseen lowresource": 34441, "challenges machine": 4360, "languages previously": 16907, "models extensive": 21247, "translation llms": 33833, "prompt strategies": 26345, "finetuning crucial": 11383, "al 2023a": 1691, "xu et": 35884, "implementations available": 14165, "benefits use": 3492, "paper applies": 24012, "learning goals": 17573, "taxonomy automatically": 32575, "support claim": 31705, "set synthetic": 29707, "rules based": 29010, "various stages": 35146, "training compare": 33453, "llm architectures": 18270, "performance closedsource": 24545, "quality estimation": 26956, "correlates human": 6216, "candidate pool": 3993, "cases consistently": 4198, "varying numbers": 35178, "furthermore empirically": 11997, "scales linearly": 29156, "costly retraining": 6265, "retraining llms": 28727, "sensor data": 29525, "exhibits comparable": 10244, "studies highlight": 31270, "capability finetuned": 4087, "notably observe": 23032, "context prompts": 5909, "prompts significantly": 26440, "graph language": 13222, "text features": 32857, "knowledge distribution": 15837, "humans ability": 13917, "level applied": 17731, "sentences document": 29553, "instructions significantly": 15274, "primary cause": 25918, "ability address": 654, "llm designed": 18287, "providing insightful": 26774, "responses questions": 28509, "opensource algorithm": 23483, "finetuning multimodal": 11457, "users intentions": 34694, "following data": 11690, "ift datasets": 14036, "noticed models": 23042, "dataset potential": 7021, "establish new": 9769, "sizes notably": 30301, "previous opensource": 25871, "version gpt4": 35231, "improvement attributed": 14329, "problems using": 26034, "depends users": 7627, "particularly important": 24348, "important findings": 14202, "primarily studied": 25913, "experiments flant5": 10444, "data potential": 6800, "biases large": 3675, "significant promise": 30017, "applications including": 2156, "aim minimize": 1646, "biased outputs": 3670, "enhanced model": 9534, "reasoning fundamental": 27409, "transforms natural": 33806, "code prompts": 4800, "prompts elicit": 26413, "datasets conduct": 7081, "experiments understand": 10494, "understand code": 34189, "improve sample": 14298, "optimization large": 23628, "models gained": 21300, "gained immense": 12062, "importance recent": 14189, "remain unanswered": 27986, "context large": 5895, "improvements use": 14367, "connects models": 5690, "llms dynamic": 18550, "llms allows": 18430, "models advanced": 20967, "superior accuracy": 31644, "compute demands": 5494, "optimization including": 23627, "indicate potential": 14693, "potential challenges": 25248, "challenges model": 4361, "model hallucinations": 20563, "methods incorporating": 20050, "llms binary": 18451, "binary decision": 3734, "baseline method": 3252, "demonstrated high": 7525, "potential broader": 25246, "ai assistants": 1599, "different applications": 8046, "pivotal factor": 24977, "factor success": 10865, "current alignment": 6480, "harmlessness alignment": 13450, "harmless responses": 13448, "diminishes attack": 8203, "attack success": 2686, "rate asr": 27262, "harmful instructions": 13441, "jailbreak attacks": 15696, "attacks maintaining": 2693, "provide recommendations": 26726, "set recommendations": 29705, "methodology llms": 19996, "metrics use": 20149, "gain insight": 12058, "design task": 7715, "task better": 32087, "llms relatively": 18900, "framework identify": 11864, "significant bias": 29962, "contexts provide": 5946, "identify key": 14010, "llms analysis": 18431, "llms analyzing": 18432, "insights derived": 15072, "output correct": 23864, "fall categories": 10948, "model meets": 20637, "relatively large": 27887, "researchers limited": 28378, "current lvlms": 6512, "red teaming": 27690, "generate harmful": 12280, "terms different": 32743, "prominent opensourced": 26272, "common content": 5005, "sec filings": 29318, "capabilities consider": 4006, "cost latency": 6246, "data security": 6853, "security risk": 29350, "llama training": 18148, "including previous": 14513, "largescale llms": 17363, "prediction largescale": 25429, "multiple advanced": 22377, "advanced baselines": 1421, "set languages": 29691, "pretraining llama": 25816, "relying single": 27979, "methods present": 20076, "benchmark comprising": 3362, "tasks focused": 32342, "single multiple": 30215, "critical area": 6381, "need model": 22638, "education novel": 8836, "learning objective": 17623, "methods introduce": 20053, "distinguishing original": 8378, "various metrics": 35117, "additionally methods": 1292, "showing promising": 29863, "llm hallucinations": 18319, "rag systems": 27160, "evidence experiments": 10061, "reveal existing": 28796, "experts large": 10520, "scaling methods": 29174, "learning consequently": 17555, "changes time": 4412, "models matches": 21703, "knowledge rapidly": 15896, "diversity text": 8485, "making inefficient": 19505, "propose tokenlevel": 26575, "study multilingual": 31367, "detection models": 7873, "capabilities multimodal": 4046, "accurately interpreting": 937, "enhancing mllms": 9567, "systematic experiments": 31871, "maintains original": 19433, "benchmarks achieving": 3429, "facilitate exploration": 10839, "gpu 10": 13168, "pretrained context": 25638, "grouping using": 13302, "coherence creativity": 4888, "bloom 7b": 3783, "gptneo 13b": 13156, "times compared": 33158, "inference pretrained": 14799, "languages pretrained": 16904, "social situations": 30434, "executable code": 10189, "agents large": 1570, "used alternatives": 34583, "rely largescale": 27971, "various knowledgeintensive": 35104, "strategy improves": 31124, "generation strategy": 12605, "tasks enhance": 32312, "retrieval downstream": 28739, "tasks quality": 32467, "models vs": 22124, "hard understand": 13423, "relevant accurate": 27936, "results related": 28669, "aspects results": 2579, "reasoning different": 27404, "claude2 llama2": 4639, "properties llms": 26477, "degrees freedom": 7392, "valid solution": 34990, "increasingly used": 14647, "used various": 34636, "information textual": 14917, "model gpt4v": 20560, "study effects": 31323, "demonstrating initial": 7583, "generate desired": 12271, "presence hallucinations": 25509, "following similar": 11701, "designed implemented": 7733, "evaluation based": 9923, "gpt35turbo code": 13042, "efforts align": 9084, "access llm": 820, "dataset supervised": 7042, "novel technique": 23116, "complexity increases": 5303, "learn incontext": 17509, "query key": 27028, "weights input": 35507, "attention weight": 2743, "predicting word": 25419, "13b 30b": 119, "released github": 27923, "structured nature": 31225, "7b achieves": 532, "attributed key": 2760, "time constraints": 33113, "framework llms": 11881, "methods core": 20014, "llms select": 18930, "32 compared": 319, "inference compute": 14768, "operations large": 23571, "achieves perfect": 1055, "traditional models": 33349, "considerable efforts": 5708, "models black": 21030, "safeguard model": 29035, "model ownership": 20679, "predictions model": 25442, "dataset comprised": 6954, "1000 examples": 43, "generation humans": 12517, "llmbased systems": 18390, "tasks traditionally": 32533, "accuracy crucial": 866, "completion rate": 5262, "hallucinated answers": 13370, "predicted scores": 25415, "mistral llama": 20231, "loss llms": 19248, "depression detection": 7664, "novel paradigm": 23102, "method enhances": 19914, "phase models": 24917, "comprehensive approach": 5354, "showcasing potential": 29854, "efficacy method": 8988, "key techniques": 15787, "metric design": 20120, "longcontext llms": 19193, "metrics introduce": 20141, "services enhancing": 29661, "potential nlp": 25286, "llama2 aiming": 18165, "benefits process": 3491, "supervision large": 31697, "requires extensive": 28251, "errors using": 9729, "parameters family": 24244, "unleash potential": 34389, "base llms": 3122, "resources especially": 28434, "application multimodal": 2137, "comprehensive literature": 5385, "framework utilizing": 11905, "researchers conducted": 28372, "model findings": 20522, "models verifiable": 22113, "test accuracy": 32759, "common code": 5004, "despite significant": 7812, "implicit human": 14176, "addition present": 1244, "tasks proposed": 32463, "mt0 bloomz": 22253, "introduce extensive": 15507, "conduct detailed": 5597, "safety models": 29053, "capable solving": 4120, "thousands tokens": 33086, "training example": 33515, "llms common": 18473, "process generate": 26061, "execution evaluation": 10199, "design decisions": 7701, "understand factors": 34190, "framework evaluating": 11851, "training checkpoints": 33447, "cognitive bias": 4876, "cognitive biases": 4877, "biases llms": 3678, "varying effects": 35174, "bias mitigation": 3656, "proficient understanding": 26186, "understanding static": 34271, "lvlms suffer": 19338, "lvlms generate": 19336, "propose structured": 26570, "potential hallucination": 25257, "hallucination problems": 13382, "chatgpt vs": 4498, "stack overflow": 30855, "meta released": 19859, "study analyzing": 31300, "long term": 19184, "understand llms": 34195, "challenge human": 4314, "multiple large": 22398, "llms openais": 18829, "reallife applications": 27325, "methods dataset": 20017, "dataset 200": 6933, "better represent": 3624, "robust optimization": 28937, "llms witnessed": 19047, "llms face": 18598, "leading insufficient": 17477, "data point": 6796, "data apply": 6599, "llama 27b": 18061, "instructionbased prompting": 15216, "automatic summarization": 2897, "techniques address": 32626, "grand challenge": 13212, "various transformer": 35156, "significant increase": 29993, "exhibits notable": 10248, "problems varying": 26035, "mitigating hallucinations": 20263, "address hallucinations": 1329, "annotations work": 2033, "factuality generated": 10891, "additionally design": 1279, "algorithm proposed": 1712, "approach substantially": 2341, "substantially enhances": 31480, "accuracy llama": 894, "recently demonstrated": 27589, "drug discovery": 8748, "discovery process": 8276, "early results": 8780, "task provide": 32183, "allow efficient": 1801, "perception ability": 24462, "lays solid": 17458, "llmbased evaluation": 18387, "llm chatbots": 18280, "testing dataset": 32802, "gpt4 evaluation": 13073, "evaluation compared": 9930, "evaluation demonstrated": 9939, "evaluation llm": 9969, "validation future": 35005, "shown immense": 29885, "current largescale": 6506, "use opensource": 34558, "permissively licensed": 24866, "trained subset": 33429, "contexts adapting": 5936, "quantization model": 27010, "approaches results": 2392, "multilingual generalization": 22308, "domain datasets": 8560, "study address": 31294, "function calling": 11961, "increasingly prevalent": 14643, "13b parameter": 130, "llms basic": 18445, "llms inspired": 18722, "multiple programming": 22410, "accuracy numerical": 900, "relying solely": 27980, "language result": 16820, "suboptimal solutions": 31442, "overlook potential": 23945, "compared best": 5124, "finegrained annotations": 11269, "evaluating persona": 9911, "significant persona": 30007, "transformer attention": 33705, "predict correctness": 25406, "accurately detect": 933, "incorrect reasoning": 14588, "downstream accuracy": 8672, "models input": 21398, "accuracy llama2": 895, "llms wide": 19044, "prompting involves": 26380, "complex problem": 5282, "framework problem": 11890, "types evaluate": 34060, "data better": 6625, "language summaries": 16827, "instance level": 15109, "deployment hindered": 7647, "broader research": 3892, "specifically introduce": 30746, "128k context": 103, "gpt4 claude2": 13064, "inputs 100k": 15041, "scales llms": 29157, "potential superiority": 25300, "processing compared": 26098, "llama7b achieves": 18231, "humanannotated preference": 13886, "important problem": 14207, "use contrastive": 34521, "multimodal context": 22338, "features llms": 11034, "approaches bring": 2369, "llms numerous": 18821, "numerous new": 23187, "comparison gpt4": 5196, "different independent": 8082, "turbo gpt4": 34024, "ability accurately": 651, "models par": 21799, "shows opensource": 29931, "selection instruction": 29390, "emerges pivotal": 9187, "acquiring highquality": 1124, "unexplored research": 34302, "approaches llms": 2382, "approach inspired": 2300, "inspired observation": 15096, "challenging instructions": 4385, "evaluate difficulty": 9827, "challenging samples": 4396, "samples achieve": 29072, "generation explore": 12501, "respectively demonstrating": 28458, "lms demonstrate": 19079, "interactions increasingly": 15389, "using online": 34862, "generation enhance": 12491, "tuning llama2": 33993, "problem results": 26009, "lack indepth": 15993, "gpt4 largely": 13087, "various realworld": 35137, "billionscale llms": 3730, "challenges computational": 4338, "inference capabilities": 14763, "including roberta": 14517, "learning previous": 17632, "new annotation": 22775, "extra inference": 10739, "largescale experiments": 17352, "accuracy different": 868, "nonexistent objects": 22996, "popular mllms": 25128, "surprisingly simple": 31768, "answering openended": 2068, "introduce comprehensive": 15500, "8times faster": 586, "benchmark 15": 3350, "counterfactual examples": 6297, "examples propose": 10142, "particular identify": 24338, "capable text": 4121, "raising possibility": 27173, "llama demonstrated": 18091, "critical issue": 6388, "alignment study": 1780, "primarily focuses": 25911, "ai outputs": 1613, "expertise various": 10516, "llms generation": 18638, "advanced capabilities": 1422, "alignment algorithms": 1752, "align closely": 1725, "substantial potential": 31474, "multidocument question": 22277, "models type": 22087, "large visual": 17297, "medical imaging": 19769, "llms taken": 18990, "taken spotlight": 32026, "spotlight natural": 30822, "processing integrating": 26102, "vision enables": 35295, "users explore": 34687, "explore emergent": 10584, "vlms llava": 35378, "llava flamingo": 18243, "clip demonstrated": 4664, "various visiolinguistic": 35158, "visiolinguistic tasks": 35287, "consequently enormous": 5696, "enormous applications": 9586, "lack related": 15999, "better overall": 3613, "surged popularity": 31731, "performance visionlanguage": 24812, "essential component": 9757, "benchmark incorporating": 3393, "analysis spans": 1967, "various visionlanguage": 35162, "prediction uncertainty": 25439, "estimation approach": 9787, "models uncertainty": 22090, "importance measuring": 14188, "visual hallucinations": 35332, "hallucinations multimodal": 13397, "visual hallucination": 35331, "details image": 7845, "propose tool": 26576, "collect benchmark": 4912, "believe new": 3340, "hugging faces": 13785, "models huggingface": 21361, "size needed": 30265, "help avoid": 13503, "errors additionally": 9721, "multiple model": 22401, "following key": 11693, "pass1 metric": 24375, "tasks consider": 32279, "recover performance": 27667, "summary work": 31633, "approaches successfully": 2397, "steps model": 31059, "employs llms": 9263, "nonexpert individuals": 22998, "optimal hyperparameters": 23613, "key components": 15758, "datacentric approach": 6923, "resources provide": 28443, "provide explanations": 26698, "effect training": 8857, "data effectively": 6687, "reduces hallucinations": 27735, "automatic hallucination": 2883, "write code": 35846, "code large": 4770, "way large": 35440, "code instead": 4768, "using code": 34752, "feedback based": 11057, "humans finally": 13923, "introducing additional": 15550, "information results": 14907, "showcase effectiveness": 29836, "llama27bbased model": 18213, "llama270b model": 18202, "capabilities lvlms": 4043, "lvlms propose": 19337, "lower 50": 19283, "largely attributed": 17307, "work reveals": 35775, "stateoftheart lvlms": 30951, "propose multiple": 26533, "protein sequence": 26660, "high training": 13586, "growing trend": 13318, "limited research": 17961, "interactions centered": 15388, "opensource datasets": 23498, "finetuning enhance": 11395, "modeling domainspecific": 20890, "corpora given": 6166, "given rise": 12768, "papers primarily": 24148, "trained huge": 33402, "trillion parameters": 33905, "importantly model": 14218, "training compute": 33455, "analyze data": 1990, "constructed dataset": 5807, "strongest model": 31205, "code llm": 4776, "encounter difficulties": 9393, "provided data": 26738, "services context": 29660, "llms play": 18853, "jointly trains": 15716, "designed overcome": 7738, "demand computational": 7410, "ability leverage": 695, "efficient knowledge": 9042, "process translate": 26087, "llm process": 18351, "insight demonstrate": 15065, "challenges effectively": 4340, "novel perspective": 23103, "parameters generate": 24251, "advantages incontext": 1505, "internal mechanisms": 15438, "mechanisms models": 19754, "strongly biased": 31207, "llms learning": 18751, "task adaptation": 32074, "models users": 22100, "private data": 25958, "existing instruction": 10276, "text task": 32955, "reduces average": 27732, "capabilities paper": 4059, "generates token": 12405, "llms findings": 18608, "study offers": 31370, "llms contributing": 18493, "finegrained control": 11271, "user needs": 34662, "applications address": 2140, "method adopted": 19873, "enjoys better": 9579, "control llm": 6053, "llm generation": 18317, "tradeoff helpfulness": 33335, "redteaming large": 27695, "llm generates": 18315, "llms relying": 18903, "effective test": 8899, "connection problem": 5685, "coverage test": 6319, "toxic outputs": 33312, "relation hallucination": 27866, "standard instruction": 30877, "data addition": 6593, "inputs example": 15046, "vision transformers": 35310, "abilities solving": 641, "document paper": 8505, "enables llm": 9302, "iteratively refines": 15692, "quality finetuning": 26961, "ensemble method": 9597, "emerging large": 9193, "data varying": 6907, "considering diverse": 5724, "develop ensemble": 7916, "iteratively learn": 15691, "predict final": 25407, "theoretically optimal": 33053, "dataset method": 7010, "clickthrough rate": 4651, "diverse users": 8472, "key aspects": 15754, "propose targeted": 26571, "captioning address": 4136, "mllms recently": 20299, "immense popularity": 14114, "various ways": 35163, "like data": 17859, "novel data": 23070, "rigorous quality": 28884, "models ablation": 20935, "datasets annotated": 7065, "learn follow": 17506, "extraction datasets": 10765, "samples training": 29088, "performance surpasses": 24775, "data llm": 6758, "standardized benchmark": 30887, "scaling instruction": 29163, "scalable method": 29126, "inspired cognitive": 15094, "problem perspective": 26001, "combination low": 4951, "effectively mitigate": 8924, "term new": 32731, "importantly training": 14219, "20 training": 215, "legal documents": 17695, "domain furthermore": 8565, "finetuning paradigm": 11469, "selecting best": 29386, "open challenge": 23385, "selection approach": 29389, "approach avoids": 2241, "capabilities enabling": 4012, "leveraging taskspecific": 17795, "taskspecific demonstrations": 32561, "taskspecific examples": 32562, "resource requirements": 28415, "resourceefficient manner": 28425, "recommendation reasoning": 27650, "tasks respectively": 32487, "tasks tasks": 32522, "conduct empirical": 5598, "aforementioned models": 1553, "suggest potential": 31577, "study provide": 31384, "specialized applications": 30665, "yi model": 35906, "context models": 5902, "models deliver": 21130, "platforms like": 25011, "efforts pretraining": 9092, "data deduplication": 6670, "given current": 12745, "common language": 5008, "impressive accuracy": 14230, "capabilities notably": 4054, "sft data": 29758, "reliability generating": 27950, "scarcity publicly": 29195, "real data": 27310, "twostep approach": 34049, "cause analysis": 4253, "approach use": 2350, "ablation experiments": 734, "unified information": 34329, "slight decrease": 30321, "designed realworld": 7742, "understanding applications": 34209, "relatively low": 27889, "stateoftheart competitive": 30926, "accuracy scores": 911, "method offers": 19950, "offers valuable": 23317, "guiding future": 13359, "preprocessed dataset": 25504, "finetuned opensource": 11348, "using quantitative": 34894, "length limited": 17708, "address unique": 1359, "text lengths": 32909, "systems crucial": 31891, "based importance": 3174, "seamlessly integrate": 29304, "performance reducing": 24735, "computational time": 5483, "improvement generating": 14339, "parameter opensource": 24193, "adapting plms": 1214, "restricting use": 28534, "llama llava": 18122, "llms low": 18786, "perform data": 24482, "attention computation": 2715, "suggesting need": 31583, "designed optimize": 7737, "optimize computational": 23641, "patterns early": 24409, "early layers": 8778, "7bparameter model": 547, "model maintaining": 20633, "knowledge relevant": 15901, "certain scenarios": 4279, "llm makes": 18337, "llm achieving": 18263, "deployment large": 7651, "variety different": 35058, "models vllms": 22120, "everyday objects": 10057, "gemini llama2": 12139, "mistral models": 20234, "using newly": 34858, "collected corpus": 4920, "prompt work": 26357, "increased performance": 14611, "majority existing": 19447, "respectively experiments": 28459, "75 compared": 516, "scalable data": 29124, "training trajectories": 33639, "challenges complexity": 4337, "complexity finetuning": 5302, "data bridge": 6629, "dataset performance": 7020, "stateoftheart data": 30928, "50k data": 428, "accuracy challenging": 863, "al 2023b": 1692, "cost data": 6243, "algorithms language": 1719, "alignment phase": 1776, "strategy automatically": 31114, "ability execute": 664, "multiple sequential": 22418, "instructions existing": 15251, "response introduce": 28478, "dataset million": 7011, "using attention": 34734, "data engineering": 6691, "model attains": 20378, "run single": 29013, "single v100": 30229, "enabling llms": 9324, "llms traditional": 19005, "representation llms": 28144, "chatgpt35 tasks": 4502, "present generative": 25534, "consists components": 5762, "parallel training": 24172, "generation strategies": 12604, "novel solution": 23109, "access sensitive": 826, "challenge study": 4329, "llm create": 18284, "chainofthought approach": 4296, "llms question": 18883, "transfer llms": 33678, "comprehensive list": 5384, "vision foundation": 35300, "models combine": 21063, "models facilitating": 21256, "key features": 15767, "llm approach": 18269, "notably model": 23031, "4bit quantization": 413, "lora achieves": 19226, "tasks demonstrates": 32289, "adaptation capabilities": 1175, "easily available": 8793, "openais gpt35": 23445, "linguistic diversity": 18011, "settings original": 29740, "demonstrates substantial": 7575, "llama2 various": 18195, "greatly improves": 13272, "series empirical": 29634, "using 75": 34725, "important safetycritical": 14211, "safetycritical domains": 29056, "framework evaluate": 11850, "believe contributions": 3339, "peoples lives": 24453, "knowledge specifically": 15910, "27 billion": 282, "performing specific": 24838, "opening new": 23467, "llms mistral": 18800, "confidence accuracy": 5649, "recent ai": 27509, "progress achieving": 26207, "llms variety": 19033, "incorrect responses": 14589, "llama llms": 18123, "comprehend meaning": 5336, "effectively capture": 8914, "builds small": 3929, "design contrastive": 7700, "datasets proposed": 7162, "rtx 2080": 29000, "compared llava": 5146, "model shown": 20780, "proficiency generating": 26181, "highlights efficacy": 13651, "content various": 5876, "domain llm": 8573, "indicate flant5": 14688, "3b parameter": 366, "parameter llm": 24187, "llm embedding": 18295, "realm large": 27329, "significant expenses": 29981, "presents set": 25594, "set challenges": 29675, "dataset additionally": 6937, "text format": 32860, "finetuning previous": 11493, "importance using": 14194, "smaller sets": 30396, "method text": 19980, "machinegenerated texts": 19372, "methods tend": 20101, "lack explainability": 15988, "providing comprehensive": 26772, "criteria experimental": 6377, "achieving significant": 1100, "basis large": 3285, "recent explorations": 27520, "ratio high": 27275, "components image": 5312, "inference computation": 14765, "efficiently trained": 9075, "automatically produces": 2922, "produces diverse": 26160, "prompts resulting": 26438, "experiments involve": 10452, "corpus improve": 6184, "llama leveraging": 18119, "poses major": 25170, "risk assessment": 28893, "specific dataset": 30686, "key contributions": 15759, "deploying solutions": 7644, "generating effective": 12420, "designing data": 7752, "opensourced large": 23552, "llms crucial": 18500, "reasoning significantly": 27451, "distribution pretraining": 8395, "hallucinations based": 13388, "instructions technique": 15275, "focusing tasks": 11673, "tasks performed": 32450, "generalpurpose llm": 12254, "mllm benchmarks": 20293, "exploring state": 10622, "mechanism transformer": 19752, "transformer structure": 33740, "quadratic complexity": 26927, "fast inference": 10994, "linear scaling": 17997, "temporal dynamics": 32696, "winning recipe": 35617, "increasingly ubiquitous": 14646, "achieve propose": 979, "cot prompts": 6282, "exhibit enhanced": 10216, "addition conduct": 1237, "freeze parameters": 11918, "parameters llm": 24270, "achieved success": 1020, "novel blackbox": 23065, "model efficient": 20482, "wellknown transformer": 35527, "basic models": 3283, "faster speed": 11002, "hope proposed": 13755, "work step": 35788, "preserving model": 25609, "training diverse": 33501, "complex models": 5279, "assessing performance": 2613, "size similar": 30284, "bias analysis": 3642, "efficient large": 9043, "number input": 23145, "similar prior": 30114, "reduction approach": 27762, "model traditional": 20832, "provide important": 26706, "models field": 21268, "experiments prove": 10469, "llms opened": 18830, "performance representative": 24737, "data long": 6760, "insights propose": 15082, "appropriate prompts": 2406, "framework adapt": 11825, "considering high": 5725, "capture common": 4145, "adjust attention": 1390, "llms makes": 18792, "generated llm": 12372, "specific case": 30684, "providing flexibility": 26773, "social network": 30428, "content paper": 5867, "observe certain": 23226, "alignment generation": 1760, "right wrong": 28881, "llama fail": 18097, "degree language": 7387, "responses student": 28513, "repetitive tasks": 28095, "generative transformers": 12712, "nlp transformerbased": 22966, "models deal": 21125, "models context": 21104, "format accuracy": 11754, "compared widely": 5182, "combination finetuning": 4949, "answer directly": 2043, "new solutions": 22844, "generating captions": 12412, "performance widely": 24816, "systems usually": 31928, "performance previous": 24720, "recently witnessed": 27627, "methods significant": 20093, "automatic human evaluations": 2886, "sequence generation tasks": 29598, "large neural models": 17250, "mainly natural language": 19406, "efficacy pretrained checkpoints": 8990, "bert gpt2 roberta": 3511, "conducted extensive empirical": 5636, "extensive empirical study": 10684, "transformerbased models gpt2": 33763, "models gpt2 demonstrated": 21325, "language models automated": 16253, "contextualized word representations": 5964, "language models make": 16615, "general domain data": 12161, "automatic human evaluation": 2885, "language models existing": 16332, "require extensive human": 28215, "downstream nlp tasks": 8683, "wide range applications": 35550, "generation paper propose": 12568, "largescale pretrained models": 17378, "english language model": 9483, "outperforms existing baselines": 23820, "external knowledge bases": 10729, "83 billion parameter": 570, "parameter gpt2 model": 24183, "visual question answering": 35350, "model gpt2 generate": 20555, "stateoftheart text generators": 31000, "achieving impressive performance": 1096, "language paper propose": 16770, "results wide range": 28712, "tasks demonstrate effectiveness": 32287, "language modeling benchmarks": 16216, "language model results": 16198, "models era largescale": 21216, "language generation gpt2": 16084, "quality generated text": 26964, "performs better par": 24844, "better par stateoftheart": 3616, "text generation proposed": 32881, "code facilitate future": 4751, "increase model complexity": 14599, "transformerbased unidirectional language": 33771, "machine learning approaches": 19344, "bert openai gpt2": 3522, "evaluate results using": 9864, "results using rouge": 28703, "generation using pretrained": 12635, "social media provide": 30427, "data paper propose": 6793, "language model automatically": 16121, "improve quality generated": 14291, "finetuning large pretrained": 11433, "language models capture": 16273, "language models largescale": 16410, "models largescale language": 21433, "text various domains": 32964, "simple effective method": 30145, "approach significantly improves": 2338, "language models text": 16730, "text corpus used": 32837, "natural language modeling": 22532, "model generates valid": 20547, "analyze impact different": 1995, "methods require finetuning": 20088, "work investigate use": 35728, "investigate use pretrained": 15599, "language models propose": 16670, "data models code": 6778, "gpt2 pretrained model": 12940, "language model new": 16180, "text generation important": 32870, "generative models suffer": 12679, "generation models based": 12553, "models based gpt2": 21008, "based gpt2 model": 3169, "paper present new": 24090, "data augmentation finetuning": 6608, "text generation language": 32871, "human preferences results": 13857, "recently deep generative": 27588, "propose novel model": 26552, "generation challenging task": 12471, "largescale language model": 17359, "metrics human evaluation": 20140, "generate semantically correct": 12322, "human evaluation study": 13809, "achieve better results": 949, "paper propose unsupervised": 24118, "current stateoftheart models": 6536, "language model evaluate": 16137, "generation models generate": 12554, "generation model gpt2": 12551, "transformer architectures models": 33704, "generate natural language": 12305, "natural language captions": 22509, "adapt language model": 1165, "paper presents novel": 24103, "presents novel approach": 25589, "unidirectional language models": 34322, "artificially generated texts": 2543, "paper explore use": 24048, "generative model gpt2": 12673, "evaluation results method": 10002, "results method achieves": 28644, "models text generation": 22058, "models generated text": 21312, "mental health support": 19841, "recent studies shown": 27556, "human evaluation demonstrate": 13806, "architecture language modeling": 2446, "conditional text generation": 5572, "improving language understanding": 14412, "data finetuned gpt2": 6714, "lack training data": 16007, "generative pretraining gpt2": 12702, "significantly outperforms baselines": 30075, "address issues introduce": 1337, "large pretrained transformer": 17268, "provided natural language": 26742, "bias language models": 3649, "language models predicting": 16659, "long document summarization": 19171, "low resource setting": 19276, "problem proposing novel": 26007, "experiments various datasets": 10499, "datasets natural language": 7153, "models including bert": 21379, "including bert roberta": 14462, "bert roberta t5": 3532, "tasks main categories": 32411, "model sizes data": 20797, "best performance single": 3569, "results experimental results": 28609, "experimental results proposed": 10405, "results proposed approach": 28660, "benchmark natural language": 3403, "recently increasing number": 27602, "unified evaluation framework": 34326, "language models identify": 16380, "offtheshelf language models": 23328, "adopt curriculum learning": 1402, "effectiveness proposed method": 8965, "work pave way": 35743, "contextual word representations": 5957, "generation results indicate": 12597, "text training data": 32958, "training data code": 33470, "data code data": 6635, "stateoftheart results wide": 30990, "language modeling objectives": 16223, "larger model sizes": 17329, "language models experiments": 16334, "model answer questions": 20367, "models perform poorly": 21810, "language representation models": 16818, "using gpt2 model": 34790, "gpt2 model finetuned": 12918, "results showed finetuned": 28679, "showed finetuned model": 29857, "social biases study": 30419, "text generation methods": 32875, "propose new framework": 26538, "obtain better performance": 23248, "existing approaches rely": 10262, "transformer t5 model": 33742, "evaluation benchmarks method": 9927, "language models use": 16742, "overall results suggest": 23914, "transformers bert generative": 33778, "lms different architectures": 19083, "language models t5": 16725, "offensive toxic responses": 23285, "generation experimental results": 12497, "dataset demonstrate proposed": 6970, "approach significantly outperforms": 2339, "processing nlp recently": 26118, "use language models": 34541, "use transformer architecture": 34579, "experiments conducted benchmark": 10427, "downstream natural language": 8679, "shown promising performance": 29908, "deployment language models": 7650, "results language models": 28636, "language models significantly": 16705, "results proposed method": 28661, "models gpt3 t5": 21328, "general nlp tasks": 12181, "method achieves better": 19869, "comprehensive ablation studies": 5352, "knowledge distillation kd": 15832, "models propose novel": 21868, "does require finetuning": 8539, "text paper propose": 32915, "conducted extensive experiments": 5638, "address challenge paper": 1310, "pretraining language model": 25806, "method improves performance": 19931, "demonstrate model achieves": 7475, "model improves performance": 20575, "performance response generation": 24741, "widely adopted transformer": 35570, "simple effective approach": 30144, "prompt based method": 26309, "like bert gpt2": 17848, "gpt2 language modeling": 12910, "learning approach jointly": 17537, "address issue introduce": 1332, "training small number": 33617, "dialogue systems recent": 8021, "achieving stateoftheart performance": 1107, "stateoftheart performance various": 30976, "tasks finetuning pretrained": 32339, "language models used": 16743, "pretrained models finetuning": 25724, "pretrained transformer model": 25765, "different data sets": 8065, "performance variety tasks": 24796, "larger models compared": 17332, "model models trained": 20646, "number training data": 23170, "number trainable parameters": 23168, "achieves comparable better": 1037, "fewer trainable parameters": 11093, "provide useful insights": 26733, "visual textual modalities": 35358, "work shown large": 35782, "shown large language": 29894, "providing natural language": 26777, "improving task performance": 14424, "430 percentage points": 391, "contextualizing language models": 5967, "models despite success": 21148, "models pretrained natural": 21846, "pretrained natural language": 25736, "natural language data": 22511, "generate highquality short": 12286, "text generation propose": 32880, "test set best": 32785, "set best model": 29673, "based pretrained language": 3209, "models plms gpt2": 21821, "labeled training data": 15959, "training data lowresource": 33481, "decoderonly language model": 7256, "state art performance": 30909, "ability pretrained language": 713, "natural language prompts": 22561, "training data directly": 33474, "approach outperforms stateoftheart": 2324, "remains open question": 28007, "small set parameters": 30368, "way introduce new": 35439, "study propose novel": 31382, "language generation need": 16087, "generation need training": 12562, "overall quality generated": 23912, "language model similar": 16201, "spectrum natural language": 30773, "structured knowledge llms": 31224, "exact match score": 10090, "training data makes": 33482, "models deep language": 21127, "latent diffusion models": 17407, "model trained using": 20838, "models increasingly popular": 21392, "stateoftheart natural language": 30963, "generation models including": 12555, "language models prior": 16664, "various text generation": 35154, "available open source": 2993, "llms produce impressive": 18872, "language models offer": 16637, "area natural language": 2479, "ordinary differential equations": 23687, "large number trainable": 17255, "address limitations propose": 1346, "achieve stateoftheart results": 992, "domain pretrained language": 8584, "language models limited": 16420, "competitive performance zeroshot": 5228, "train large language": 33365, "models bert roberta": 21019, "pretrained models clip": 25721, "active research area": 1147, "llms requires expensive": 18912, "benchmark datasets using": 3374, "previous work shown": 25894, "size language models": 30254, "machine translation task": 19367, "50 fewer parameters": 422, "models achieved impressive": 20949, "huge model size": 13780, "language modeling capabilities": 16217, "generalization downstream tasks": 12212, "strong zeroshot performance": 31195, "pretrained language modelbased": 25663, "models propose new": 21866, "propose new paradigm": 26541, "knowledgeintensive nlp tasks": 15931, "zeroshot capabilities large": 35955, "evaluate performance models": 9857, "language model families": 16140, "benchmark dataset results": 3372, "language models detect": 16307, "machine translation systems": 19366, "little attention paper": 18050, "paper make attempt": 24078, "models paper introduce": 21793, "generation extensive experiments": 12504, "future research code": 12043, "future research field": 12047, "language models code": 16278, "tasks code generation": 32266, "code generation tasks": 4764, "generation tasks pretrained": 12616, "aligned human values": 1738, "nlp classification tasks": 22925, "evaluation human evaluation": 9960, "achieves superior results": 1078, "performance proposed model": 24725, "address shortcomings propose": 1358, "compared model finetuned": 5150, "using single nvidia": 34914, "prompt tuning prompt": 26353, "tuning prompt tuning": 34010, "training data prompt": 33488, "consistently outperforms existing": 5756, "outperforms existing models": 23821, "text autoregressive language": 32820, "languages experimental results": 16873, "significantly outperforms previous": 30078, "diverse set multimodal": 8460, "image captioning visual": 14058, "diffusion language model": 8182, "models work present": 22135, "language models generalize": 16357, "perform various tasks": 24508, "incontext learning performance": 14565, "propose reinforcement learning": 26562, "lack domain knowledge": 15985, "demonstrated superior performance": 7552, "original training data": 23724, "training data specifically": 33491, "data specifically propose": 6879, "language models knowledge": 16397, "models ranging 1b": 21890, "model families including": 20514, "language model propose": 16193, "reasoning capabilities smaller": 27389, "proved effective inducing": 26670, "abilities smaller models": 640, "models exhibit emergent": 21226, "shown impressive performance": 29888, "bert roberta bart": 3528, "models wide range": 22128, "achieving state art": 1105, "reasoning capabilities models": 27388, "arithmetic commonsense symbolic": 2501, "commonsense symbolic reasoning": 5045, "approach text generation": 2348, "comparable performance finetuned": 5086, "transformers large language": 33789, "models exhibit strong": 21228, "models plms t5": 21822, "large publicly available": 17273, "speech language models": 30783, "crossmodal representation alignment": 6425, "models trained public": 22071, "scale large language": 29138, "language model human": 16154, "results shed light": 28676, "language model instruction": 16157, "work shown finetuning": 35780, "shown finetuning large": 29878, "evaluation framework measure": 9952, "language model specifically": 16204, "gpt2 model pretrained": 12921, "massive text data": 19632, "recent years tasks": 27583, "models specific tasks": 21999, "outperform larger language": 23777, "language models learning": 16414, "conduct comprehensive ablation": 5590, "automatic quantitative evaluation": 2893, "similar large language": 30107, "language model fewshot": 16142, "shown excellent performance": 29874, "perform complex reasoning": 24477, "publicly available data": 26852, "generative pretrained models": 12691, "paper present comprehensive": 24088, "conduct thorough evaluation": 5627, "models existing works": 21232, "using constrained decoding": 34757, "clinical language models": 4660, "tasks remains unclear": 32481, "amazon mechanical turk": 1870, "large models like": 17236, "question answering vqa": 27061, "model based transformer": 20390, "models lms increasingly": 21674, "paving way future": 24422, "results proposed model": 28662, "demonstrate effectiveness proposed": 7449, "different target language": 8147, "models llms gpt35": 21546, "emerged promising approach": 9165, "outperforms stateoftheart methods": 23854, "work propose simple": 35759, "visual input experiments": 35335, "language model reward": 16199, "end propose novel": 9418, "models llms popular": 21601, "model code available": 20422, "using pretrained models": 34881, "different pretrained models": 8124, "recent proliferation large": 27546, "model works phases": 20873, "works phases phase": 35820, "policy optimization algorithm": 25087, "outperforms stateoftheart supervised": 23856, "gpt3 despite having": 12991, "efficient finetuning language": 9035, "llama 7b model": 18069, "sequence generation task": 29597, "extensive experimental evaluation": 10689, "approximation fisher information": 2420, "fisher information matrix": 11570, "success heavily relies": 31512, "models data released": 21122, "nlp tasks including": 22953, "approaches used training": 2401, "zero fewshot scenarios": 35942, "chatgpt gpt4 demonstrated": 4480, "knowledge work focus": 15921, "provide detailed analysis": 26694, "shown highly effective": 29884, "opt language model": 23595, "address issues present": 1338, "stateoftheart performance challenging": 30971, "opens new avenues": 23479, "used language model": 34607, "tasks prompt learning": 32460, "textual information news": 33031, "gptj llama models": 13149, "gpt2 models finetuned": 12926, "visual instruction tuning": 35340, "instruction tuning instruction": 15194, "tuning instruction tuning": 33984, "models llms using": 21658, "llms using machinegenerated": 19027, "using machinegenerated instructionfollowing": 34834, "zeroshot capabilities new": 35958, "capabilities new tasks": 4053, "paper present attempt": 24086, "present attempt use": 25513, "revolutionizing natural language": 28855, "models ability generate": 20934, "code model checkpoints": 4780, "code pretrained model": 4798, "foundation models fms": 11799, "transformers language models": 33787, "models llms showcased": 21627, "llms showcased remarkable": 18937, "model specifically designed": 20806, "alignment domainspecific instructions": 1757, "code models available": 4787, "based language models": 3184, "align large language": 1729, "remarkable performance diverse": 28045, "performance diverse domains": 24570, "simple highly effective": 30153, "output large language": 23870, "models llms human": 21558, "address challenges propose": 1316, "challenges propose novel": 4372, "vicuna large language": 35251, "problems paper propose": 26031, "additionally conduct comprehensive": 1276, "range nlp tasks": 27206, "llms demonstrated significant": 18525, "does require additional": 8538, "visual language models": 35343, "llms compared previous": 18476, "language model named": 16179, "instruction tuning make": 15202, "extensive experiments tasks": 10703, "existing pretrained language": 10309, "encoder visionlanguage models": 9359, "visionlanguage models vlms": 35323, "large visionlanguage models": 17292, "hundreds millions parameters": 13946, "introduce new paradigm": 15521, "task automatically generating": 32084, "substantial improvements compared": 31468, "models llms focusing": 21533, "open pretrained transformers": 23413, "pretrained transformers opt": 25773, "models finetuning pretrained": 21284, "task misinformation detection": 32157, "demonstrate efficiency effectiveness": 7453, "requires model learn": 28258, "llms chatgpt openai": 18467, "parameterefficient finetuning techniques": 24212, "using roberta t5": 34905, "make attempt investigate": 19452, "benchmarks demonstrate effectiveness": 3435, "extensive ablation studies": 10676, "llms human values": 18680, "capabilities work propose": 4085, "models reasoning capabilities": 21900, "terms zeroshot task": 32754, "zero fewshot prompting": 35940, "language models detecting": 16308, "detecting factual errors": 7856, "models llms explore": 21529, "incontext learning incontext": 14558, "learning incontext learning": 17587, "remains underexplored paper": 28019, "data used finetune": 6902, "alpaca experimental results": 1829, "language models scaling": 16699, "wide range topics": 35564, "llms significantly enhanced": 18950, "enhanced performance fewshot": 9536, "performs poorly context": 24853, "achieves performance levels": 1057, "compared previous stateoftheart": 5164, "models transformerbased pretrained": 22084, "bert gpt2 t5": 3512, "nlp tasks shown": 22963, "study provides valuable": 31386, "observed finetuned models": 23237, "decoderonly large language": 7258, "lower computational cost": 19286, "significant room improvement": 30025, "incontext learning performs": 14566, "models finetuned english": 21275, "human llm evaluations": 13843, "evaluating performance llms": 9910, "tasks demonstrate superiority": 32288, "end introduce new": 9413, "demonstrate competitive performance": 7442, "extremescale language models": 10806, "demonstrated exceptional performance": 7522, "language model efficiency": 16135, "gpt35 achieve similar": 13016, "different levels complexity": 8093, "abilities various domains": 647, "quality generated content": 26963, "paper study task": 24138, "language models visual": 16750, "perform complex tasks": 24478, "language models vicuna": 16748, "modern pretrained language": 22170, "social media data": 30424, "impact model performance": 14132, "widespread use language": 35598, "backpack language model": 3066, "results human evaluation": 28624, "code model data": 4781, "building better base": 3920, "better base models": 3593, "multitask learning approach": 22451, "information large language": 14878, "chatgpt gpt4 llama": 4481, "augmenting large language": 2826, "llms llama opt": 18772, "llms use tools": 19021, "model llm finetuned": 20622, "models lms typically": 21682, "llms gpt llama2": 18646, "based observations propose": 3205, "transfer learning approach": 33677, "recently shown promising": 27625, "instructiontuning language models": 15306, "based observation propose": 3203, "training data despite": 33473, "paper investigates effectiveness": 24073, "llms gpt4 gpt35": 18655, "language models prompt": 16668, "examples paper propose": 10140, "using parameterefficient finetuning": 34870, "unlike previous works": 34399, "models llms difficult": 21513, "truthfulness large language": 33941, "number attention heads": 23140, "models achieve higher": 20945, "natural language model": 22531, "humans language models": 13926, "trained llama 7b": 33408, "models evaluated human": 21220, "instruction tuning language": 15196, "models demonstrated ability": 21135, "settings findings reveal": 29735, "training data results": 33490, "largescale neural networks": 17370, "like large language": 17880, "models llms work": 21666, "models foundation models": 21294, "remains largely unexplored": 28003, "generated text findings": 12393, "model additional training": 20358, "binary classification tasks": 3733, "llms finetuning process": 18614, "domain large language": 8572, "llms including opensource": 18705, "instruction tuning approach": 15187, "general language models": 12173, "address challenges paper": 1315, "based gpt2 architecture": 3168, "tokens using novel": 33252, "investigate ability pretrained": 15572, "domains computer vision": 8616, "acquire general knowledge": 1117, "direction future research": 8225, "abstract meaning representation": 771, "meaning representation amr": 19722, "given text current": 12777, "data release code": 6832, "unlike previous work": 34398, "pretrained model better": 25713, "model extensive experiments": 20507, "transformer gpt models": 33719, "gpt3 gpt35 gpt4": 12997, "performance standard benchmarks": 24766, "achieve competitive results": 956, "domain recent advancements": 8588, "recent advancements language": 27491, "models lms led": 21675, "exceptional capabilities wide": 10168, "capabilities wide range": 4083, "based extensive experiments": 3158, "introduce simple effective": 15533, "remains relatively unexplored": 28011, "unexplored paper presents": 34301, "models llms based": 21484, "data paper present": 6792, "generate large number": 12300, "llms future research": 18624, "method does require": 19904, "compared supervised methods": 5176, "language models address": 16242, "finetuning peft techniques": 11477, "language models proposed": 16671, "integration large language": 15341, "textbased large language": 32974, "language models method": 16621, "demonstrate significant improvement": 7493, "language model multimodal": 16178, "curriculum learning strategy": 6549, "assess models performance": 2600, "opensource models llama": 23533, "comparable superior performance": 5093, "openai gpt2 model": 23436, "large lms llms": 17227, "demonstrated remarkable abilities": 7542, "llama open foundation": 18134, "nvidia a100 80gb": 23192, "tasks using various": 32546, "ablation studies investigate": 736, "tasks evaluate stateoftheart": 32317, "biomedical natural language": 3746, "models zero fewshot": 22141, "models better suited": 21024, "comprehensive evaluation multiple": 5373, "flant5 gpt35 gpt4": 11595, "tasks illustrating promising": 32358, "racial gender bias": 27146, "generative visionlanguage models": 12714, "hallucinations large language": 13392, "new benchmark dataset": 22781, "development safer reliable": 7974, "zero shot setting": 35946, "state art natural": 30906, "art natural language": 2517, "model specifically tuned": 20807, "results indicate models": 28633, "performance various downstream": 24799, "human evaluations finetuned": 13811, "framework training large": 11899, "visionlanguage models introduce": 35316, "language reasoning capabilities": 16813, "different model architectures": 8105, "presents effective approach": 25581, "models llm foundation": 21470, "llm foundation models": 18310, "models emergent capabilities": 21190, "evaluation metrics measure": 9976, "multimodal foundation models": 22343, "distillation large language": 8341, "given unique characteristics": 12782, "outperforms baselines various": 23809, "commercial opensource models": 4995, "datasets extensive evaluation": 7115, "wide range downstream": 35552, "substantial parameter size": 31472, "enhanced reasoning capabilities": 9539, "chainofthought cot prompting": 4298, "models knowledge distillation": 21411, "offering unified solution": 23302, "language models focusing": 16350, "models comprehensively understand": 21080, "models achieve stateoftheart": 20946, "effective prompt design": 8892, "reasoning tasks chainofthought": 27457, "hypothesize large language": 13968, "bert pretrained model": 3524, "accuracy privacy protection": 904, "models identify social": 21368, "language models extract": 16339, "zero fewshot performance": 35939, "zero fewshot settings": 35943, "language models evaluate": 16326, "llms llama models": 18771, "language models systematic": 16723, "points code available": 25072, "conduct set experiments": 5620, "modalities natural language": 20325, "language models reinforced": 16691, "existing opensource models": 10306, "llms substantial margin": 18976, "language models vlms": 16751, "extend large language": 10654, "models llms employed": 21518, "nlp tasks especially": 22952, "models similar scale": 21978, "interactions mental health": 15391, "information retrieval recommend": 14910, "software engineering tasks": 30456, "generated different models": 12353, "potential llms enhancing": 25275, "generate instruction data": 12292, "visionlanguage models lvlms": 35321, "settings zeroshot fewshot": 29747, "language models improves": 16384, "attains stateoftheart performance": 2701, "remains challenging existing": 27994, "context lengths gpt4": 5900, "finetuning prompt engineering": 11497, "visionlanguage models large": 35317, "models large visionlanguage": 21429, "specific domain knowledge": 30689, "question answering reasoning": 27052, "answering reasoning tasks": 2073, "experiments widely used": 10504, "approach achieves stateoftheart": 2229, "pretrained llms llama": 25707, "responses generated models": 28494, "code data public": 4736, "inference process involves": 14801, "enhances performance compared": 9552, "instruction tuning present": 15206, "current state art": 6531, "instructiontuned language models": 15285, "propose mechanism allows": 26527, "light pressing issue": 17832, "conducted experiments using": 5634, "model surpasses performance": 20818, "human preference data": 13854, "results evaluated gpt4": 28605, "shown remarkable capabilities": 29912, "different llms prompt": 8098, "llms gpt35 bard": 18650, "future research area": 12042, "downstream applications reducing": 8674, "language models producing": 16667, "represented training data": 28193, "expensive obtain paper": 10363, "paper address challenge": 24003, "approach yielded exceptional": 2362, "yielded exceptional results": 35916, "progress opensource large": 26224, "enhances model performance": 9548, "study highlights importance": 31339, "instruction tuning improve": 15193, "catastrophic forgetting multimodal": 4215, "forgetting multimodal large": 11734, "language models following": 16353, "catastrophic forgetting mllms": 4214, "image classification tasks": 14062, "llms billions parameters": 18450, "outstanding performance various": 23904, "model architecture design": 20375, "limited context window": 17947, "present novel framework": 25546, "sft training data": 29769, "sizes 7b 13b": 30294, "achieve average improvement": 944, "despite great success": 7781, "opensource llms llama2": 23524, "paper introduces new": 24063, "publicly available dataset": 26853, "training data opensource": 33485, "opensource code model": 23490, "models llms rely": 21615, "knowledge bases large": 15818, "bases large language": 3279, "approach mitigate challenges": 2315, "stateoftheart llms including": 30947, "llms including llama2": 18703, "demonstrate stateoftheart performance": 7498, "performance various multimodal": 24801, "including gpt2 gpt3": 14483, "humans work introduce": 13934, "generalpurpose large language": 12251, "llms paper introduce": 18839, "improve performance llms": 14285, "recent works demonstrated": 27572, "language model aligned": 16116, "offers effective efficient": 23308, "language modeling large": 16218, "address issue paper": 1333, "pretrained vision language": 25776, "context window size": 5928, "models llms requires": 21621, "natural language query": 22563, "data existing methods": 6700, "human effort required": 13803, "exploiting large language": 10560, "code llama code": 4773, "llms shown potential": 18942, "problems propose novel": 26033, "presents significant challenges": 25598, "research demonstrates effectiveness": 28303, "models mbert mt5": 21708, "matches outperforms existing": 19654, "process large language": 26070, "demonstrated remarkable proficiency": 7547, "commonly used benchmarks": 5030, "models realworld scenarios": 21897, "base model llama2": 3127, "pretrained models weights": 25729, "effectiveness wide applicability": 8976, "present new benchmark": 25542, "research paper introduces": 28340, "using small set": 34916, "language model developed": 16133, "opensourced code model": 23550, "generated gpt4 leads": 12363, "novel approach finetuning": 23059, "code pretrained models": 4799, "models llms garnered": 21536, "garnered considerable attention": 12121, "empirical results realworld": 9236, "training fewshot training": 33521, "models offer new": 21766, "code generation prompting": 4763, "code generated llms": 4753, "coding capabilities models": 4867, "generated candidates based": 12345, "poses challenging task": 25169, "designed automatically generate": 7725, "achieves strong performance": 1075, "models stable diffusion": 22008, "given input prompt": 12750, "harnessing large language": 13464, "language model palm": 16183, "generation dialogue systems": 12487, "models existing studies": 21231, "handle longer contexts": 13409, "models like clip": 21452, "tens thousands words": 32720, "touvron et al": 33305, "models llms help": 21554, "paper propose approach": 24107, "range tasks training": 27213, "finetuning opensource llms": 11467, "domains like medicine": 8629, "empirical study pretrained": 9244, "llms match surpass": 18796, "bilingual evaluation understudy": 3711, "reduces memory usage": 27737, "larger batch size": 17317, "techniques fall short": 32639, "a100 gpu hours": 617, "generation using large": 12632, "new framework called": 22806, "safe reinforcement learning": 29031, "presents significant challenge": 25597, "enhancing model performance": 9569, "commercial models chatgpt": 4991, "capabilities open source": 4056, "models llms despite": 21512, "visual recognition tasks": 35354, "does require access": 8537, "models recent work": 21906, "application large language": 2131, "performances various tasks": 24823, "provide public access": 26724, "knowledge distillation large": 15833, "generalization ability outofdistribution": 12207, "chatgpt large language": 4483, "establish strong baseline": 9771, "inject domain knowledge": 14980, "previous research shown": 25876, "code models data": 4788, "llms despite recent": 18533, "tasks results performance": 32490, "large vision language": 17288, "gpt llama families": 12854, "generation training procedure": 12624, "inspired recent success": 15100, "models llms natural": 21589, "lowresource languages bangla": 19314, "language tasks including": 16831, "training data observe": 33484, "al 2023 demonstrated": 1690, "learning icl ability": 17584, "current evaluation metrics": 6490, "news social media": 22886, "remarkable advancements recent": 28029, "advancements recent years": 1476, "humanlike text generation": 13910, "leading suboptimal performance": 17486, "finetuning results showcase": 11513, "wide range nlp": 35560, "significant improvements achieved": 29992, "using carefully curated": 34746, "execute complex instructions": 10192, "models llms combined": 21491, "llms specifically analyze": 18965, "applications various fields": 2183, "llama2 chatgpt gpt4": 18169, "speechbased slot filling": 30793, "various language tasks": 35108, "language tasks paper": 16832, "llms including gpt35turbo": 18696, "including gpt35turbo gpt4": 14488, "recent studies highlighted": 27555, "propose novel training": 26556, "novel training method": 23122, "models new data": 21751, "instruction tuning methods": 15203, "generate instructionfollowing data": 12294, "despite promising performance": 7804, "model llm pretraining": 20625, "models llms enhance": 21520, "llms knowledge distillation": 18735, "baselines zeroshot setting": 3276, "llms led widespread": 18753, "language models prone": 16669, "investigation large language": 15614, "models llms marked": 21583, "llms marked significant": 18794, "downstream tasks importantly": 8695, "text large language": 32904, "language model llmbased": 16172, "finetuning llama 7b": 11440, "finetune large language": 11286, "findings highlight potential": 11236, "models llms utilize": 21661, "programming languages python": 26202, "significantly improve accuracy": 30056, "model types llama": 20847, "ability handle longer": 683, "proprietary models like": 26650, "like chatgpt gpt4": 17854, "modern large language": 22162, "standard datasets models": 30874, "llms downstream applications": 18549, "llama2 7b 13b": 18163, "llms hidden states": 18670, "offers unique perspective": 23315, "enhance computational efficiency": 9510, "recognition ner tasks": 27639, "achieved best results": 1002, "hope work serve": 13759, "pursuit artificial general": 26890, "marked significant milestone": 19595, "language models rely": 16692, "training data work": 33494, "models using large": 22103, "prompting incontext learning": 26378, "strategy experimental results": 31121, "work present novel": 35749, "present novel method": 25547, "captioning visual question": 4139, "performance llms various": 24665, "experiments demonstrate proposed": 10434, "stable diffusion xl": 30850, "extensive experiments validate": 10704, "work introduce new": 35724, "average success rate": 3026, "tasks zeroshot prompting": 32557, "points exact match": 25074, "questionanswering tasks finetuning": 27090, "achieving highest accuracy": 1094, "promising direction enhancing": 26286, "llms gpt4 opensource": 18658, "gpt4 opensource counterparts": 13103, "necessary reproduce results": 22609, "results demonstrate model": 28590, "model natural language": 20653, "visual instruction datasets": 35339, "datasets generated large": 7122, "automatically generating natural": 2917, "frozen large language": 11937, "language model small": 16202, "small number parameters": 30363, "showcasing immense potential": 29851, "symbolic knowledge distillation": 31802, "models compared previous": 21073, "efficient effective method": 9032, "previous stateoftheart methods": 25882, "achieving significantly higher": 1102, "conducted benchmark datasets": 5630, "gpt 35 gpt": 12843, "methods paper presents": 20072, "key metric evaluating": 15777, "language models growing": 16376, "visual language model": 35342, "language model family": 16141, "knowledge language model": 15870, "moving average ema": 22241, "models incorporating external": 21387, "incorporating external knowledge": 14576, "commonly known hallucination": 5027, "relative position encoding": 27883, "pruning large language": 26811, "llms shown impressive": 18941, "state art model": 30905, "model codes available": 20427, "significant potential revolutionize": 30009, "techniques reinforcement learning": 32660, "conduct case study": 5586, "models zeroshot fewshot": 22144, "parameters achieve comparable": 24222, "llms demonstrate impressive": 18510, "impressive incontext learning": 14239, "current instruction tuning": 6494, "degrade model performance": 7380, "model performance address": 20696, "high computational memory": 13559, "achieves sota results": 1069, "marking significant advancement": 19602, "significant performance degradation": 30000, "utilizing external tools": 34971, "llms superior performance": 18983, "model llm output": 20624, "problem multimodal large": 25998, "current multimodal large": 6518, "code generation large": 4756, "language models codellms": 16279, "images experimental results": 14084, "proposed method outperforms": 26607, "models specifically designed": 22001, "language models perspective": 16651, "model aligned human": 20363, "human feedback extensive": 13819, "feedback extensive experiments": 11060, "experimental results chatgpt": 10390, "llms achieved stateoftheart": 18420, "learning multimodal large": 17616, "language model gpt35": 16152, "approach outperforms previous": 2322, "mathematical reasoning ability": 19683, "boosting large language": 3821, "empirical study large": 9241, "models llms significant": 21637, "llms significant advancements": 18948, "previous work focuses": 25893, "using lora method": 34829, "llms chatgpt demonstrated": 18464, "examples incontext learning": 10128, "models llms greatly": 21553, "incontext learning method": 14562, "ability llms generate": 699, "visionlanguage models like": 35320, "tasks face challenges": 32328, "bridge gap work": 3868, "recent development large": 27514, "smaller models flant5": 30389, "code data evaluation": 4730, "supervised finetuning models": 31675, "exhibits stateoftheart performance": 10253, "chainofthought prompting large": 4303, "models method requires": 21720, "models llms offers": 21595, "classification tasks using": 4617, "autoregressive language modeling": 2944, "gpt2 text generation": 12958, "unseen lowresource languages": 34442, "data lowresource languages": 6762, "et al 2023a": 9800, "instruction finetuning llms": 15159, "xu et al": 35885, "large language modelbased": 16988, "evidence support claim": 10065, "different llm architectures": 8095, "various linguistic tasks": 35112, "correlates human judgments": 6217, "exhibits comparable performance": 10245, "capability finetuned models": 4088, "graph language model": 13223, "visionlanguage model vlm": 35314, "approach does require": 2262, "terms bleu score": 32739, "future research application": 12041, "finetuning multimodal large": 11458, "instruction following data": 15164, "various model sizes": 35120, "model sizes notably": 20799, "annotated dataset available": 2019, "biases large language": 3676, "including zeroshot fewshot": 14531, "transforms natural language": 33807, "improve sample efficiency": 14299, "optimization large language": 23629, "language models gained": 16354, "models gained immense": 21301, "importance recent years": 14190, "questions remain unanswered": 27129, "context large language": 5896, "trainable parameters despite": 33381, "models llms dynamic": 21516, "responses generated llms": 28493, "rapid development large": 27248, "generalpurpose ai assistants": 12247, "diminishes attack success": 8204, "attack success rate": 2687, "success rate asr": 31524, "models llms solve": 21641, "llms tend generate": 19001, "using various prompt": 34938, "language model meets": 16174, "language models lvlms": 16613, "consists key steps": 5765, "model finetuning llama": 20535, "language models advanced": 16244, "models llms offer": 21594, "models paper propose": 21797, "results demonstrate superiority": 28596, "impressive capabilities multimodal": 14235, "evaluation pretrained models": 9993, "agents large language": 1571, "language models vs": 16754, "generate relevant accurate": 12318, "finally propose new": 11202, "llms increasingly used": 18713, "increasingly used various": 14648, "performs better using": 24846, "efforts align large": 9085, "propose novel technique": 26554, "novel technique called": 23117, "7b 13b 30b": 526, "incontext learning code": 14552, "code released github": 4807, "attributed key factors": 2761, "operations large language": 23572, "require access models": 28211, "models black box": 21031, "models llms improve": 21561, "potential using llms": 25306, "including chatgpt llama": 14466, "construct new evaluation": 5803, "using advanced large": 34728, "models llms generative": 21541, "better align human": 3588, "llms longer context": 18785, "longer context lengths": 19196, "comprehensive literature review": 5386, "language models verifiable": 16747, "despite significant progress": 7813, "study introduce novel": 31343, "key design decisions": 15761, "visionlanguage models multimodal": 35322, "models llms witnessed": 21665, "models finetuned llama": 21277, "problems varying difficulty": 26036, "mitigating hallucinations llms": 20264, "drug discovery process": 8749, "early results using": 8781, "significantly reduce cost": 30081, "lays solid foundation": 17459, "shown immense potential": 29886, "models llms especially": 21521, "conduct comprehensive evaluation": 5593, "13b parameter models": 131, "performance comparable chatgpt": 24548, "studies shown llms": 31285, "benchmarks demonstrate superiority": 3437, "multiple programming languages": 22411, "programming languages paper": 26201, "achieves comparable superior": 1041, "popular models like": 25130, "improving downstream accuracy": 14408, "llms wide range": 19045, "tasks deployment hindered": 32292, "significant performance drop": 30001, "scaling language models": 29166, "llms long context": 18783, "expensive training costs": 10369, "inputs 100k tokens": 15042, "achieves significant improvements": 1064, "recently demonstrated impressive": 27590, "commercial opensource llms": 4994, "models llms numerous": 21593, "leading opensource models": 17481, "commercial models gpt35": 4992, "gpt35 turbo gpt4": 13037, "zero fewshot prompts": 35941, "opensource models zeroshot": 23536, "shows opensource models": 29932, "data selection instruction": 6855, "selection instruction tuning": 29391, "acquiring highquality data": 1125, "introduce novel dataset": 15526, "approach inspired observation": 2301, "instruction tuning llama2": 15200, "superior performance general": 31652, "lack indepth understanding": 15994, "work highlights need": 35719, "various realworld scenarios": 35138, "including roberta gpt2": 14518, "extra inference cost": 10740, "evaluations multiple datasets": 10036, "languages training data": 16918, "gpt35 gpt4 generate": 13023, "multidocument question answering": 22278, "language models type": 16739, "large visual language": 17298, "models llms taken": 21647, "llms taken spotlight": 18991, "taken spotlight natural": 32027, "spotlight natural language": 30823, "language processing integrating": 16781, "processing integrating llms": 26103, "integrating llms vision": 15335, "llms vision enables": 19039, "vision enables users": 35296, "enables users explore": 9312, "users explore emergent": 34688, "explore emergent abilities": 10585, "models vlms llava": 22122, "vlms llava flamingo": 35379, "performance various visiolinguistic": 24809, "various visiolinguistic tasks": 35159, "visiolinguistic tasks consequently": 35288, "tasks consequently enormous": 32276, "consequently enormous applications": 5697, "enormous applications large": 9587, "applications large models": 2163, "large models potentially": 17239, "lack related work": 16000, "ability large models": 693, "extensive experiments showed": 10701, "achieves better overall": 1034, "opensource llms demonstrate": 23520, "current evaluation methods": 6489, "high quality synthetic": 13580, "larger models better": 17331, "way large language": 35441, "approach involves generating": 2303, "release model data": 27911, "performance multiple natural": 24685, "protein sequence generation": 26661, "models llms field": 21532, "advanced language models": 1424, "data benchmark comprises": 6623, "designed overcome challenges": 7739, "models llms process": 21607, "tasks including question": 32367, "including question answering": 14515, "advantages incontext learning": 1506, "language models users": 16744, "existing instruction tuning": 10277, "size training set": 30289, "study offers insights": 31371, "models llms remains": 21616, "address limitation introduce": 1341, "redteaming large language": 27696, "natural language applications": 22508, "generate test cases": 12330, "effective test cases": 8900, "compared existing methods": 5132, "stateoftheart vision transformers": 31007, "novel approach named": 23062, "emerging large language": 9194, "extensive experiments various": 10705, "models mllms recently": 21732, "gained immense popularity": 12063, "knowledge reasoning abilities": 15898, "models learn follow": 21440, "chinese large language": 4547, "existing llms llama": 10291, "scaling instruction tuning": 29164, "models despite remarkable": 21147, "novel efficient method": 23076, "input sequence length": 15028, "sheer number parameters": 29803, "parameters large language": 24262, "models llms open": 21596, "llms open new": 18827, "scenarios extensive experiments": 29205, "recent large visionlanguage": 27528, "reveal models demonstrate": 28805, "open foundation models": 23394, "extend context length": 10649, "model parameters using": 20692, "language models possess": 16657, "data significantly enhance": 6865, "scarcity publicly available": 29196, "instructiontuned llama models": 15293, "achieve significant performance": 983, "low computational overhead": 19267, "models ability capture": 20933, "stateoftheart competitive performance": 30927, "offers valuable insights": 23318, "performance generalpurpose llms": 24615, "finetuned opensource llms": 11349, "like gpt4 llama": 17874, "models perform data": 21809, "attention patterns early": 2732, "patterns early layers": 24410, "high training costs": 13587, "performance paper propose": 24710, "increase computational overhead": 14594, "deployment large language": 7652, "llama2 mistral models": 18185, "align llms human": 1733, "data selection method": 6857, "et al 2023b": 9801, "algorithms language models": 1720, "simple effective strategy": 30146, "models consistently outperform": 21101, "stateoftheart pretrained models": 30978, "llms demonstrated great": 18514, "demonstrated great potential": 7524, "models llms presents": 21605, "llms garnered significant": 18629, "llama alpaca vicuna": 18074, "demonstrates strong zeroshot": 7574, "remains significant gap": 28014, "models llms able": 21474, "visual instruction data": 35338, "27 billion parameters": 283, "opening new avenues": 23468, "indicate models currently": 14691, "model better understand": 20400, "rtx 2080 ti": 29001, "llms findings indicate": 18609, "presents set challenges": 25595, "capabilities llms significant": 4041, "performance compared models": 24551, "criteria experimental results": 6378, "effective method enhance": 8884, "cover diverse set": 6317, "natural language description": 22513, "study demonstrate potential": 31315, "designing data methods": 7753, "data methods effective": 6768, "opensourced large language": 23553, "applications code models": 2145, "significantly outperform larger": 30071, "attention mechanism transformer": 2726, "computational overhead work": 5474, "models extensive experiments": 21248, "extensive experiments diverse": 10698, "way future research": 35434, "enhance reasoning capabilities": 9530, "response challenge present": 28473, "conduct indepth analysis": 5613, "parameters finetuning large": 24247, "model efficient inference": 20483, "hope proposed method": 13756, "computational costs associated": 5462, "number input tokens": 23146, "pretraining supervised finetuning": 25843, "models llms opened": 21597, "llms opened new": 18831, "findings reveal llms": 11249, "training data long": 33480, "degree language models": 7388, "gpt4 opensource models": 13104, "nlp transformerbased models": 22967, "compared widely used": 5183, "language models tackle": 16726, "performance widely used": 24817, "conducted extensive empirical study": 5637, "pretrained language models existing": 25670, "language model gpt2 generate": 16150, "performs better par stateoftheart": 24845, "generation using pretrained language": 12636, "pretrained language models shown": 25693, "language models shown remarkable": 16704, "text pretrained language models": 32919, "language models largescale language": 16411, "models largescale language models": 21434, "large language models pretrained": 17187, "pretrained language models finetuning": 25672, "text generation model gpt2": 32877, "paper presents novel approach": 24104, "pretrained language models capable": 25667, "language models capable generating": 16271, "work propose new method": 35755, "large language models shown": 17201, "results showed finetuned model": 28680, "representations transformers bert generative": 28177, "language processing nlp recently": 16793, "transformerbased models bert gpt2": 33762, "finetuning large pretrained language": 11434, "downstream natural language processing": 8680, "experimental results proposed method": 10406, "language models gpt3 t5": 16371, "pretrained language model t5": 25662, "models like bert gpt2": 21449, "tasks finetuning pretrained models": 32340, "achieves comparable better performance": 1038, "recent work shown large": 27570, "work shown large language": 35783, "shown large language models": 29895, "providing natural language instructions": 26778, "largescale language models llms": 17361, "test set best model": 32786, "language models plms gpt2": 16655, "using natural language processing": 34852, "ability pretrained language models": 714, "language generation need training": 16088, "stateoftheart natural language generation": 30964, "natural language generation models": 22522, "area natural language processing": 2480, "large number trainable parameters": 17256, "paper propose simple effective": 24117, "train large language model": 33366, "models propose new paradigm": 21867, "zeroshot capabilities large language": 35956, "large language models identify": 17044, "large language model families": 16966, "received little attention paper": 27480, "baseline future research code": 3247, "prompt tuning prompt tuning": 26354, "demonstrated superior performance various": 7553, "language models exhibit emergent": 16331, "arithmetic commonsense symbolic reasoning": 2502, "transformers large language models": 33790, "large language models like": 17052, "language models like gpt35": 16418, "language models plms t5": 16656, "scale large language models": 29139, "work shown finetuning large": 35781, "paper propose novel approach": 24114, "largescale pretrained language model": 17375, "language models increasingly popular": 16390, "outperform larger language models": 23778, "similar large language models": 30108, "models natural language processing": 21746, "pretrained natural language models": 25737, "larger language models trained": 17324, "visual question answering vqa": 35351, "language models lms increasingly": 16602, "language models llms gpt35": 16487, "large multilingual language model": 17243, "approach outperforms stateoftheart methods": 2325, "language models llms popular": 16536, "large language models generate": 17032, "recent proliferation large language": 27547, "model works phases phase": 20874, "proximal policy optimization algorithm": 26796, "efficient finetuning language models": 9036, "approximation fisher information matrix": 2421, "models llms including chatgpt": 21563, "large language models perform": 17184, "large language models text": 17209, "language models text generation": 16731, "instruction tuning instruction tuning": 15195, "language models llms using": 16587, "models llms using machinegenerated": 21659, "llms using machinegenerated instructionfollowing": 19028, "using machinegenerated instructionfollowing data": 34835, "zeroshot capabilities new tasks": 35959, "paper present attempt use": 24087, "revolutionizing natural language processing": 28856, "language models llms showcased": 16559, "models llms showcased remarkable": 21628, "remarkable performance diverse domains": 28046, "output large language models": 23871, "language models llms human": 16496, "challenges propose novel approach": 4373, "models llms demonstrated significant": 21508, "encoder visionlanguage models vlms": 9360, "language models llms focusing": 16475, "open pretrained transformers opt": 23414, "open large language model": 23402, "language models finetuning pretrained": 16348, "models llms chatgpt openai": 21490, "paper make attempt investigate": 24079, "models llms human values": 21559, "large language models detecting": 17011, "language models llms explore": 16471, "incontext learning incontext learning": 14559, "alpaca experimental results demonstrate": 1830, "models llms significantly enhanced": 21640, "study provides valuable insights": 31387, "decoderonly large language models": 7259, "improve language model efficiency": 14272, "modern pretrained language models": 22171, "widespread use language models": 35599, "results human evaluation demonstrate": 28625, "demonstrate effectiveness proposed method": 7450, "building better base models": 3921, "information large language models": 14879, "augmenting large language models": 2827, "using lowrank adaptation lora": 34832, "language model llm finetuned": 16167, "language models lms typically": 16610, "powerful large language models": 25344, "models llms gpt llama2": 21544, "language models llms difficult": 16455, "truthfulness large language models": 33942, "language models demonstrated ability": 16300, "like large language models": 17881, "language models llms work": 16594, "models foundation models fms": 21295, "investigate ability pretrained language": 15573, "abstract meaning representation amr": 772, "pretrained transformer gpt models": 25758, "domain recent advancements language": 8589, "language models lms led": 16603, "exceptional capabilities wide range": 10169, "language models llms based": 16433, "align large language models": 1730, "parameterefficient finetuning peft techniques": 24211, "integration large language models": 15342, "large language model large": 16969, "adopt curriculum learning strategy": 1403, "llms demonstrated remarkable abilities": 18521, "biomedical natural language processing": 3747, "models zero fewshot scenarios": 22142, "generative visionlanguage models vlms": 12715, "hallucinations large language models": 13393, "state art natural language": 30907, "art natural language processing": 2518, "performance various downstream tasks": 24800, "language reasoning capabilities large": 16814, "language models llm foundation": 16423, "models llm foundation models": 21471, "distillation large language models": 8342, "capabilities large language model": 4033, "results demonstrate effectiveness proposed": 28589, "wide range downstream tasks": 35553, "hypothesize large language models": 13969, "language models identify social": 16381, "large language models evaluate": 17017, "large language models systematic": 17207, "extend large language models": 10655, "language models llms employed": 16460, "large language models knowledge": 17047, "large visionlanguage models large": 17293, "visionlanguage models large visionlanguage": 35318, "models large visionlanguage models": 21430, "large visionlanguage models lvlms": 17295, "question answering reasoning tasks": 27053, "llms shown remarkable capabilities": 18945, "approach yielded exceptional results": 2363, "catastrophic forgetting multimodal large": 4216, "forgetting multimodal large language": 11735, "large language models following": 17028, "demonstrated outstanding performance various": 7538, "language models like llama": 16419, "using publicly available dataset": 34892, "opensource code model data": 23491, "language models llms rely": 16549, "external knowledge bases large": 10730, "knowledge bases large language": 15819, "bases large language models": 3280, "demonstrate stateoftheart performance various": 7499, "generalpurpose large language models": 12252, "llms achieved remarkable performance": 18418, "models recent works demonstrated": 21908, "large language model aligned": 16961, "shown remarkable capabilities various": 29913, "data experimental results demonstrate": 6704, "language models llms requires": 16554, "exploiting large language models": 10561, "models llms shown potential": 21633, "process large language models": 26071, "pretrained language models instruction": 25675, "opensourced code model weights": 23551, "language models llms garnered": 16478, "language models offer new": 16638, "paper present novel approach": 24092, "harnessing large language models": 13465, "demonstrated remarkable performance various": 7545, "language models existing studies": 16333, "touvron et al 2023": 33306, "language models llms help": 16494, "integrating large language models": 15333, "generation using large language": 12633, "language models llms training": 16581, "safe reinforcement learning human": 29032, "language models llms despite": 16454, "language models recent work": 16687, "application large language models": 2132, "knowledge distillation large language": 15834, "chatgpt large language models": 4484, "experimental results demonstrate proposed": 10396, "experimental results demonstrate approach": 10392, "large vision language models": 17289, "wang et al 2022": 35417, "et al 2023 demonstrated": 9799, "incontext learning icl ability": 14556, "remarkable advancements recent years": 28030, "wide range nlp tasks": 35561, "language models llms combined": 16440, "llms including gpt35turbo gpt4": 18697, "propose novel training method": 26557, "language model llm pretraining": 16170, "llms demonstrated superior performance": 18528, "language models llms enhance": 16462, "models llms led widespread": 21573, "language models llms marked": 16520, "models llms marked significant": 21584, "large language model llmbased": 16979, "finetune large language models": 11287, "language models llms utilize": 16589, "modern large language models": 22163, "entity recognition ner tasks": 9650, "pursuit artificial general intelligence": 26891, "finetuning large pretrained models": 11436, "large language models propose": 17189, "image captioning visual question": 14059, "captioning visual question answering": 4140, "extensive experiments demonstrate proposed": 10696, "work propose novel approach": 35757, "llms gpt4 opensource counterparts": 18659, "paper propose new benchmark": 24112, "experimental results demonstrate model": 10395, "models llms focusing llama": 21534, "datasets generated large language": 7123, "automatically generating natural language": 2918, "large language model small": 16986, "outperforms previous stateoftheart methods": 23845, "large language model specifically": 16987, "visual language models visual": 35344, "visual language models vlms": 35345, "large language models growing": 17043, "models incorporating external knowledge": 21388, "pruning large language models": 26812, "models llms shown impressive": 21632, "techniques reinforcement learning human": 32661, "models zeroshot fewshot settings": 22145, "parameters achieve comparable performance": 24223, "language model llm output": 16169, "problem multimodal large language": 25999, "current multimodal large language": 6519, "code generation large language": 4757, "large language models codellms": 17000, "proposed method outperforms stateoftheart": 26608, "models llms including gpt35": 21564, "learning human feedback extensive": 17577, "human feedback extensive experiments": 13820, "learning multimodal large language": 17617, "large language model gpt35": 16967, "approach outperforms previous stateoftheart": 2323, "boosting large language model": 3822, "empirical study large language": 9242, "language models llms significant": 16567, "models llms significant advancements": 21638, "language models llms greatly": 16493, "language models llms offers": 16530, "xu et al 2023": 35886, "graph language model glm": 13224, "finetuning multimodal large language": 11459, "biases large language models": 3677, "optimization large language models": 23630, "large language models gained": 17029, "language models gained immense": 16355, "context large language models": 5897, "language models llms dynamic": 16458, "rapid development large language": 27249, "diminishes attack success rate": 8205, "attack success rate asr": 2688, "language models llms solve": 16571, "vision language models lvlms": 35304, "extensive experimental results demonstrate": 10691, "large language models advanced": 16992, "language models llms offer": 16529, "stateoftheart llms including gpt4": 30948, "large language models vs": 17219, "large language models demonstrated": 17007, "models llms increasingly used": 21568, "efforts align large language": 9086, "propose novel technique called": 26555, "agents large language models": 1572, "operations large language models": 23573, "language models llms improve": 16499, "llms including chatgpt llama": 18691, "using advanced large language": 34729, "language models llms generative": 16482, "large language models verifiable": 17218, "large visionlanguage models multimodal": 17296, "language models llms witnessed": 16593, "language models llms especially": 16463, "recent studies shown llms": 27557, "including gpt35turbo gpt4 llama2": 14489, "language models llms numerous": 16528, "data selection instruction tuning": 6856, "models llms achieved stateoftheart": 21481, "llms achieved stateoftheart performance": 18421, "large language models type": 17214, "large visual language models": 17299, "language models llms taken": 16577, "models llms taken spotlight": 21648, "llms taken spotlight natural": 18992, "taken spotlight natural language": 32028, "spotlight natural language processing": 30824, "natural language processing integrating": 22541, "language processing integrating llms": 16782, "processing integrating llms vision": 26104, "integrating llms vision enables": 15336, "llms vision enables users": 19040, "vision enables users explore": 35297, "enables users explore emergent": 9313, "users explore emergent abilities": 34689, "language models vlms llava": 16752, "models vlms llava flamingo": 22123, "impressive performance various visiolinguistic": 14244, "performance various visiolinguistic tasks": 24810, "various visiolinguistic tasks consequently": 35160, "visiolinguistic tasks consequently enormous": 35289, "tasks consequently enormous applications": 32277, "consequently enormous applications large": 5698, "enormous applications large models": 9588, "applications large models potentially": 2164, "large models potentially used": 17240, "way large language models": 35442, "performance multiple natural language": 24686, "language models llms field": 16474, "language models llms process": 16542, "tasks including question answering": 32368, "existing instruction tuning datasets": 10278, "models llms like gpt3": 21577, "language models llms remains": 16550, "models llms remains significant": 21617, "llms remains significant challenge": 18907, "redteaming large language models": 27697, "propose novel approach named": 26546, "emerging large language models": 9195, "language models mllms recently": 16625, "opensource llms llama2 mistral": 23525, "language models despite remarkable": 16306, "parameters large language models": 24263, "language models llms open": 16531, "recent large visionlanguage models": 27529, "large models like gpt4": 17237, "attention patterns early layers": 2733, "model performance paper propose": 20705, "impressive incontext learning icl": 14240, "deployment large language models": 7653, "models llms demonstrated great": 21499, "llms demonstrated great potential": 18515, "language models llms presents": 16540, "models llms garnered significant": 21537, "llms garnered significant attention": 18630, "language models llms able": 16427, "emerged effective method enhance": 9159, "designing data methods effective": 7754, "applications code models available": 2146, "parameters finetuning large language": 24248, "language models llms opened": 16532, "models llms opened new": 21598, "large language models produce": 17188, "large pretrained language models bert": 17262, "generation using pretrained language models": 12637, "language models largescale language models": 16412, "large pretrained language models capable": 17263, "advances natural language processing nlp": 1486, "encoder representations transformers bert generative": 9357, "natural language processing nlp recently": 22551, "finetuning large pretrained language models": 11435, "downstream natural language processing nlp": 8681, "work shown large language models": 35784, "pretrained language models plms gpt2": 25687, "zeroshot capabilities large language models": 35957, "shown large language models llms": 29896, "large language models like gpt35": 17053, "pretrained language models plms t5": 25688, "models natural language processing nlp": 21747, "large language models llms gpt35": 17095, "large language models llms popular": 17127, "recent proliferation large language models": 27548, "language models llms including chatgpt": 16501, "large language models text generation": 17210, "large language models llms using": 17163, "language models llms using machinegenerated": 16588, "models llms using machinegenerated instructionfollowing": 21660, "llms using machinegenerated instructionfollowing data": 19029, "performance natural language processing nlp": 24690, "tasks named entity recognition ner": 32426, "large language models llms showcased": 17144, "language models llms showcased remarkable": 16560, "output large language models llms": 23872, "large language models llms human": 17101, "language models llms demonstrated significant": 16451, "large language models llms focusing": 17086, "language models llms chatgpt openai": 16439, "aligning large language models llms": 1748, "language models llms human values": 16497, "language models llms significantly enhanced": 16570, "benchmarking large language models fewshot": 3426, "information large language models llms": 14880, "large language model llm finetuned": 16974, "powerful large language models llms": 25345, "language models llms gpt llama2": 16485, "large language models llms difficult": 17071, "large language models llms work": 17168, "investigate ability pretrained language models": 15574, "generative pretrained transformer gpt models": 12694, "large language models llms based": 17061, "recent large language models llm": 27526, "integration large language models llms": 15343, "large language model large language": 16970, "finetuned large language models llms": 11328, "state art natural language processing": 30908, "language reasoning capabilities large language": 16815, "large language models llm foundation": 17056, "language models llm foundation models": 16424, "experimental results demonstrate effectiveness proposed": 10394, "prompting large language models llms": 26385, "large language models llms employed": 17076, "performance large language models generate": 24647, "large visionlanguage models large visionlanguage": 17294, "visionlanguage models large visionlanguage models": 35319, "models llms shown remarkable capabilities": 21636, "remarkable capabilities natural language processing": 28035, "catastrophic forgetting multimodal large language": 4217, "forgetting multimodal large language models": 11736, "transformerbased large language models llms": 33756, "large language models llms rely": 17137, "external knowledge bases large language": 10731, "knowledge bases large language models": 15820, "bases large language models llms": 3281, "generalpurpose large language models llms": 12253, "models llms achieved remarkable performance": 21479, "size large language models llms": 30258, "large language models llms requires": 17141, "language models llms shown potential": 16564, "large language models llms garnered": 17088, "pretrained language models existing studies": 25671, "large language models llms help": 17099, "era large language models llms": 9700, "large language models llms training": 17157, "safe reinforcement learning human feedback": 29033, "large language models llms despite": 17070, "application large language models llms": 2133, "knowledge distillation large language models": 15835, "chatgpt large language models llms": 4485, "large language models llms combined": 17065, "large language model llm pretraining": 16977, "models llms demonstrated superior performance": 21511, "large language models llms enhance": 17078, "language models llms led widespread": 16511, "large language models llms marked": 17114, "language models llms marked significant": 16521, "large language models llms utilize": 17164, "named entity recognition ner tasks": 22488, "image captioning visual question answering": 14060, "language models llms focusing llama": 16476, "datasets generated large language models": 7124, "language models llms shown impressive": 16563, "techniques reinforcement learning human feedback": 32662, "large language model llm output": 16976, "current multimodal large language models": 6520, "code generation large language models": 4758, "multimodal large language models llms": 22357, "language models llms including gpt35": 16502, "align large language models llms": 1731, "reinforcement learning human feedback extensive": 27843, "learning human feedback extensive experiments": 17578, "empirical study large language models": 9243, "large language models llms significant": 17146, "language models llms significant advancements": 16568, "large language models llms greatly": 17098, "large language models llms offers": 17122, "finetuning multimodal large language models": 11460, "large language models gained immense": 17030, "large language models llms dynamic": 17074, "rapid development large language models": 27250, "diminishes attack success rate asr": 8206, "large language models llms solve": 17148, "large vision language models lvlms": 17290, "large language models llms offer": 17121, "advent large language models llms": 1512, "language models llms increasingly used": 16506, "efforts align large language models": 9087, "large language models llms improve": 17103, "using advanced large language models": 34730, "large language models llms generative": 17091, "large language models llms witnessed": 17167, "finetuning large language model llm": 11430, "large language models llms especially": 17079, "llms including gpt35turbo gpt4 llama2": 18698, "large language models llms numerous": 17120, "language models llms achieved stateoftheart": 16431, "models llms achieved stateoftheart performance": 21482, "large language models llms taken": 17154, "language models llms taken spotlight": 16578, "models llms taken spotlight natural": 21649, "llms taken spotlight natural language": 18993, "taken spotlight natural language processing": 32029, "spotlight natural language processing integrating": 30825, "natural language processing integrating llms": 22542, "language processing integrating llms vision": 16783, "processing integrating llms vision enables": 26105, "integrating llms vision enables users": 15337, "llms vision enables users explore": 19041, "vision enables users explore emergent": 35298, "enables users explore emergent abilities": 9314, "visual language models vlms llava": 35346, "language models vlms llava flamingo": 16753, "demonstrated impressive performance various visiolinguistic": 7531, "impressive performance various visiolinguistic tasks": 14245, "performance various visiolinguistic tasks consequently": 24811, "various visiolinguistic tasks consequently enormous": 35161, "visiolinguistic tasks consequently enormous applications": 35290, "tasks consequently enormous applications large": 32278, "consequently enormous applications large models": 5699, "enormous applications large models potentially": 9589, "applications large models potentially used": 2165, "large language models llms field": 17085, "large language models llms process": 17132, "language models llms like gpt3": 16514, "large language models llms remains": 17138, "language models llms remains significant": 16551, "models llms remains significant challenge": 21618, "emerging large language models llms": 9196, "large language models mllms recently": 17174, "large language models despite remarkable": 17010, "parameters large language models llms": 24264, "large language models llms open": 17123, "language models llms demonstrated great": 16448, "models llms demonstrated great potential": 21500, "large language models llms presents": 17130, "language models llms garnered significant": 16479, "models llms garnered significant attention": 21538, "large language models llms able": 17058, "large language models paper presents": 17182, "parameters finetuning large language models": 24249, "large language models llms opened": 17124, "language models llms opened new": 16533, "vulnerabilities": 35403, "gem": 12137, "inherited": 14955, "ide": 13983, "top5": 33279, "editors": 8832, "statically": 31015, "vulnerable": 35405, "cycles": 6575, "regulation": 27831, "adversary": 1522, "countermeasures": 6300, "white": 35540, "similarlysized": 30136, "threat": 33089, "adversaries": 1521, "defense": 7359, "triggered": 33899, "interoperability": 15450, "managers": 19530, "strike": 31150, "datadependent": 6924, "regenerate": 27814, "blocksparse": 3779, "dangerous": 6583, "auditing": 2786, "eyetracking": 10812, "321": 320, "signatures": 29946, "radar": 27148, "groupwise": 13307, "clipping": 4668, "clipped": 4667, "wall": 35410, "worstcase": 35841, "nlcode": 22906, "12b": 104, "nlms": 22917, "spam": 30588, "nlm": 22916, "outlining": 23745, "pii": 24951, "javascript": 15702, "watermarking": 35425, "invisible": 15620, "selfcontained": 29414, "tricks": 33895, "codebases": 4835, "median": 19763, "monetary": 22206, "layouts": 17455, "ungrammatical": 34315, "contextrelated": 5933, "programmers": 26197, "tensorflow": 32723, "alpacas": 1840, "duplicated": 8752, "prefixlm": 25484, "say": 29119, "subtly": 31499, "violation": 35280, "tracing": 33325, "subroutines": 31444, "gpt2like": 12974, "13m": 133, "16gb": 166, "intend": 15366, "se": 29299, "stereotypes": 31061, "evade": 9813, "incentivized": 14442, "bullet": 3940, "workinprogress": 35806, "analysts": 1981, "unmodified": 34415, "layernorm": 17435, "attached": 2683, "leq": 17719, "preexisting": 25464, "lowrisk": 19319, "union": 34353, "462": 399, "started": 30898, "press": 25614, "orchestrating": 23666, "positives": 25199, "lightgbm": 17835, "mislabeled": 20215, "cyberphysical": 6573, "cuda": 6454, "contracts": 6004, "contract": 6003, "behaviours": 3333, "refuse": 27805, "autogenerated": 2848, "capitalizing": 4132, "located": 19145, "piqa": 24973, "unaffected": 34103, "shadow": 29772, "compromised": 5437, "untrustworthy": 34463, "consumes": 5821, "enterprises": 9620, "scattered": 29197, "protects": 26658, "protecting": 26656, "linux": 18032, "parrots": 24314, "victim": 35245, "harbor": 13419, "privacysensitive": 25956, "server": 29652, "optimistic": 23620, "grant": 13213, "misused": 20245, "censorship": 4262, "refusal": 27804, "degradations": 7377, "425": 387, "representatives": 28189, "provoke": 26789, "gigabytes": 12735, "perceivable": 24454, "indistinguishable": 14712, "affine": 1545, "jigsaw": 15706, "propensity": 26467, "pinpointed": 24957, "282": 287, "chatgptgpt4": 4505, "codegenmono16b": 4840, "freezes": 11919, "conservative": 5700, "llama34b": 18226, "persuasive": 24903, "tdd": 32577, "145": 139, "postpruning": 25229, "narrower": 22494, "apple": 2116, "llamacpp": 18239, "container": 5832, "weakened": 35457, "deceiving": 7223, "uploaded": 34480, "fortifies": 11779, "collectively": 4937, "intricately": 15486, "likelihoodbased": 17900, "mplugowl2": 22244, "encouraged": 9399, "contributors": 6046, "investment": 15618, "violence": 35282, "suicide": 31592, "author": 2834, "timing": 33170, "authorship": 2838, "magnitudes": 19385, "optimizationbased": 23638, "inserts": 15061, "forest": 11728, "scalings": 29182, "doubles": 8668, "reevaluating": 27769, "156": 148, "focal": 11642, "harming": 13445, "a6000": 621, "48gb": 407, "unraveling": 34423, "presentation": 25564, "branches": 3854, "spill": 30808, "kaggle": 15738, "landscapes": 16028, "defines": 7365, "textdavinci": 32978, "floatingpoint": 11623, "caching": 3960, "payload": 24426, "connectivity": 5687, "accesses": 830, "equivariance": 9689, "permuted": 24870, "dream": 8732, "resnet50": 28399, "hessian": 13528, "scanning": 29184, "trainers": 33436, "stringent": 31155, "groupedquery": 13299, "rotary": 28973, "projectspecific": 26256, "sequences tokens": 29616, "optimized using": 23648, "code completion": 4726, "largescale deep": 17348, "model discuss": 20471, "top5 accuracy": 33280, "files model": 11164, "years witnessed": 35900, "threats posed": 33092, "highly relevant": 13667, "image based": 14056, "transformers gpt2": 33783, "architectures datasets": 2461, "methods natural": 20068, "26 million": 279, "datasets paper": 7159, "identifiable information": 13994, "generating fake": 12422, "generate fake": 12277, "transparency ai": 33862, "potential harm": 25258, "algorithm gpt2": 1707, "software evolution": 30457, "source information": 30560, "vector embeddings": 35194, "representations bert": 28157, "opens possibilities": 23480, "network dnn": 22688, "dnn models": 8497, "models lower": 21691, "model utility": 20854, "modern machine": 22166, "code solutions": 4817, "difficult accurately": 8169, "single token": 30225, "reduce overall": 27723, "second design": 29320, "automatically identify": 2920, "closer real": 4697, "including difficulty": 14472, "faster algorithms": 10996, "memory cost": 19810, "maintain accuracy": 19414, "platforms using": 25012, "gpt2 generative": 12898, "posts using": 25231, "gpt natural": 12858, "strike balance": 31151, "words neural": 35659, "allows control": 1810, "t5 experiments": 31943, "based type": 3234, "models memorize": 21714, "nexttoken predictions": 22895, "tools detect": 33269, "plagiarism detection": 24988, "detection tool": 7885, "detection techniques": 7884, "requirements paper": 28241, "samples language": 29078, "opensource existing": 23501, "achieve close": 951, "parameters based": 24227, "results small": 28685, "models advances": 20968, "advances stateoftheart": 1487, "open access": 23382, "source training": 30571, "prompts analysis": 26404, "make training": 19486, "investigate approach": 15576, "issues using": 15675, "especially effective": 9733, "tends improve": 32714, "quality reduce": 26975, "compression recent": 5427, "llms bert": 18447, "deployed specific": 7637, "compression propose": 5423, "sparsity levels": 30633, "gptneo gptj": 13157, "exceeds performance": 10152, "trivial task": 33920, "effective mitigating": 8886, "online safety": 23369, "processing applications": 26094, "applications use": 2180, "data access": 6586, "extracting meaningful": 10758, "weights used": 35517, "work compares": 35678, "processing approaches": 26095, "code including": 4767, "traditionally used": 33356, "models ensure": 21208, "module integrate": 22193, "similar original": 30112, "provide affirmative": 26683, "time overhead": 33137, "learning memoryefficient": 17601, "underperform standard": 34166, "training epoch": 33510, "wall time": 35411, "175 billionparameter": 174, "gpt2 summarization": 12955, "designed natural": 7736, "semantic meaning": 29460, "meaning original": 19720, "completion tasks": 5263, "better robustness": 3627, "generation extend": 12502, "nlcode pairs": 22907, "models substantial": 22021, "fewer errors": 11087, "models nlms": 21753, "difficult detect": 8171, "information pii": 14897, "11b parameter": 85, "evaluate multiple": 9853, "potential harms": 25259, "negligible impact": 22671, "using efficient": 34771, "model api": 20368, "model open": 20662, "evaluating models": 9907, "benchmark named": 3401, "generating code": 12413, "models advance": 20966, "improving training": 14425, "candidates potential": 3996, "success training": 31527, "weights training": 35515, "achieving strong": 1108, "manually creating": 19566, "technique achieves": 32615, "edit distance": 8823, "false positive": 10959, "positive rate": 25197, "prediction problems": 25433, "exponentially large": 10630, "large context": 16936, "generate set": 12324, "sentence used": 29547, "time instead": 33128, "dl applications": 8494, "edge cases": 8819, "challenging domains": 4383, "observed language": 23239, "modeling long": 20898, "technique applied": 32616, "address questions": 1355, "spanning 1000": 30597, "transformer framework": 33717, "detection systems": 7882, "approach implementing": 2295, "components including": 5313, "common transformer": 5018, "inference training": 14819, "effect context": 8852, "neural scaling": 22758, "models single": 21982, "provide final": 26702, "daily life": 6578, "suggestions real": 31588, "pass1 humaneval": 24374, "9b tokens": 612, "llms brought": 18453, "models ensuring": 21209, "power edge": 25319, "techniques using": 32671, "rate compared": 27264, "raise concerns": 27163, "interpretability llms": 15458, "llms simply": 18953, "methods effectiveness": 20024, "jailbreak prompts": 15697, "llms seen": 18929, "quantify severity": 26987, "different demographics": 8070, "analysis provide": 1951, "insights choice": 15069, "social groups": 30422, "unprecedented performance": 34420, "especially visual": 9750, "inputs enabling": 15045, "successfully evade": 31538, "dl models": 8495, "data applying": 6600, "support limited": 31710, "substantial number": 31470, "lack clear": 15977, "methods identifying": 20045, "tremendous advances": 33882, "introduce study": 15534, "adversarial training": 1519, "models unlike": 22095, "pretrained extensive": 25642, "finetuning paper": 11468, "domain code": 8556, "closed llms": 4677, "vary lot": 35166, "context significantly": 5918, "user requirements": 34669, "poses security": 25172, "identify model": 14014, "utilizes techniques": 34967, "enhancing decisionmaking": 9559, "especially complex": 9731, "accurate identification": 923, "llms raised": 18884, "vast quantities": 35190, "designed empower": 7727, "currently supports": 6545, "better efficiency": 3600, "datasets downstream": 7099, "demonstrating strong": 7589, "strong generalizability": 31172, "higher precision": 13601, "large transformers": 17283, "inference transformer": 14820, "enable fast": 9287, "inference framework": 14779, "framework designs": 11839, "similar accuracy": 30096, "information detection": 14859, "including bart": 14459, "probability model": 25972, "instead relying": 15125, "relying manual": 27978, "bard claude": 3096, "model detect": 20465, "models opt13b": 21777, "statistical power": 31020, "llama7b models": 18235, "reliably detect": 27957, "unseen apis": 34433, "generation study": 12606, "diverse complex": 8416, "performance generating": 24616, "generating entire": 12421, "strategy best": 31115, "understanding long": 34249, "long instructions": 19174, "data attribution": 6604, "european union": 9811, "90 performance": 590, "performance scales": 24745, "size results": 30281, "build high": 3912, "leveraging natural": 17790, "changes human": 4410, "generation instead": 12523, "predictions training": 25445, "attention ability": 2712, "accurate inference": 924, "llms serves": 18932, "llms accuracy": 18408, "dramatically improved": 8718, "structure inference": 31213, "furthermore use": 12014, "pretraining scratch": 25836, "leverages capabilities": 17766, "make possible": 19477, "control group": 6051, "detection language": 7868, "finally make": 11198, "contexts zeroshot": 5947, "70b code": 504, "7b outperforms": 538, "opensource software": 23544, "weights large": 35508, "data domain": 6685, "llama evaluate": 18095, "additionally discuss": 1281, "offensive content": 23283, "false positives": 10961, "correctly detected": 6203, "increasing need": 14625, "gpt4 furthermore": 13078, "effectively enhance": 8916, "explore types": 10602, "work large": 35731, "novel geometric": 23084, "geometric perspective": 12727, "adversarial prompting": 1517, "safety guardrails": 29047, "maintaining good": 19424, "performance safe": 24744, "gradient information": 13188, "temporal resolution": 32700, "llms hpc": 18677, "gpt3 generate": 12994, "original gpt3": 23706, "competitive superior": 5231, "llama27b models": 18210, "paper raise": 24127, "selection strategy": 29396, "templates high": 32692, "success rates": 31526, "qualitative approach": 26932, "llm significant": 18367, "engineering instruction": 9466, "performance assessment": 24526, "popular parameterefficient": 25134, "consistently activate": 5745, "attacks necessary": 2694, "threat model": 33090, "editing methods": 8828, "editing method": 8827, "effective defense": 8866, "incident response": 14445, "approach addressing": 2233, "unclear paper": 34128, "similar written": 30121, "increase maximum": 14597, "efficiently produce": 9073, "evaluate technique": 9867, "data identify": 6728, "costs llm": 6271, "novel algorithms": 23054, "expanding context": 10340, "approaches identify": 2375, "auc score": 2772, "harmful language": 13442, "sacrificing model": 29026, "content address": 5849, "provable guarantees": 26666, "queries existing": 27020, "available following": 2976, "optimizing large": 23656, "harmful behaviors": 13440, "research reveals": 28359, "advocate research": 1531, "research efforts": 28310, "applications involving": 2158, "llms generated": 18636, "smaller opensourced": 30393, "chatgpt performance": 4493, "showcase capability": 29835, "stateoftheart proprietary": 30979, "text inputs": 32899, "extremely simple": 10802, "strategies including": 31108, "cost finally": 6244, "effective alignment": 8859, "effective natural": 8889, "accuracy degradation": 867, "groups work": 13306, "alignment models": 1774, "given candidate": 12741, "llama glm": 18107, "challenge training": 4331, "preserves data": 25605, "malicious usage": 19524, "model quantized": 20742, "method provide": 19961, "model applications": 20370, "better code": 3597, "testing allows": 32800, "stochastic parrots": 31071, "llms available": 18442, "lms based": 19070, "based approximate": 3137, "data popular": 6798, "remedy issue": 28070, "task description": 32108, "changing semantic": 4416, "predictions language": 25441, "way evaluate": 35430, "model way": 20863, "biases model": 3679, "particularly resourceconstrained": 24355, "generative process": 12703, "security privacy": 29349, "layer outputs": 17428, "finetuning specifically": 11533, "strategy use": 31129, "finetuning result": 11511, "extra parameters": 10742, "methods paramount": 20073, "dataset real": 7029, "models grant": 21336, "model weight": 20864, "step development": 31040, "collection instruction": 4930, "finetuning public": 11500, "lora efficient": 19229, "general performance": 12182, "models considerable": 21096, "models meta": 21718, "high computation": 13556, "method termed": 19979, "investigate persona": 15591, "solution code": 30471, "better ranking": 3622, "new stateofthearts": 22852, "automatically detect": 2909, "proposed technique": 26621, "achieving 70": 1081, "improves llm": 14381, "llm size": 18369, "size increases": 30252, "aims democratize": 1661, "access llms": 821, "associated large": 2646, "additional modality": 1260, "instead feeding": 15121, "manually review": 19572, "generated textual": 12395, "generated chatgpt": 12346, "capabilities field": 4018, "attacks introduce": 2691, "distribution consequently": 8390, "task conduct": 32098, "effectiveness transferability": 8969, "examples generated": 10125, "contributing success": 6035, "deploying models": 7643, "outcomes underscore": 23736, "models superior": 22030, "models undergone": 22092, "undergone instruction": 34148, "need knowledge": 22633, "reveal various": 28807, "detection classification": 7863, "detection rate": 7878, "remarkably low": 28066, "detection study": 7881, "employing large": 9258, "maintaining models": 19427, "models log": 21686, "demonstrate used": 7510, "evaluation analysis": 9918, "novel study": 23112, "use mechanistic": 34548, "mechanistic interpretability": 19756, "interpretability approaches": 15457, "heads layers": 13481, "model prior": 20726, "easily detected": 8795, "toxicity classifiers": 33318, "models grown": 21344, "text humanauthored": 32892, "framework work": 11906, "tasks practical": 32452, "internal representations": 15441, "provide practical": 26722, "multihead attention": 22285, "geometric interpretation": 12726, "theoretical results": 33051, "emerged dominant": 9156, "problematic model": 26021, "alternative methods": 1855, "growing demand": 13314, "high levels": 13573, "gpt large": 12850, "study tendency": 31402, "evaluation pipeline": 9988, "lightweight language": 17840, "resourceconstrained scenarios": 28421, "findings design": 11234, "showcases potential": 29846, "volume demonstrates": 35387, "allows customization": 1811, "input making": 15017, "summarization incontext": 31613, "neuron level": 22767, "causal effect": 4237, "analysis tools": 1972, "tools require": 33274, "mitigate hallucinations": 20253, "designed adversarial": 7720, "able successfully": 755, "surpasses traditional": 31751, "presents comprehensive": 25577, "evaluates models": 9889, "parameters like": 24267, "popularity ability": 25141, "scraped internet": 29288, "extent phenomenon": 10724, "order build": 23670, "surge popularity": 31729, "benchmark future": 3389, "users professional": 34699, "greatly reduce": 13275, "framework incorporates": 11868, "incorporates innovative": 14572, "innovative techniques": 15000, "process employed": 26058, "assigning higher": 2626, "robust measurement": 28935, "greater resilience": 13270, "users preferences": 34698, "making difficult": 19501, "encoderdecoder transformer": 9373, "various coderelated": 35080, "finetuning schemes": 11518, "llama 34b": 18064, "framework mitigating": 11883, "method finetuning": 19922, "insight design": 15066, "algorithm use": 1715, "step size": 31048, "evaluations llms": 10033, "systems large": 31904, "enhance generation": 9513, "potential llm": 25273, "complete test": 5251, "code llama34b": 4774, "llama34b model": 18227, "improved generation": 14311, "automatically effectively": 2910, "methods especially": 20026, "based incontext": 3175, "encompasses types": 9388, "preserving models": 25610, "science research": 29245, "significantly increases": 30065, "generation open": 12564, "vicuna chatglm": 35248, "maintain general": 19415, "issues associated": 15666, "requirements existing": 28237, "small large": 30351, "resource efficiency": 28411, "using scoring": 34907, "study establishes": 31325, "traditional evaluation": 33345, "wider array": 35584, "massive size": 19629, "minimal computation": 20183, "inference maintaining": 14791, "inference context": 14769, "computational savings": 5481, "layers model": 17442, "aims produce": 1670, "reduced computation": 27729, "level model": 17734, "chat vicuna": 4446, "input changes": 15004, "performance extensive": 24594, "strategies llms": 31110, "capabilities exhibit": 4014, "severe threat": 29753, "llms triggered": 19011, "investigate recent": 15596, "line work": 17983, "llms probability": 18869, "longer ones": 19199, "role predicting": 28960, "short sequences": 29815, "restricted extensive": 28532, "surpasses existing": 31744, "knowledge sharing": 15905, "effectively replace": 8931, "texts specific": 33001, "potential downstream": 25254, "detection recent": 7879, "focus generative": 11648, "innovative strategy": 14999, "strategy designed": 31117, "effectiveness extensive": 8944, "hardware constraints": 13428, "memory paper": 19825, "content particularly": 5869, "gap conducted": 12087, "implemented finetuning": 14168, "detection paper": 7874, "accelerate training": 794, "training regimes": 33598, "finetuning stateoftheart": 11536, "optimizing training": 23657, "ai alignment": 1596, "models reducing": 21915, "transparent ai": 33864, "secure efficient": 29345, "context extrapolation": 5890, "despite advantages": 7770, "version original": 35232, "phase results": 24918, "responses detecting": 28489, "core functionalities": 6152, "domain poses": 8582, "developed specialized": 7934, "approach exhibits": 2274, "instructblip mplugowl2": 15133, "reveal connection": 28793, "automated generation": 2862, "higher scores": 13604, "additionally analyze": 1272, "requirements limited": 28240, "problem use": 26017, "growing concerns": 13313, "particular use": 24344, "datasets provides": 7164, "cover 30": 6315, "relative ease": 27878, "presence absence": 25508, "domain questions": 8586, "achieve carefully": 950, "human machine": 13844, "machine intelligence": 19342, "chatgpt field": 4468, "mistral mixtral": 20233, "level work": 17737, "sufficient achieve": 31560, "commonly executed": 5025, "images sharing": 14087, "diverse new": 8445, "authorship identification": 2839, "online authorship": 23360, "orders magnitudes": 23684, "popularity recent": 25146, "strong simple": 31191, "techniques proposed": 32657, "enable comprehensive": 9285, "fairness llms": 10927, "predicting judgments": 25418, "societal biases": 30437, "predictions study": 25444, "legal tasks": 17698, "social factors": 30421, "indicate proposed": 14694, "legal sector": 17697, "specialised legal": 30659, "potential method": 25276, "method mitigate": 19946, "mitigate bias": 20248, "sampled data": 29068, "correlation training": 6220, "data adversarial": 6595, "additional results": 1264, "empirical analyses": 9218, "rate features": 27265, "art form": 2513, "gpt4 gemini": 13079, "observation develop": 23218, "effective prompting": 8893, "success language": 31513, "roberta llama2": 28920, "federated finetuning": 11049, "service platform": 29658, "attention potential": 2735, "rich insights": 28874, "shown models": 29901, "ensure safe": 9607, "llama1 llama2": 18154, "efficiency traditional": 9017, "creating large": 6368, "llms attention": 18437, "using fewshot": 34777, "patterns including": 24411, "research llm": 28334, "important milestone": 14205, "use specific": 34571, "demonstrate average": 7437, "focal point": 11643, "potential significantly": 25297, "2023 using": 236, "using latest": 34817, "inputs code": 15044, "examples making": 10135, "method practical": 19956, "harming performance": 13446, "sophisticated methods": 30525, "techniques targeted": 32666, "compared gradientbased": 5139, "nvidia rtx": 23196, "48gb gpu": 408, "accelerate research": 793, "codebase publicly": 4832, "work suggests": 35793, "models conducted": 21092, "techniques significantly": 32665, "chatgpt gemini": 4471, "help understand": 13514, "novel tool": 23120, "llama study": 18146, "suit specific": 31594, "data verbatim": 6908, "size scales": 30282, "quantized large": 27013, "maintaining model": 19426, "llama2 families": 18175, "exhibit exceptional": 10217, "7b instruct": 534, "4x larger": 417, "3b 7b": 365, "llm benchmarks": 18277, "mistral7b datasets": 20238, "datasets sst2": 7174, "advanced training": 1443, "loss landscape": 19246, "detection strategy": 7880, "constructing prompts": 5809, "reduce time": 27726, "time cost": 33117, "information related": 14903, "work perform": 35746, "aims investigate": 1669, "claude llama": 4636, "floatingpoint operations": 11624, "semantic similarities": 29473, "using fl": 34782, "resulting lower": 28556, "research highlighted": 28321, "inference prompt": 14802, "understanding semantics": 34269, "applications document": 2150, "llms uncover": 19015, "important tool": 14214, "concerns potential": 5543, "potential misuse": 25277, "distribution gap": 8392, "languages findings": 16876, "effective learning": 8881, "achieves relative": 1059, "relative improvements": 27881, "validated using": 35000, "llm practitioners": 18349, "develop effective": 7914, "attacks llm": 2692, "novel trainingfree": 23123, "services train": 29662, "types training": 34073, "nvidia gpus": 23194, "achieve exact": 962, "exact training": 10091, "significantly decreases": 30043, "systematic empirical": 31869, "pro vision": 25963, "secondorder information": 29336, "llama gemini": 18105, "information hessian": 14871, "datasets case": 7072, "length target": 17712, "complex scientific": 5293, "data need": 6783, "generation uses": 12630, "surpasses current": 31742, "efficiency quality": 9012, "schemes mitigate": 29235, "study llama": 31357, "furthermore previous": 12009, "illustrate llms": 14046, "technique empowers": 32620, "model autonomously": 20382, "considerable size": 5710, "strategies experiments": 31105, "prompts evaluate": 26415, "llms revealing": 18921, "limitations proposed": 17933, "billions data": 3727, "work suggest": 35792, "various sources": 35145, "accuracy specific": 912, "identify data": 14008, "significantly boosting": 30039, "groupedquery attention": 13300, "rotary positional": 28974, "multiple language": 22396, "foundational capabilities": 11802, "plms downstream": 25042, "using fixed": 34781, "work consider": 35680, "llms detecting": 18535, "api usage": 2103, "class data": 4582, "approach termed": 2346, "analysis revealing": 1958, "largescale deep learning": 17349, "recent years witnessed": 27584, "bert gpt2 xlnet": 3513, "parameter language models": 24186, "automatic code generation": 2877, "different language models": 8089, "representations bert gpt2": 28158, "neural network dnn": 22742, "network dnn models": 22689, "modern machine learning": 22167, "unlike prior work": 34401, "gpt natural language": 12859, "transformer gpt2 model": 33721, "using pretrained t5": 34882, "transformer based language": 33707, "code generation model": 4761, "proposed method effectively": 26606, "samples training set": 29089, "samples language models": 29079, "shown large pretrained": 29897, "models llms bert": 21485, "model compression propose": 20435, "matches exceeds performance": 19651, "language processing applications": 16775, "applications use large": 2181, "pretrained models work": 25730, "semantic meaning original": 29461, "language models nlms": 16633, "identifiable information pii": 13995, "language model api": 16117, "open pretrained transformer": 23412, "language models advance": 16243, "task existing methods": 32118, "language model data": 16130, "false positive rate": 10960, "issues paper propose": 15670, "training time instead": 33634, "language modeling long": 16219, "modeling long text": 20899, "address questions introduce": 1356, "novel approach implementing": 23061, "neural scaling laws": 22759, "llms propose novel": 18876, "models llms seen": 21626, "conduct empirical study": 5599, "data public httpsgithubcomnlpxucanwizardlm": 6819, "recently gained attention": 27599, "pretrained t5 model": 25752, "competitive performance compared": 5224, "models llms raised": 21610, "models trained vast": 22076, "various tasks require": 35151, "inference transformer models": 14821, "transformer models using": 33734, "generation address issue": 12453, "demonstrate proposed method": 7484, "language models opt13b": 16640, "prompt chatgpt generate": 26312, "presents unique challenges": 25600, "build high quality": 3913, "models finetuning large": 21280, "highquality text generation": 13702, "language models mbert": 16617, "predictions training data": 25446, "safety alignment llms": 29043, "covering wide range": 6329, "lowresource languages using": 19315, "models parameterefficient finetuning": 21802, "framework leverages capabilities": 11879, "stateoftheart performance open": 30973, "performance open models": 24701, "7b outperforms llama": 539, "work large language": 35732, "novel geometric perspective": 23085, "instructions training large": 15278, "paper raise concerns": 24128, "models using small": 22105, "engineering instruction tuning": 9467, "popular parameterefficient finetuning": 25135, "model editing methods": 20479, "similar written humans": 30122, "publicly available following": 26856, "llms inference time": 18719, "findings suggest finetuning": 11257, "advocate research efforts": 1532, "high inference costs": 13570, "stateoftheart proprietary models": 30980, "performance compared previous": 24552, "effective natural language": 8890, "align human values": 1727, "learning code generation": 17553, "parameterefficient finetuning methods": 24208, "language models deployed": 16303, "language model weights": 16211, "language model applications": 16118, "code completion tasks": 4727, "changing semantic meaning": 4417, "success rate compared": 31525, "language models grant": 16375, "access model weights": 823, "lora efficient finetuning": 19230, "models sizes 7b": 21985, "language models meta": 16620, "downstream tasks compared": 8689, "language models specialized": 16709, "despite remarkable success": 7810, "remarkable success various": 28062, "high computation cost": 13557, "solution code generation": 30472, "associated large language": 2647, "hope work contribute": 13758, "different aspects including": 8051, "undergone instruction tuning": 34149, "examine impact various": 10102, "employing large language": 9259, "llms different architectures": 18540, "presents novel study": 25590, "use mechanistic interpretability": 34549, "model prior knowledge": 20727, "various tasks particularly": 35150, "present novel solution": 25548, "gpt large language": 12851, "llms automatically generate": 18441, "work propose framework": 35753, "nvidia a100 gpu": 23193, "paper presents comprehensive": 24096, "models llms generation": 21540, "ability generate humanlike": 675, "training costs paper": 33462, "incorporates innovative techniques": 14573, "llama mistral models": 18127, "opensource models code": 23530, "systems large language": 31905, "code llama34b model": 4775, "llms llama chatgpt": 18768, "based incontext learning": 3176, "experimental results language": 10400, "models ranging size": 21891, "parameters demonstrate effectiveness": 24238, "social science research": 30432, "massive size poses": 19630, "hindering widespread adoption": 13719, "maintaining models performance": 19428, "llama2 chat vicuna": 18167, "model performance extensive": 20698, "performance extensive experiments": 24595, "analysis using large": 1977, "models llms triggered": 21653, "paper investigate recent": 24071, "language models specific": 16710, "detection paper presents": 7875, "despite widespread use": 7829, "llava instructblip mplugowl2": 18246, "current stateoftheart methods": 6534, "outperforming existing approaches": 23797, "experiments various llms": 10500, "strong simple baseline": 31192, "training data paper": 33486, "strong correlation training": 31168, "transformer models bert": 33732, "gpt35 gpt4 gemini": 13022, "prior work shown": 25942, "work shown models": 35785, "single nvidia rtx": 30218, "codebase publicly available": 4833, "quantized large language": 27014, "models opt llama2": 21776, "llms exhibit exceptional": 18580, "mistral 7b instruct": 20229, "select highquality data": 29379, "advanced training techniques": 1444, "bard claude llama": 3097, "concerns potential misuse": 5544, "methods primarily focus": 20078, "language models generated": 16360, "models paper study": 21798, "conduct systematic empirical": 5624, "gemini pro vision": 12143, "like chatgpt llama": 17855, "enhance ability large": 9502, "surpasses current stateoftheart": 31743, "generation using llms": 12634, "rotary positional embedding": 28975, "plms downstream tasks": 25043, "novel approach termed": 23063, "deep neural network dnn": 7339, "neural network dnn models": 22743, "pretrained transformer gpt2 model": 25760, "transformer based language models": 33708, "language models including gpt2": 16387, "large pretrained transformer models": 17269, "shown large pretrained language": 29898, "language models llms bert": 16434, "natural language processing applications": 22536, "language modeling long text": 16220, "language models llms seen": 16558, "language models llms raised": 16545, "results demonstrate proposed method": 28592, "demonstrate proposed method yields": 7485, "various text generation models": 35155, "large language models capable": 16997, "large language models finetuning": 17023, "language models finetuning large": 16346, "models finetuning large language": 21281, "stateoftheart performance open models": 30974, "work large language models": 35733, "instructions training large language": 15279, "code publicly available following": 4804, "using parameterefficient finetuning methods": 34871, "models sizes 7b 13b": 21986, "large language models meta": 17172, "associated large language models": 2648, "paper presents novel study": 24105, "propose reinforcement learning rl": 26563, "gpt large language model": 12852, "conduct extensive experiments various": 5609, "paper introduces novel approach": 24065, "language models llms generation": 16481, "ability generate humanlike text": 676, "high training costs paper": 13588, "systems large language models": 31906, "analysis using large language": 1978, "language models llms triggered": 16582, "extensive experiments various llms": 10706, "quantized large language models": 27015, "text large language models": 32905, "large language models generated": 17033, "deep neural network dnn models": 7340, "generative pretrained transformer gpt2 model": 12696, "shown large pretrained language models": 29899, "generation large language models demonstrated": 12536, "modern large language models llms": 22164, "popularity large language models llms": 25145, "large language models llms seen": 17143, "large language models llms raised": 17135, "large language models finetuning large": 17024, "language models finetuning large language": 16347, "models finetuning large language models": 21282, "instructions training large language models": 15280, "framework large language models large": 11877, "associated large language models llms": 2649, "large language models llms generation": 17090, "large language models llms triggered": 17158, "text large language models llms": 32906, "visualizing": 35364, "recurring": 27686, "converging": 6088, "stones": 31072, "approximates": 2416, "16x": 168, "tokenfree": 33208, "synchronous": 31806, "diverges": 8408, "businesses": 3945, "exacerbated": 10085, "formulates": 11774, "trading": 33340, "reads": 27307, "receptive": 27628, "gpt1": 12865, "attributing": 2767, "song": 30521, "asymmetry": 2676, "stitch": 31066, "reciprocal": 27633, "dropout": 8743, "resembles": 28384, "ssl": 30844, "systemic": 31884, "precisions": 25395, "sensitivitybased": 29523, "plateau": 25007, "703": 501, "saved": 29114, "goto": 12835, "absorbed": 766, "fulllength": 11946, "rubert": 29003, "rugpt3": 29005, "unrealistic": 34424, "trainingbased": 33646, "262": 280, "weighed": 35492, "anticipated": 2093, "equivariant": 9690, "intersectionality": 15472, "en": 9278, "personalised": 24882, "closesourced": 4698, "increment": 14654, "jobs": 15708, "locality": 19137, "colab": 4898, "flash": 11608, "tutorial": 34032, "born": 3833, "underestimate": 34139, "timeseries": 33168, "forecast": 11721, "mimicry": 20172, "attributions": 2769, "compatibility": 5202, "transcends": 33663, "522": 435, "untrained": 34462, "interchunk": 15399, "compounded": 5332, "present opensource": 25549, "model bias": 20401, "attention transformer": 2742, "attention multiple": 2728, "gpt2 present": 12936, "larger dataset": 17320, "tens hundreds": 32718, "test loss": 32773, "pipeline model": 24969, "datasets bert": 7071, "requiring model": 28275, "machine authors": 19340, "model fewer": 20518, "tasks sequence": 32495, "work addresses": 35666, "networks like": 22713, "different attention": 8052, "size neural": 30266, "models fit": 21285, "experiments compared": 10425, "does contain": 8525, "sacrificing accuracy": 29025, "trained specific": 33428, "using transfer": 34931, "corresponding word": 6231, "models important": 21370, "roberta deberta": 28916, "goal paper": 12807, "model single": 20787, "evaluate endtoend": 9835, "expensive work": 10370, "memory model": 19822, "evaluating model": 9906, "uses decoder": 34708, "proxy perplexity": 26800, "highly correlates": 13661, "attention scores": 2741, "scores subsequent": 29282, "network architecture": 22684, "tasks word": 32552, "method reduce": 19964, "models simultaneously": 21981, "provides significant": 26762, "transformers generate": 33781, "code runs": 4815, "memory capacity": 19804, "metrics paper": 20145, "language identification": 16093, "task numerous": 32168, "llms excellent": 18577, "access large": 819, "design learning": 7708, "decoding enhance": 7272, "depends number": 7625, "llms determine": 18536, "early training": 8782, "model short": 20778, "evergrowing size": 10051, "flant5 outperform": 11601, "models hierarchical": 21352, "constraints aggregating": 5789, "approaches data": 2371, "require training": 28227, "models makes": 21698, "presents challenges": 25575, "paper identify": 24057, "studies including": 31272, "reducing gender": 27748, "human life": 13841, "superiority approach": 31662, "sequences training": 29617, "semantic role": 29469, "role labeling": 28958, "tasks addition": 32234, "limitations using": 17935, "evaluating instruction": 9896, "crucial problem": 6444, "acquired knowledge": 1121, "llms necessitates": 18814, "scenarios tested": 29222, "models practice": 21829, "adaptability llms": 1171, "various generation": 35100, "framework efficiently": 11842, "qlora efficient": 26923, "reduce average": 27700, "analysis instruction": 1930, "appropriate responses": 2408, "data identifying": 6729, "identifying relevant": 14023, "diverse instruction": 8433, "method successfully": 19977, "preserves original": 25606, "fluent samples": 11637, "unconditional zeroshot": 34132, "crucial comprehend": 6439, "learning ssl": 17656, "evaluations interestingly": 10032, "close gap": 4672, "terms f1score": 32746, "come cost": 4966, "cost significant": 6254, "writing large": 35852, "strongly correlates": 31208, "transformer recent": 33739, "model linear": 20617, "particular introduce": 24339, "opt125m model": 23603, "suggest large": 31573, "tokenbytoken generation": 33207, "readily applied": 27301, "metric used": 20128, "rigorous research": 28885, "irrespective models": 15646, "like knowledge": 17878, "based gptj": 3171, "using activation": 34726, "efficient solution": 9059, "retraining scratch": 28728, "effect different": 8853, "pretrained pile": 25742, "experiments pythia": 10474, "rates various": 27271, "humanwritten text": 13938, "bias gender": 3645, "times higher": 33162, "effective control": 8862, "considering different": 5723, "improvements code": 14356, "make difficult": 19467, "largescale datasets": 17347, "methods context": 20013, "design particular": 7713, "test methods": 32775, "using longer": 34827, "tool identify": 33259, "gpts llama": 13164, "challenges opportunities": 4364, "necessity finetuning": 22615, "pretrained llama": 25703, "large bias": 16932, "individual layers": 14716, "techniques improving": 32643, "achieving acceptable": 1082, "accessible models": 833, "study identifies": 31341, "lower temperature": 19291, "range 05": 27186, "contextual embeddings": 5949, "understanding transformers": 34277, "does harm": 8528, "bias terms": 3664, "introduce experimental": 15506, "impact important": 14125, "approach extends": 2278, "previous tokens": 25890, "attention recent": 2738, "million tokens": 20166, "tokens generated": 33229, "opt pythia": 23601, "deployment largescale": 7654, "modeling pairwise": 20903, "research aimed": 28288, "interpretable attention": 15461, "weights llm": 35510, "efficient adaptation": 9021, "learning learn": 17597, "order understand": 23678, "questions demonstrating": 27105, "llms retrieval": 18919, "retrieval significantly": 28753, "model retrievalaugmented": 20760, "good bad": 12817, "transformers increasing": 33785, "zeroshot language": 35982, "llms uncovering": 19016, "benchmarks demonstrates": 3438, "exhibits remarkable": 10249, "work observe": 35737, "observe finetuning": 23227, "accuracy zeroshot": 916, "models highlight": 21355, "works make": 35816, "behavior icl": 3314, "llms costly": 18495, "takes account": 32031, "scheme designed": 29233, "different groups": 8080, "time sparsity": 33143, "improves efficiency": 14375, "holistically evaluate": 13745, "contributes improving": 6033, "step en": 31042, "en route": 9279, "route enabling": 28989, "enabling widespread": 9330, "lms crucial": 19076, "detecting mitigating": 7858, "trainingbased methods": 33647, "output logits": 23874, "reducing average": 27743, "samples limited": 29083, "applicability approach": 2118, "embeddings capture": 9138, "scaling findings": 29162, "balance model": 3079, "distributed model": 8386, "7b chat": 533, "trained direct": 33390, "average including": 3020, "small diverse": 30340, "domains recent": 8635, "methods test": 20103, "reducing llm": 27753, "new challenges": 22786, "adapting new": 1213, "llm large": 18327, "reason introduce": 27356, "accuracy evaluating": 875, "effectively paper": 8926, "llms implement": 18683, "comparable existing": 5078, "enabling model": 9325, "frontier large": 11932, "extend model": 10656, "neurons consistently": 22769, "understanding mechanisms": 34251, "models contextual": 21105, "performance spatial": 24761, "study automatic": 31303, "work delve": 35689, "models selected": 21959, "explore behavior": 10574, "google colab": 12828, "increasingly large": 14640, "method prune": 19962, "big challenge": 3699, "size context": 30242, "models fields": 21269, "domain natural": 8575, "domains llms": 8631, "finetuning terms": 11547, "identify strong": 14017, "techniques terms": 32667, "approach creating": 2254, "presents scalable": 25593, "prominent language": 26266, "models diverge": 21163, "preserve model": 25603, "sample complexity": 29065, "set trained": 29712, "incorporating novel": 14578, "novel methods": 23099, "providing additional": 26771, "projection weight": 26252, "potential improving": 25265, "exciting promise": 10184, "analysis models": 1943, "techniques approaches": 32628, "limitations stateoftheart": 17934, "understanding latent": 34243, "provide opensource": 26720, "sizes existing": 30298, "models means": 21710, "adaptation technique": 1194, "families roberta": 10971, "hallucinations paper": 13398, "model limited": 20616, "financial applications": 11217, "llms computationally": 18483, "lora qlora": 19234, "llms financial": 18607, "tasks financial": 32331, "financial tasks": 11222, "surge large": 31725, "original distribution": 23704, "llms fewer": 18604, "uses features": 34709, "instruction pairs": 15173, "pretraining ultimately": 25850, "achieve specific": 989, "arbitrary batch": 2429, "finetuning required": 11509, "specific subset": 30716, "method address": 19872, "complex structure": 5294, "approaches lead": 2379, "framework experimental": 11852, "models combinatorial": 21062, "stateoftheart results natural": 30984, "pretrained transformer language": 25762, "different attention heads": 8053, "models trained specific": 22075, "using transfer learning": 34932, "code data used": 4741, "popular pretrained language": 25137, "models gpt2 model": 21326, "long sequence lengths": 19177, "evaluate endtoend performance": 9836, "remains unclear paper": 28017, "neural network architecture": 22739, "language models downstream": 16312, "model pretrained language": 20721, "depends number parameters": 7626, "zeroshot fewshot chainofthought": 35972, "reducing gender bias": 27749, "demonstrate superiority approach": 7506, "instruction finetuned language": 15155, "semantic role labeling": 29470, "models llms necessitates": 21590, "tasks findings reveal": 32333, "selfsupervised learning ssl": 29438, "existing methods require": 10294, "come cost significant": 4967, "modern transformer models": 22174, "llms llama vicuna": 18773, "better alignment human": 3590, "techniques like knowledge": 32648, "models pretrained pile": 21847, "number training samples": 23171, "instruction data quality": 15148, "language models substantial": 16717, "models llms increasing": 21566, "realworld applications understanding": 27335, "models trained realworld": 22072, "trained realworld dataset": 33422, "training data points": 33487, "largescale transformerbased language": 17386, "models capable handling": 21042, "llms recently gained": 18896, "summary work contributes": 31634, "work contributes improving": 35684, "crucial step en": 6448, "step en route": 31043, "en route enabling": 9280, "route enabling widespread": 28990, "enabling widespread adoption": 9331, "detecting mitigating hallucinations": 7859, "like glue superglue": 17864, "models downstream tasks": 21173, "trained direct preference": 33391, "llm large language": 18328, "models llms implement": 21560, "syntactic semantic information": 31824, "increases model size": 14615, "models increasingly large": 21391, "window size context": 35614, "domain natural language": 8576, "llama 7b chat": 18068, "techniques terms accuracy": 32668, "prominent language models": 26267, "using single gpu": 34912, "matches outperforms stateoftheart": 19655, "projection weight matrices": 26253, "understanding latent representations": 34244, "model sizes existing": 20798, "task text generation": 32199, "training data quality": 33489, "models crucial step": 21117, "lowrank adaptation technique": 19302, "surge large language": 31726, "finetuning specific tasks": 11532, "performance language modeling": 24641, "empirical evaluations demonstrate": 9223, "models gpt4 llama": 21334, "arbitrary batch size": 2430, "paper introduce simple": 24061, "framework experimental results": 11853, "language models combinatorial": 16281, "solution address challenges": 30469, "stateoftheart results natural language": 30985, "pretrained transformer language models": 25763, "popular pretrained language models": 25138, "transformer language models large": 33726, "generative pretrained transformer models": 12698, "model pretrained language models": 20722, "finetuning pretrained language model": 11488, "large language models transformer": 17213, "instruction finetuned language models": 15156, "language models llms necessitates": 16525, "sizes 7b 13b 30b": 30295, "large language model named": 16983, "language models llms increasing": 16504, "largescale transformerbased language models": 17387, "summary work contributes improving": 31635, "crucial step en route": 6449, "step en route enabling": 31044, "en route enabling widespread": 9281, "route enabling widespread adoption": 28991, "benchmarks like glue superglue": 3456, "language models downstream tasks": 16313, "trained direct preference optimization": 33392, "llm large language models": 18329, "language models llms implement": 16498, "language models increasingly large": 16389, "domain natural language processing": 8577, "paper present novel method": 24093, "language models crucial step": 16294, "large language models financial": 17022, "surge large language models": 31727, "language models gpt4 llama": 16374, "stateoftheart results natural language processing": 30986, "pretrained transformer language models large": 25764, "large language models llms necessitates": 17117, "large language models llms increasing": 17105, "crucial step en route enabling": 6450, "step en route enabling widespread": 31045, "en route enabling widespread adoption": 9282, "llm large language models llms": 18330, "large language models llms implement": 17102, "domain natural language processing nlp": 8578, "surge large language models llms": 31728, "large language models gpt4 llama": 17042, "goldstandard": 12815, "occurrences": 23276, "companys": 5071, "belong": 3345, "court": 6313, "fallacy": 10953, "genre": 12721, "female": 11080, "longshort": 19212, "15m": 154, "amplification": 1893, "sparking": 30605, "bloomberggpt": 3792, "letters": 17728, "lawyers": 17421, "mediation": 19765, "trying": 33948, "attracts": 2755, "tta": 33951, "clearcut": 4648, "ecologically": 8806, "affairs": 1535, "new sampling": 22841, "fundamental question": 11981, "racial bias": 27144, "proposes framework": 26628, "ability write": 731, "effects observed": 8982, "text results": 32933, "framework generating": 11862, "data challenge": 6630, "set augmentation": 29671, "set unlabeled": 29713, "analysis training": 1973, "training nlp": 33574, "shown capture": 29871, "data unfortunately": 6900, "texts providing": 32999, "representations neural": 28169, "language introduce": 16101, "models wild": 22131, "generated topic": 12397, "language key": 16102, "nlp application": 22920, "layers predictive": 17444, "analysis involves": 1933, "way model": 35445, "corpus evaluate": 6182, "probing framework": 25982, "properties experiments": 26471, "biases pretrained": 3683, "finegrained analysis": 11268, "perform human": 24490, "test participants": 32777, "analyze effect": 1991, "plms exhibit": 25044, "lexical diversity": 17799, "specifically adapted": 30727, "present evidence": 25529, "showcase models": 29837, "accurately identifying": 936, "failing meet": 10911, "rapid evolution": 27251, "models reinforcing": 21917, "domains sparking": 8638, "sparking great": 30606, "unlike proprietary": 34403, "unique data": 34358, "errors present": 9726, "current knowledge": 6495, "provides evidence": 26751, "method analyzing": 19877, "understand potential": 34199, "future investigations": 12034, "data demonstrated": 6673, "analysis critical": 1915, "gradientbased methods": 13193, "behaviors transformer": 3329, "20 large": 210, "solving text": 30519, "study harness": 31337, "emerging field": 9192, "gender racial": 12153, "computational analysis": 5453, "science findings": 29242, "ability predict": 711, "causal mediation": 4244, "automated circuit": 2857, "circuit discovery": 4568, "datasets addition": 7060, "ability acquire": 653, "analysis types": 1974, "diverse types": 8470, "semantics syntax": 29489, "predictive results": 25455, "features using": 11045, "attempt create": 2703, "ensuring seamless": 9613, "proficiency comprehending": 26179, "comprehending generating": 5338, "models attributed": 20994, "sourced various": 30573, "data conducted": 6653, "demonstrate reduction": 7487, "detection dataset": 7865, "light challenges": 17827, "reveal inherent": 28800, "models tendency": 22051, "scarcity largescale": 29193, "human judges": 13832, "experiments gpt35": 10446, "making comprehensive": 19500, "humanlike texts": 13911, "challenging distinguish": 4382, "gpt2 chatgpt": 12877, "classify sentiment": 4631, "large legal": 17224, "ecologically valid": 8807, "content control": 5854, "approach detect": 2259, "using news": 34859, "llama increasingly": 18113, "techniques large": 32646, "using neural language": 34854, "gpt2 model way": 12924, "paper proposes framework": 24123, "gpt2 models trained": 12929, "training set augmentation": 33610, "set unlabeled data": 29714, "training nlp models": 33575, "language models wild": 16758, "language key challenge": 16103, "automatic text generation": 2900, "neural network based": 22741, "sentiment analysis involves": 29568, "based t5 model": 3227, "studies shown large": 31284, "models code data": 21058, "failing meet requirements": 10912, "language models bias": 16264, "domains sparking great": 8639, "unlike proprietary models": 34404, "work provides evidence": 35765, "conduct quantitative analysis": 5617, "sentiment analysis critical": 29567, "behaviors transformer models": 3330, "llms potential transform": 18859, "realworld use case": 27352, "automated circuit discovery": 2858, "novel method detecting": 23097, "gpt4 demonstrated impressive": 13071, "proficiency comprehending generating": 26180, "language models attributed": 16251, "generating humanlike texts": 12430, "using neural language models": 34855, "neural language models nlms": 22728, "models llms potential transform": 21603, "large language models attributed": 16993, "language models llms potential transform": 16538, "effects including": 8980, "providing insights": 26775, "abilities acquired": 623, "text different": 32845, "react differently": 27290, "performance quickly": 24729, "compared transformer": 5179, "analysis methods": 1941, "output values": 23885, "specific subnetworks": 30715, "gpt2 gptneo gptj": 12905, "deep learning learn": 7330, "spanning multiple": 30599, "mainly attributed": 19402, "explore efficacy": 10583, "models latent": 21435, "better informed": 3607, "introduce multimodal": 15517, "tasks 25": 32226, "pretrained models latent": 25725, "insights generated": 15076, "robust foundation": 28932, "llms like chatgpt llama": 18758, "models llms like chatgpt llama": 21576, "framework available": 11831 } } }