--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # open-hdscan-april3 This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("Thang203/open-hdscan-april3") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 11 * Number of training documents: 2779
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | models - language - model - llms - language models | 11 | -1_models_language_model_llms | | 0 | models - language - model - language models - llms | 792 | 0_models_language_model_language models | | 1 | code - models - llms - language - language models | 1082 | 1_code_models_llms_language | | 2 | models - quantization - model - training - language | 311 | 2_models_quantization_model_training | | 3 | models - bias - text - language - biases | 297 | 3_models_bias_text_language | | 4 | brain - models - language - heads - attention | 152 | 4_brain_models_language_heads | | 5 | hallucinations - hallucination - models - visual - large | 34 | 5_hallucinations_hallucination_models_visual | | 6 | music - audio - poetry - generation - model | 31 | 6_music_audio_poetry_generation | | 7 | financial - analysis - sentiment - investment - large | 30 | 7_financial_analysis_sentiment_investment | | 8 | editing - knowledge - model editing - editing methods - edit | 25 | 8_editing_knowledge_model editing_editing methods | | 9 | materials - molecular - chemical - chemistry - materials science | 14 | 9_materials_molecular_chemical_chemistry |
## Training hyperparameters * calculate_probabilities: False * language: english * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: 11 * seed_topic_list: None * top_n_words: 10 * verbose: True * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 1.25.2 * HDBSCAN: 0.8.33 * UMAP: 0.5.6 * Pandas: 2.0.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.6.1 * Transformers: 4.38.2 * Numba: 0.58.1 * Plotly: 5.15.0 * Python: 3.10.12