File size: 6,343 Bytes
9564957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
license: mit
base_model: roberta-large
tags:
- generated_from_trainer
model-index:
- name: roberta-large_ALL_BCE_translations_multihead_19_shuffled_special_tokens
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-large_ALL_BCE_translations_multihead_19_shuffled_special_tokens

This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8569
- F1 Macro 0.1: 0.1078
- F1 Macro 0.15: 0.1410
- F1 Macro 0.2: 0.1700
- F1 Macro 0.25: 0.1957
- F1 Macro 0.3: 0.2179
- F1 Macro 0.35: 0.2383
- F1 Macro 0.4: 0.2580
- F1 Macro 0.45: 0.2757
- F1 Macro 0.5: 0.2935
- F1 Macro 0.55: 0.3110
- F1 Macro 0.6: 0.3275
- F1 Macro 0.65: 0.3425
- F1 Macro 0.7: 0.3592
- F1 Macro 0.75: 0.3717
- F1 Macro 0.8: 0.3829
- F1 Macro 0.85: 0.3903
- F1 Macro 0.9: 0.3847
- F1 Macro 0.95: 0.3225
- Threshold 0: 0.85
- Threshold 1: 0.8
- Threshold 2: 0.9
- Threshold 3: 0.9
- Threshold 4: 0.8
- Threshold 5: 0.8
- Threshold 6: 0.8
- Threshold 7: 0.9
- Threshold 8: 0.85
- Threshold 9: 0.8
- Threshold 10: 0.9
- Threshold 11: 0.85
- Threshold 12: 0.9
- Threshold 13: 0.85
- Threshold 14: 0.85
- Threshold 15: 0.9
- Threshold 16: 0.85
- Threshold 17: 0.9
- Threshold 18: 0.9
- 0: 0.1654
- 1: 0.3112
- 2: 0.3764
- 3: 0.3436
- 4: 0.4800
- 5: 0.4880
- 6: 0.4593
- 7: 0.3694
- 8: 0.3882
- 9: 0.5533
- 10: 0.5439
- 11: 0.5492
- 12: 0.2443
- 13: 0.2278
- 14: 0.4014
- 15: 0.3373
- 16: 0.4511
- 17: 0.6215
- 18: 0.2339
- Max F1: 0.3903
- Mean F1: 0.3971

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 2024
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | F1 Macro 0.1 | F1 Macro 0.15 | F1 Macro 0.2 | F1 Macro 0.25 | F1 Macro 0.3 | F1 Macro 0.35 | F1 Macro 0.4 | F1 Macro 0.45 | F1 Macro 0.5 | F1 Macro 0.55 | F1 Macro 0.6 | F1 Macro 0.65 | F1 Macro 0.7 | F1 Macro 0.75 | F1 Macro 0.8 | F1 Macro 0.85 | F1 Macro 0.9 | F1 Macro 0.95 | Threshold 0 | Threshold 1 | Threshold 2 | Threshold 3 | Threshold 4 | Threshold 5 | Threshold 6 | Threshold 7 | Threshold 8 | Threshold 9 | Threshold 10 | Threshold 11 | Threshold 12 | Threshold 13 | Threshold 14 | Threshold 15 | Threshold 16 | Threshold 17 | Threshold 18 | 0      | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     | 13     | 14     | 15     | 16     | 17     | 18     | Max F1 | Mean F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:------------:|:------------:|:------------:|:------------:|:------------:|:------------:|:------------:|:------------:|:------------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:-------:|
| 1.1311        | 1.0   | 5595  | 0.8741          | 0.0694       | 0.0845        | 0.1012       | 0.1184        | 0.1361       | 0.1543        | 0.1721       | 0.1896        | 0.2072       | 0.2254        | 0.2452       | 0.2638        | 0.2836       | 0.3001        | 0.3161       | 0.3204        | 0.3019       | 0.2198        | 0.75        | 0.8         | 0.85        | 0.9         | 0.7         | 0.8         | 0.85        | 0.85        | 0.8         | 0.8         | 0.95         | 0.8          | 0.85         | 0.9          | 0.9          | 0.9          | 0.85         | 0.95         | 0.9          | 0.0977 | 0.2012 | 0.3069 | 0.2180 | 0.3982 | 0.4146 | 0.4235 | 0.3110 | 0.3433 | 0.5029 | 0.5039 | 0.5275 | 0.2241 | 0.1802 | 0.3434 | 0.2343 | 0.3988 | 0.6105 | 0.2014 | 0.3204 | 0.3390  |
| 0.7682        | 2.0   | 11190 | 0.8513          | 0.0938       | 0.1227        | 0.1492       | 0.1724        | 0.1944       | 0.2135        | 0.2336       | 0.2515        | 0.2706       | 0.2880        | 0.3058       | 0.3210        | 0.3374       | 0.3576        | 0.3733       | 0.3780        | 0.3697       | 0.3019        | 0.8         | 0.85        | 0.85        | 0.9         | 0.8         | 0.9         | 0.8         | 0.9         | 0.9         | 0.8         | 0.9          | 0.85         | 0.9          | 0.8          | 0.85         | 0.9          | 0.85         | 0.9          | 0.9          | 0.1535 | 0.3002 | 0.3611 | 0.3365 | 0.4672 | 0.4768 | 0.4414 | 0.3609 | 0.3684 | 0.5407 | 0.5423 | 0.5455 | 0.2423 | 0.1915 | 0.3768 | 0.3296 | 0.4296 | 0.6282 | 0.2284 | 0.3780 | 0.3853  |
| 0.606         | 3.0   | 16785 | 0.8569          | 0.1078       | 0.1410        | 0.1700       | 0.1957        | 0.2179       | 0.2383        | 0.2580       | 0.2757        | 0.2935       | 0.3110        | 0.3275       | 0.3425        | 0.3592       | 0.3717        | 0.3829       | 0.3903        | 0.3847       | 0.3225        | 0.85        | 0.8         | 0.9         | 0.9         | 0.8         | 0.8         | 0.8         | 0.9         | 0.85        | 0.8         | 0.9          | 0.85         | 0.9          | 0.85         | 0.85         | 0.9          | 0.85         | 0.9          | 0.9          | 0.1654 | 0.3112 | 0.3764 | 0.3436 | 0.4800 | 0.4880 | 0.4593 | 0.3694 | 0.3882 | 0.5533 | 0.5439 | 0.5492 | 0.2443 | 0.2278 | 0.4014 | 0.3373 | 0.4511 | 0.6215 | 0.2339 | 0.3903 | 0.3971  |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2