Xenova HF staff commited on
Commit
a26bf08
·
verified ·
1 Parent(s): 9e516c8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -0
README.md CHANGED
@@ -9187,6 +9187,39 @@ Query: Where can I get the best tacos?
9187
  tensor(0.2797) Mexico City of Course!
9188
  tensor(0.1250) The Data Cloud!
9189
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9190
  ## Contact
9191
 
9192
 
 
9187
  tensor(0.2797) Mexico City of Course!
9188
  tensor(0.1250) The Data Cloud!
9189
  ```
9190
+
9191
+ ### Using Huggingface Transformers.js
9192
+
9193
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
9194
+ ```bash
9195
+ npm i @huggingface/transformers
9196
+ ```
9197
+
9198
+ You can then use the model for retrieval, as follows:
9199
+
9200
+ ```js
9201
+ import { pipeline, dot } from '@huggingface/transformers';
9202
+
9203
+ // Create feature extraction pipeline
9204
+ const extractor = await pipeline('feature-extraction', 'Snowflake/snowflake-arctic-embed-m-v2.0', {
9205
+ dtype: 'q8',
9206
+ });
9207
+
9208
+ // Generate sentence embeddings
9209
+ const sentences = [
9210
+ 'query: what is snowflake?',
9211
+ 'The Data Cloud!',
9212
+ 'Mexico City of Course!',
9213
+ ]
9214
+ const output = await extractor(sentences, { normalize: true, pooling: 'cls' });
9215
+
9216
+ // Compute similarity scores
9217
+ const [source_embeddings, ...document_embeddings ] = output.tolist();
9218
+ const similarities = document_embeddings.map(x => dot(source_embeddings, x));
9219
+ console.log(similarities); // [0.24783534471401417, 0.05313122704326892]
9220
+ ```
9221
+
9222
+
9223
  ## Contact
9224
 
9225