File size: 2,154 Bytes
5668656 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: trainer_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# trainer_1
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.3044
- Precision: 0.5942
- Recall: 0.5
- F1: 0.5025
- Accuracy: 0.5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0878 | 0.57 | 30 | 4.2282 | 0.6436 | 0.5714 | 0.5864 | 0.5714 |
| 0.0 | 1.13 | 60 | 4.2780 | 0.5942 | 0.5 | 0.5025 | 0.5 |
| 0.0 | 1.7 | 90 | 4.2442 | 0.5942 | 0.5 | 0.5025 | 0.5 |
| 0.0 | 2.26 | 120 | 4.2581 | 0.5942 | 0.5 | 0.5025 | 0.5 |
| 0.0 | 2.83 | 150 | 4.2636 | 0.5942 | 0.5 | 0.5025 | 0.5 |
| 0.0 | 3.4 | 180 | 4.2857 | 0.5942 | 0.5 | 0.5025 | 0.5 |
| 0.0 | 3.96 | 210 | 4.2952 | 0.5942 | 0.5 | 0.5025 | 0.5 |
| 0.0 | 4.53 | 240 | 4.3025 | 0.5942 | 0.5 | 0.5025 | 0.5 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|