update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: lmv2-g-w9-2018-148-doc-07-07_1
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# lmv2-g-w9-2018-148-doc-07-07_1
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.0160
|
18 |
+
- Address Precision: 0.9667
|
19 |
+
- Address Recall: 0.9667
|
20 |
+
- Address F1: 0.9667
|
21 |
+
- Address Number: 30
|
22 |
+
- Business Name Precision: 1.0
|
23 |
+
- Business Name Recall: 1.0
|
24 |
+
- Business Name F1: 1.0
|
25 |
+
- Business Name Number: 29
|
26 |
+
- City State Zip Code Precision: 1.0
|
27 |
+
- City State Zip Code Recall: 1.0
|
28 |
+
- City State Zip Code F1: 1.0
|
29 |
+
- City State Zip Code Number: 30
|
30 |
+
- Ein Precision: 0.0
|
31 |
+
- Ein Recall: 0.0
|
32 |
+
- Ein F1: 0.0
|
33 |
+
- Ein Number: 1
|
34 |
+
- List Account Number Precision: 1.0
|
35 |
+
- List Account Number Recall: 1.0
|
36 |
+
- List Account Number F1: 1.0
|
37 |
+
- List Account Number Number: 11
|
38 |
+
- Name Precision: 1.0
|
39 |
+
- Name Recall: 1.0
|
40 |
+
- Name F1: 1.0
|
41 |
+
- Name Number: 30
|
42 |
+
- Ssn Precision: 0.8333
|
43 |
+
- Ssn Recall: 1.0
|
44 |
+
- Ssn F1: 0.9091
|
45 |
+
- Ssn Number: 10
|
46 |
+
- Overall Precision: 0.9789
|
47 |
+
- Overall Recall: 0.9858
|
48 |
+
- Overall F1: 0.9823
|
49 |
+
- Overall Accuracy: 0.9995
|
50 |
+
|
51 |
+
## Model description
|
52 |
+
|
53 |
+
More information needed
|
54 |
+
|
55 |
+
## Intended uses & limitations
|
56 |
+
|
57 |
+
More information needed
|
58 |
+
|
59 |
+
## Training and evaluation data
|
60 |
+
|
61 |
+
More information needed
|
62 |
+
|
63 |
+
## Training procedure
|
64 |
+
|
65 |
+
### Training hyperparameters
|
66 |
+
|
67 |
+
The following hyperparameters were used during training:
|
68 |
+
- learning_rate: 4e-05
|
69 |
+
- train_batch_size: 1
|
70 |
+
- eval_batch_size: 1
|
71 |
+
- seed: 42
|
72 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
+
- lr_scheduler_type: constant
|
74 |
+
- num_epochs: 30
|
75 |
+
|
76 |
+
### Training results
|
77 |
+
|
78 |
+
| Training Loss | Epoch | Step | Validation Loss | Address Precision | Address Recall | Address F1 | Address Number | Business Name Precision | Business Name Recall | Business Name F1 | Business Name Number | City State Zip Code Precision | City State Zip Code Recall | City State Zip Code F1 | City State Zip Code Number | Ein Precision | Ein Recall | Ein F1 | Ein Number | List Account Number Precision | List Account Number Recall | List Account Number F1 | List Account Number Number | Name Precision | Name Recall | Name F1 | Name Number | Ssn Precision | Ssn Recall | Ssn F1 | Ssn Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
79 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------------------:|:--------------------:|:----------------:|:--------------------:|:-----------------------------:|:--------------------------:|:----------------------:|:--------------------------:|:-------------:|:----------:|:------:|:----------:|:-----------------------------:|:--------------------------:|:----------------------:|:--------------------------:|:--------------:|:-----------:|:-------:|:-----------:|:-------------:|:----------:|:------:|:----------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
80 |
+
| 1.5672 | 1.0 | 118 | 1.1527 | 0.0 | 0.0 | 0.0 | 30 | 0.0 | 0.0 | 0.0 | 29 | 0.0 | 0.0 | 0.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 0.0 | 0.0 | 0.0 | 11 | 0.0 | 0.0 | 0.0 | 30 | 0.0 | 0.0 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 0.9642 |
|
81 |
+
| 0.8804 | 2.0 | 236 | 0.5661 | 0.2095 | 0.7333 | 0.3259 | 30 | 0.0 | 0.0 | 0.0 | 29 | 0.0 | 0.0 | 0.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 0.0 | 0.0 | 0.0 | 11 | 0.0 | 0.0 | 0.0 | 30 | 0.0 | 0.0 | 0.0 | 10 | 0.2095 | 0.1560 | 0.1789 | 0.9704 |
|
82 |
+
| 0.3739 | 3.0 | 354 | 0.2118 | 0.9375 | 1.0 | 0.9677 | 30 | 0.7143 | 0.1724 | 0.2778 | 29 | 0.9375 | 1.0 | 0.9677 | 30 | 0.0 | 0.0 | 0.0 | 1 | 0.8182 | 0.8182 | 0.8182 | 11 | 0.5 | 1.0 | 0.6667 | 30 | 0.75 | 0.9 | 0.8182 | 10 | 0.7338 | 0.8014 | 0.7661 | 0.9932 |
|
83 |
+
| 0.1626 | 4.0 | 472 | 0.1155 | 0.9375 | 1.0 | 0.9677 | 30 | 0.8710 | 0.9310 | 0.9 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 0.6923 | 0.8182 | 0.7500 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.7 | 0.7 | 0.7 | 10 | 0.9110 | 0.9433 | 0.9268 | 0.9976 |
|
84 |
+
| 0.1031 | 5.0 | 590 | 0.0817 | 0.9355 | 0.9667 | 0.9508 | 30 | 0.8125 | 0.8966 | 0.8525 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 0.6923 | 0.8182 | 0.7500 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8182 | 0.9 | 0.8571 | 10 | 0.9048 | 0.9433 | 0.9236 | 0.9981 |
|
85 |
+
| 0.0769 | 6.0 | 708 | 0.0634 | 0.9355 | 0.9667 | 0.9508 | 30 | 0.9333 | 0.9655 | 0.9492 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 0.6923 | 0.8182 | 0.7500 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8182 | 0.9 | 0.8571 | 10 | 0.9310 | 0.9574 | 0.9441 | 0.9984 |
|
86 |
+
| 0.0614 | 7.0 | 826 | 0.0518 | 0.9667 | 0.9667 | 0.9667 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 0.6923 | 0.8182 | 0.7500 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8182 | 0.9 | 0.8571 | 10 | 0.9510 | 0.9645 | 0.9577 | 0.9991 |
|
87 |
+
| 0.0509 | 8.0 | 944 | 0.0432 | 0.9667 | 0.9667 | 0.9667 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 0.8333 | 0.9091 | 0.8696 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8182 | 0.9 | 0.8571 | 10 | 0.9648 | 0.9716 | 0.9682 | 0.9994 |
|
88 |
+
| 0.0431 | 9.0 | 1062 | 0.0369 | 0.9667 | 0.9667 | 0.9667 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8182 | 0.9 | 0.8571 | 10 | 0.9787 | 0.9787 | 0.9787 | 0.9994 |
|
89 |
+
| 0.037 | 10.0 | 1180 | 0.0313 | 0.9667 | 0.9667 | 0.9667 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8182 | 0.9 | 0.8571 | 10 | 0.9787 | 0.9787 | 0.9787 | 0.9994 |
|
90 |
+
| 0.0328 | 11.0 | 1298 | 0.0281 | 0.9667 | 0.9667 | 0.9667 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.7143 | 1.0 | 0.8333 | 10 | 0.9653 | 0.9858 | 0.9754 | 0.9994 |
|
91 |
+
| 0.0295 | 12.0 | 1416 | 0.0246 | 0.7429 | 0.8667 | 0.8 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.6667 | 0.8 | 0.7273 | 10 | 0.9116 | 0.9504 | 0.9306 | 0.9991 |
|
92 |
+
| 0.0251 | 13.0 | 1534 | 0.0207 | 0.9677 | 1.0 | 0.9836 | 30 | 0.9333 | 0.9655 | 0.9492 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8333 | 1.0 | 0.9091 | 10 | 0.9653 | 0.9858 | 0.9754 | 0.9994 |
|
93 |
+
| 0.0231 | 14.0 | 1652 | 0.0210 | 0.9667 | 0.9667 | 0.9667 | 30 | 1.0 | 0.9655 | 0.9825 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8333 | 1.0 | 0.9091 | 10 | 0.9787 | 0.9787 | 0.9787 | 0.9991 |
|
94 |
+
| 0.0184 | 15.0 | 1770 | 0.0160 | 0.9667 | 0.9667 | 0.9667 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8333 | 1.0 | 0.9091 | 10 | 0.9789 | 0.9858 | 0.9823 | 0.9995 |
|
95 |
+
| 0.0162 | 16.0 | 1888 | 0.0142 | 0.9667 | 0.9667 | 0.9667 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8333 | 1.0 | 0.9091 | 10 | 0.9789 | 0.9858 | 0.9823 | 0.9995 |
|
96 |
+
| 0.0142 | 17.0 | 2006 | 0.0127 | 0.9667 | 0.9667 | 0.9667 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8333 | 1.0 | 0.9091 | 10 | 0.9789 | 0.9858 | 0.9823 | 0.9995 |
|
97 |
+
| 0.0123 | 18.0 | 2124 | 0.0114 | 0.9667 | 0.9667 | 0.9667 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8333 | 1.0 | 0.9091 | 10 | 0.9789 | 0.9858 | 0.9823 | 0.9995 |
|
98 |
+
| 0.0118 | 19.0 | 2242 | 0.0152 | 0.9677 | 1.0 | 0.9836 | 30 | 0.6765 | 0.7931 | 0.7302 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 0.8333 | 0.9091 | 0.8696 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8182 | 0.9 | 0.8571 | 10 | 0.8859 | 0.9362 | 0.9103 | 0.9986 |
|
99 |
+
| 0.0104 | 20.0 | 2360 | 0.0125 | 0.9677 | 1.0 | 0.9836 | 30 | 1.0 | 0.9655 | 0.9825 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.9091 | 1.0 | 0.9524 | 10 | 0.9789 | 0.9858 | 0.9823 | 0.9992 |
|
100 |
+
| 0.0092 | 21.0 | 2478 | 0.0113 | 0.9677 | 1.0 | 0.9836 | 30 | 1.0 | 0.9655 | 0.9825 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8333 | 1.0 | 0.9091 | 10 | 0.9653 | 0.9858 | 0.9754 | 0.9993 |
|
101 |
+
| 0.0089 | 22.0 | 2596 | 0.0111 | 0.9677 | 1.0 | 0.9836 | 30 | 1.0 | 0.9655 | 0.9825 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8333 | 1.0 | 0.9091 | 10 | 0.9789 | 0.9858 | 0.9823 | 0.9992 |
|
102 |
+
| 0.0076 | 23.0 | 2714 | 0.0107 | 0.9677 | 1.0 | 0.9836 | 30 | 0.9310 | 0.9310 | 0.9310 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8333 | 1.0 | 0.9091 | 10 | 0.9650 | 0.9787 | 0.9718 | 0.9991 |
|
103 |
+
| 0.0074 | 24.0 | 2832 | 0.0105 | 0.9677 | 1.0 | 0.9836 | 30 | 0.9310 | 0.9310 | 0.9310 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8182 | 0.9 | 0.8571 | 10 | 0.9514 | 0.9716 | 0.9614 | 0.9990 |
|
104 |
+
| 0.007 | 25.0 | 2950 | 0.0092 | 0.9677 | 1.0 | 0.9836 | 30 | 1.0 | 0.9655 | 0.9825 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.7692 | 1.0 | 0.8696 | 10 | 0.9720 | 0.9858 | 0.9789 | 0.9991 |
|
105 |
+
| 0.0062 | 26.0 | 3068 | 0.0061 | 0.9677 | 1.0 | 0.9836 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.7143 | 1.0 | 0.8333 | 10 | 0.9655 | 0.9929 | 0.9790 | 0.9994 |
|
106 |
+
| 0.0057 | 27.0 | 3186 | 0.0056 | 0.9677 | 1.0 | 0.9836 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8182 | 0.9 | 0.8571 | 10 | 0.9720 | 0.9858 | 0.9789 | 0.9995 |
|
107 |
+
| 0.0047 | 28.0 | 3304 | 0.0054 | 0.9677 | 1.0 | 0.9836 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.7143 | 1.0 | 0.8333 | 10 | 0.9655 | 0.9929 | 0.9790 | 0.9994 |
|
108 |
+
| 0.0042 | 29.0 | 3422 | 0.0052 | 0.9677 | 1.0 | 0.9836 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.7143 | 1.0 | 0.8333 | 10 | 0.9655 | 0.9929 | 0.9790 | 0.9994 |
|
109 |
+
| 0.0039 | 30.0 | 3540 | 0.0049 | 0.9677 | 1.0 | 0.9836 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.7143 | 1.0 | 0.8333 | 10 | 0.9655 | 0.9929 | 0.9790 | 0.9994 |
|
110 |
+
|
111 |
+
|
112 |
+
### Framework versions
|
113 |
+
|
114 |
+
- Transformers 4.21.0.dev0
|
115 |
+
- Pytorch 1.11.0+cu113
|
116 |
+
- Datasets 2.2.2
|
117 |
+
- Tokenizers 0.12.1
|