--- library_name: transformers language: - fa license: apache-2.0 base_model: SadeghK/whisper-base tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_20_0 metrics: - wer model-index: - name: whisper-base-fa - Sadegh Karimi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 20.0 type: mozilla-foundation/common_voice_20_0 args: 'config: fa, split: train, test' metrics: - name: Wer type: wer value: 10.468362043705566 --- # whisper-base-fa - Sadegh Karimi This model is a fine-tuned version of [SadeghK/whisper-base](https://huggingface.co/SadeghK/whisper-base) on the Common Voice 20.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.0809 - Wer: 10.4684 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 40000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.1234 | 0.0493 | 1000 | 0.1698 | 21.8312 | | 0.1303 | 0.0986 | 2000 | 0.1663 | 22.9153 | | 0.1241 | 0.1479 | 3000 | 0.1623 | 20.8843 | | 0.1223 | 0.1972 | 4000 | 0.1616 | 20.7470 | | 0.1281 | 0.2465 | 5000 | 0.1522 | 19.3606 | | 0.1111 | 0.2958 | 6000 | 0.1483 | 20.0901 | | 0.1097 | 0.3451 | 7000 | 0.1452 | 19.0445 | | 0.1439 | 0.3944 | 8000 | 0.1367 | 18.0251 | | 0.1053 | 0.4437 | 9000 | 0.1347 | 17.5902 | | 0.1248 | 0.4930 | 10000 | 0.1281 | 16.9486 | | 0.1081 | 0.5423 | 11000 | 0.1252 | 15.9200 | | 0.1062 | 0.5916 | 12000 | 0.1222 | 15.8167 | | 0.1139 | 0.6409 | 13000 | 0.1181 | 15.6038 | | 0.1011 | 0.6902 | 14000 | 0.1145 | 15.0918 | | 0.098 | 0.7395 | 15000 | 0.1141 | 15.0194 | | 0.1176 | 0.7888 | 16000 | 0.1091 | 14.1048 | | 0.0933 | 0.8381 | 17000 | 0.1067 | 13.9028 | | 0.0981 | 0.8874 | 18000 | 0.1042 | 13.6391 | | 0.0909 | 0.9367 | 19000 | 0.1012 | 13.2119 | | 0.0714 | 0.9860 | 20000 | 0.1001 | 13.1826 | | 0.0491 | 1.0353 | 21000 | 0.0985 | 12.9251 | | 0.059 | 1.0846 | 22000 | 0.0966 | 12.6799 | | 0.0492 | 1.1339 | 23000 | 0.0959 | 12.4501 | | 0.0625 | 1.1832 | 24000 | 0.0943 | 12.5241 | | 0.0429 | 1.2325 | 25000 | 0.0946 | 12.4424 | | 0.0403 | 1.2818 | 26000 | 0.0931 | 12.1370 | | 0.0474 | 1.3311 | 27000 | 0.0921 | 11.7330 | | 0.0484 | 1.3804 | 28000 | 0.0910 | 11.5710 | | 0.0585 | 1.4297 | 29000 | 0.0896 | 11.7067 | | 0.0431 | 1.4790 | 30000 | 0.0890 | 11.3875 | | 0.045 | 1.5283 | 31000 | 0.0875 | 11.2842 | | 0.0494 | 1.5776 | 32000 | 0.0862 | 11.5433 | | 0.0448 | 1.6269 | 33000 | 0.0854 | 11.0282 | | 0.0508 | 1.6762 | 34000 | 0.0849 | 11.0498 | | 0.0432 | 1.7255 | 35000 | 0.0837 | 10.7583 | | 0.0356 | 1.7748 | 36000 | 0.0826 | 10.8339 | | 0.0353 | 1.8241 | 37000 | 0.0819 | 10.5300 | | 0.043 | 1.8734 | 38000 | 0.0815 | 10.4838 | | 0.0434 | 1.9227 | 39000 | 0.0812 | 10.5038 | | 0.0382 | 1.9720 | 40000 | 0.0809 | 10.4684 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.1.0+cu118 - Datasets 3.2.0 - Tokenizers 0.21.0