--- base_model: UBC-NLP/MARBERTv2 tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: Model3_Marabertv2_T1_WOS results: [] --- # Model3_Marabertv2_T1_WOS This model is a fine-tuned version of [UBC-NLP/MARBERTv2](https://huggingface.co/UBC-NLP/MARBERTv2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2308 - F1: 0.8430 - F1 Macro: 0.7804 - Roc Auc: 0.9048 - Accuracy: 0.8142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | F1 Macro | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:-------:|:--------:| | 0.2194 | 1.0 | 507 | 0.1556 | 0.8330 | 0.7507 | 0.8909 | 0.7947 | | 0.1166 | 2.0 | 1014 | 0.1850 | 0.8269 | 0.7439 | 0.8920 | 0.8010 | | 0.0747 | 3.0 | 1521 | 0.1915 | 0.8368 | 0.7724 | 0.8992 | 0.8115 | | 0.0445 | 4.0 | 2028 | 0.2034 | 0.8398 | 0.7695 | 0.9014 | 0.8149 | | 0.0301 | 5.0 | 2535 | 0.2308 | 0.8430 | 0.7804 | 0.9048 | 0.8142 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3