Ailusion-VTON-DEMO-v1
/
preprocess
/humanparsing
/mhp_extension
/detectron2
/tests
/data
/test_transforms.py
# -*- coding: utf-8 -*- | |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
import logging | |
import numpy as np | |
import unittest | |
from unittest import mock | |
from detectron2.config import get_cfg | |
from detectron2.data import detection_utils | |
from detectron2.data import transforms as T | |
from detectron2.utils.logger import setup_logger | |
logger = logging.getLogger(__name__) | |
class TestTransforms(unittest.TestCase): | |
def setUp(self): | |
setup_logger() | |
def test_apply_rotated_boxes(self): | |
np.random.seed(125) | |
cfg = get_cfg() | |
is_train = True | |
transform_gen = detection_utils.build_transform_gen(cfg, is_train) | |
image = np.random.rand(200, 300) | |
image, transforms = T.apply_transform_gens(transform_gen, image) | |
image_shape = image.shape[:2] # h, w | |
assert image_shape == (800, 1200) | |
annotation = {"bbox": [179, 97, 62, 40, -56]} | |
boxes = np.array([annotation["bbox"]], dtype=np.float64) # boxes.shape = (1, 5) | |
transformed_bbox = transforms.apply_rotated_box(boxes)[0] | |
expected_bbox = np.array([484, 388, 248, 160, 56], dtype=np.float64) | |
err_msg = "transformed_bbox = {}, expected {}".format(transformed_bbox, expected_bbox) | |
assert np.allclose(transformed_bbox, expected_bbox), err_msg | |
def test_apply_rotated_boxes_unequal_scaling_factor(self): | |
np.random.seed(125) | |
h, w = 400, 200 | |
newh, neww = 800, 800 | |
image = np.random.rand(h, w) | |
transform_gen = [] | |
transform_gen.append(T.Resize(shape=(newh, neww))) | |
image, transforms = T.apply_transform_gens(transform_gen, image) | |
image_shape = image.shape[:2] # h, w | |
assert image_shape == (newh, neww) | |
boxes = np.array( | |
[ | |
[150, 100, 40, 20, 0], | |
[150, 100, 40, 20, 30], | |
[150, 100, 40, 20, 90], | |
[150, 100, 40, 20, -90], | |
], | |
dtype=np.float64, | |
) | |
transformed_boxes = transforms.apply_rotated_box(boxes) | |
expected_bboxes = np.array( | |
[ | |
[600, 200, 160, 40, 0], | |
[600, 200, 144.22205102, 52.91502622, 49.10660535], | |
[600, 200, 80, 80, 90], | |
[600, 200, 80, 80, -90], | |
], | |
dtype=np.float64, | |
) | |
err_msg = "transformed_boxes = {}, expected {}".format(transformed_boxes, expected_bboxes) | |
assert np.allclose(transformed_boxes, expected_bboxes), err_msg | |
def test_print_transform_gen(self): | |
t = T.RandomCrop("relative", (100, 100)) | |
self.assertTrue(str(t) == "RandomCrop(crop_type='relative', crop_size=(100, 100))") | |
t = T.RandomFlip(prob=0.5) | |
self.assertTrue(str(t) == "RandomFlip(prob=0.5)") | |
t = T.RandomFlip() | |
self.assertTrue(str(t) == "RandomFlip()") | |
def test_random_apply_prob_out_of_range_check(self): | |
# GIVEN | |
test_probabilities = {0.0: True, 0.5: True, 1.0: True, -0.01: False, 1.01: False} | |
# WHEN | |
for given_probability, is_valid in test_probabilities.items(): | |
# THEN | |
if not is_valid: | |
self.assertRaises(AssertionError, T.RandomApply, None, prob=given_probability) | |
else: | |
T.RandomApply(T.NoOpTransform(), prob=given_probability) | |
def test_random_apply_wrapping_transform_gen_probability_occured_evaluation(self): | |
# GIVEN | |
transform_mock = mock.MagicMock(name="MockTransform", spec=T.TransformGen) | |
image_mock = mock.MagicMock(name="MockImage") | |
random_apply = T.RandomApply(transform_mock, prob=0.001) | |
# WHEN | |
with mock.patch.object(random_apply, "_rand_range", return_value=0.0001): | |
transform = random_apply.get_transform(image_mock) | |
# THEN | |
transform_mock.get_transform.assert_called_once_with(image_mock) | |
self.assertIsNot(transform, transform_mock) | |
def test_random_apply_wrapping_std_transform_probability_occured_evaluation(self): | |
# GIVEN | |
transform_mock = mock.MagicMock(name="MockTransform", spec=T.Transform) | |
image_mock = mock.MagicMock(name="MockImage") | |
random_apply = T.RandomApply(transform_mock, prob=0.001) | |
# WHEN | |
with mock.patch.object(random_apply, "_rand_range", return_value=0.0001): | |
transform = random_apply.get_transform(image_mock) | |
# THEN | |
self.assertIs(transform, transform_mock) | |
def test_random_apply_probability_not_occured_evaluation(self): | |
# GIVEN | |
transform_mock = mock.MagicMock(name="MockTransform", spec=T.TransformGen) | |
image_mock = mock.MagicMock(name="MockImage") | |
random_apply = T.RandomApply(transform_mock, prob=0.001) | |
# WHEN | |
with mock.patch.object(random_apply, "_rand_range", return_value=0.9): | |
transform = random_apply.get_transform(image_mock) | |
# THEN | |
transform_mock.get_transform.assert_not_called() | |
self.assertIsInstance(transform, T.NoOpTransform) | |