uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
vicuna-7b-v1.3-attention-sparsity-20 - GGUF
|
11 |
+
- Model creator: https://huggingface.co/wang7776/
|
12 |
+
- Original model: https://huggingface.co/wang7776/vicuna-7b-v1.3-attention-sparsity-20/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [vicuna-7b-v1.3-attention-sparsity-20.Q2_K.gguf](https://huggingface.co/RichardErkhov/wang7776_-_vicuna-7b-v1.3-attention-sparsity-20-gguf/blob/main/vicuna-7b-v1.3-attention-sparsity-20.Q2_K.gguf) | Q2_K | 2.36GB |
|
18 |
+
| [vicuna-7b-v1.3-attention-sparsity-20.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/wang7776_-_vicuna-7b-v1.3-attention-sparsity-20-gguf/blob/main/vicuna-7b-v1.3-attention-sparsity-20.IQ3_XS.gguf) | IQ3_XS | 2.6GB |
|
19 |
+
| [vicuna-7b-v1.3-attention-sparsity-20.IQ3_S.gguf](https://huggingface.co/RichardErkhov/wang7776_-_vicuna-7b-v1.3-attention-sparsity-20-gguf/blob/main/vicuna-7b-v1.3-attention-sparsity-20.IQ3_S.gguf) | IQ3_S | 2.75GB |
|
20 |
+
| [vicuna-7b-v1.3-attention-sparsity-20.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/wang7776_-_vicuna-7b-v1.3-attention-sparsity-20-gguf/blob/main/vicuna-7b-v1.3-attention-sparsity-20.Q3_K_S.gguf) | Q3_K_S | 2.75GB |
|
21 |
+
| [vicuna-7b-v1.3-attention-sparsity-20.IQ3_M.gguf](https://huggingface.co/RichardErkhov/wang7776_-_vicuna-7b-v1.3-attention-sparsity-20-gguf/blob/main/vicuna-7b-v1.3-attention-sparsity-20.IQ3_M.gguf) | IQ3_M | 2.9GB |
|
22 |
+
| [vicuna-7b-v1.3-attention-sparsity-20.Q3_K.gguf](https://huggingface.co/RichardErkhov/wang7776_-_vicuna-7b-v1.3-attention-sparsity-20-gguf/blob/main/vicuna-7b-v1.3-attention-sparsity-20.Q3_K.gguf) | Q3_K | 3.07GB |
|
23 |
+
| [vicuna-7b-v1.3-attention-sparsity-20.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/wang7776_-_vicuna-7b-v1.3-attention-sparsity-20-gguf/blob/main/vicuna-7b-v1.3-attention-sparsity-20.Q3_K_M.gguf) | Q3_K_M | 3.07GB |
|
24 |
+
| [vicuna-7b-v1.3-attention-sparsity-20.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/wang7776_-_vicuna-7b-v1.3-attention-sparsity-20-gguf/blob/main/vicuna-7b-v1.3-attention-sparsity-20.Q3_K_L.gguf) | Q3_K_L | 3.35GB |
|
25 |
+
| [vicuna-7b-v1.3-attention-sparsity-20.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/wang7776_-_vicuna-7b-v1.3-attention-sparsity-20-gguf/blob/main/vicuna-7b-v1.3-attention-sparsity-20.IQ4_XS.gguf) | IQ4_XS | 3.4GB |
|
26 |
+
| [vicuna-7b-v1.3-attention-sparsity-20.Q4_0.gguf](https://huggingface.co/RichardErkhov/wang7776_-_vicuna-7b-v1.3-attention-sparsity-20-gguf/blob/main/vicuna-7b-v1.3-attention-sparsity-20.Q4_0.gguf) | Q4_0 | 3.56GB |
|
27 |
+
| [vicuna-7b-v1.3-attention-sparsity-20.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/wang7776_-_vicuna-7b-v1.3-attention-sparsity-20-gguf/blob/main/vicuna-7b-v1.3-attention-sparsity-20.IQ4_NL.gguf) | IQ4_NL | 3.58GB |
|
28 |
+
| [vicuna-7b-v1.3-attention-sparsity-20.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/wang7776_-_vicuna-7b-v1.3-attention-sparsity-20-gguf/blob/main/vicuna-7b-v1.3-attention-sparsity-20.Q4_K_S.gguf) | Q4_K_S | 3.59GB |
|
29 |
+
| [vicuna-7b-v1.3-attention-sparsity-20.Q4_K.gguf](https://huggingface.co/RichardErkhov/wang7776_-_vicuna-7b-v1.3-attention-sparsity-20-gguf/blob/main/vicuna-7b-v1.3-attention-sparsity-20.Q4_K.gguf) | Q4_K | 3.8GB |
|
30 |
+
| [vicuna-7b-v1.3-attention-sparsity-20.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/wang7776_-_vicuna-7b-v1.3-attention-sparsity-20-gguf/blob/main/vicuna-7b-v1.3-attention-sparsity-20.Q4_K_M.gguf) | Q4_K_M | 3.8GB |
|
31 |
+
| [vicuna-7b-v1.3-attention-sparsity-20.Q4_1.gguf](https://huggingface.co/RichardErkhov/wang7776_-_vicuna-7b-v1.3-attention-sparsity-20-gguf/blob/main/vicuna-7b-v1.3-attention-sparsity-20.Q4_1.gguf) | Q4_1 | 3.95GB |
|
32 |
+
| [vicuna-7b-v1.3-attention-sparsity-20.Q5_0.gguf](https://huggingface.co/RichardErkhov/wang7776_-_vicuna-7b-v1.3-attention-sparsity-20-gguf/blob/main/vicuna-7b-v1.3-attention-sparsity-20.Q5_0.gguf) | Q5_0 | 4.33GB |
|
33 |
+
| [vicuna-7b-v1.3-attention-sparsity-20.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/wang7776_-_vicuna-7b-v1.3-attention-sparsity-20-gguf/blob/main/vicuna-7b-v1.3-attention-sparsity-20.Q5_K_S.gguf) | Q5_K_S | 4.33GB |
|
34 |
+
| [vicuna-7b-v1.3-attention-sparsity-20.Q5_K.gguf](https://huggingface.co/RichardErkhov/wang7776_-_vicuna-7b-v1.3-attention-sparsity-20-gguf/blob/main/vicuna-7b-v1.3-attention-sparsity-20.Q5_K.gguf) | Q5_K | 4.45GB |
|
35 |
+
| [vicuna-7b-v1.3-attention-sparsity-20.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/wang7776_-_vicuna-7b-v1.3-attention-sparsity-20-gguf/blob/main/vicuna-7b-v1.3-attention-sparsity-20.Q5_K_M.gguf) | Q5_K_M | 4.45GB |
|
36 |
+
| [vicuna-7b-v1.3-attention-sparsity-20.Q5_1.gguf](https://huggingface.co/RichardErkhov/wang7776_-_vicuna-7b-v1.3-attention-sparsity-20-gguf/blob/main/vicuna-7b-v1.3-attention-sparsity-20.Q5_1.gguf) | Q5_1 | 4.72GB |
|
37 |
+
| [vicuna-7b-v1.3-attention-sparsity-20.Q6_K.gguf](https://huggingface.co/RichardErkhov/wang7776_-_vicuna-7b-v1.3-attention-sparsity-20-gguf/blob/main/vicuna-7b-v1.3-attention-sparsity-20.Q6_K.gguf) | Q6_K | 5.15GB |
|
38 |
+
| [vicuna-7b-v1.3-attention-sparsity-20.Q8_0.gguf](https://huggingface.co/RichardErkhov/wang7776_-_vicuna-7b-v1.3-attention-sparsity-20-gguf/blob/main/vicuna-7b-v1.3-attention-sparsity-20.Q8_0.gguf) | Q8_0 | 6.67GB |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
Original model description:
|
44 |
+
---
|
45 |
+
inference: false
|
46 |
+
license: apache-2.0
|
47 |
+
---
|
48 |
+
# Overview
|
49 |
+
This model has been pruned to 20% sparsity using the [Wanda pruning method](https://arxiv.org/abs/2306.11695) on attention layers. This method requires no retraining or weight updates and still achieves competitive performance. A link to the base model can be found [here](https://huggingface.co/lmsys/vicuna-7b-v1.3).
|
50 |
+
|
51 |
+
|
52 |
+
# Vicuna Model Card
|
53 |
+
|
54 |
+
## Model Details
|
55 |
+
|
56 |
+
Vicuna is a chat assistant trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT.
|
57 |
+
|
58 |
+
- **Developed by:** [LMSYS](https://lmsys.org/)
|
59 |
+
- **Model type:** An auto-regressive language model based on the transformer architecture.
|
60 |
+
- **License:** Non-commercial license
|
61 |
+
- **Finetuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971).
|
62 |
+
|
63 |
+
### Model Sources
|
64 |
+
|
65 |
+
- **Repository:** https://github.com/lm-sys/FastChat
|
66 |
+
- **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/
|
67 |
+
- **Paper:** https://arxiv.org/abs/2306.05685
|
68 |
+
- **Demo:** https://chat.lmsys.org/
|
69 |
+
|
70 |
+
## Uses
|
71 |
+
|
72 |
+
The primary use of Vicuna is research on large language models and chatbots.
|
73 |
+
The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
|
74 |
+
|
75 |
+
## How to Get Started with the Model
|
76 |
+
|
77 |
+
- Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights.
|
78 |
+
- APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api.
|
79 |
+
|
80 |
+
## Training Details
|
81 |
+
|
82 |
+
Vicuna v1.3 is fine-tuned from LLaMA with supervised instruction fine-tuning.
|
83 |
+
The training data is around 125K conversations collected from ShareGPT.com.
|
84 |
+
See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf).
|
85 |
+
|
86 |
+
## Evaluation
|
87 |
+
|
88 |
+
Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard).
|
89 |
+
|
90 |
+
## Difference between different versions of Vicuna
|
91 |
+
See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
|
92 |
+
|