|
import torch |
|
import torch.nn.functional as F |
|
import torch.nn as nn |
|
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d |
|
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm |
|
from utils import init_weights, get_padding |
|
import numpy as np |
|
from stft import TorchSTFT |
|
import torchaudio |
|
from nnAudio import features |
|
from einops import rearrange |
|
from norm2d import NormConv2d |
|
from utils import get_padding |
|
from munch import Munch |
|
from conformer import Conformer |
|
|
|
LRELU_SLOPE = 0.1 |
|
|
|
|
|
def get_2d_padding(kernel_size, dilation=(1, 1)): |
|
return ( |
|
((kernel_size[0] - 1) * dilation[0]) // 2, |
|
((kernel_size[1] - 1) * dilation[1]) // 2, |
|
) |
|
|
|
|
|
|
|
class ResBlock1(torch.nn.Module): |
|
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): |
|
super(ResBlock1, self).__init__() |
|
self.h = h |
|
self.convs1 = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], |
|
padding=get_padding(kernel_size, dilation[2]))) |
|
]) |
|
self.convs1.apply(init_weights) |
|
|
|
self.convs2 = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))) |
|
]) |
|
self.convs2.apply(init_weights) |
|
|
|
self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))]) |
|
self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))]) |
|
|
|
|
|
def forward(self, x): |
|
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, self.alpha1, self.alpha2): |
|
xt = x + (1 / a1) * (torch.sin(a1 * x) ** 2) |
|
xt = c1(xt) |
|
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) |
|
xt = c2(xt) |
|
x = xt + x |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs1: |
|
remove_weight_norm(l) |
|
for l in self.convs2: |
|
remove_weight_norm(l) |
|
|
|
class ResBlock1_old(torch.nn.Module): |
|
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): |
|
super(ResBlock1, self).__init__() |
|
self.h = h |
|
self.convs1 = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], |
|
padding=get_padding(kernel_size, dilation[2]))) |
|
]) |
|
self.convs1.apply(init_weights) |
|
|
|
self.convs2 = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))) |
|
]) |
|
self.convs2.apply(init_weights) |
|
|
|
def forward(self, x): |
|
for c1, c2 in zip(self.convs1, self.convs2): |
|
xt = F.leaky_relu(x, LRELU_SLOPE) |
|
xt = c1(xt) |
|
xt = F.leaky_relu(xt, LRELU_SLOPE) |
|
xt = c2(xt) |
|
x = xt + x |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs1: |
|
remove_weight_norm(l) |
|
for l in self.convs2: |
|
remove_weight_norm(l) |
|
|
|
|
|
class ResBlock2(torch.nn.Module): |
|
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)): |
|
super(ResBlock2, self).__init__() |
|
self.h = h |
|
self.convs = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]))) |
|
]) |
|
self.convs.apply(init_weights) |
|
|
|
def forward(self, x): |
|
for c in self.convs: |
|
xt = F.leaky_relu(x, LRELU_SLOPE) |
|
xt = c(xt) |
|
x = xt + x |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs: |
|
remove_weight_norm(l) |
|
|
|
|
|
class SineGen(torch.nn.Module): |
|
""" Definition of sine generator |
|
SineGen(samp_rate, harmonic_num = 0, |
|
sine_amp = 0.1, noise_std = 0.003, |
|
voiced_threshold = 0, |
|
flag_for_pulse=False) |
|
samp_rate: sampling rate in Hz |
|
harmonic_num: number of harmonic overtones (default 0) |
|
sine_amp: amplitude of sine-wavefrom (default 0.1) |
|
noise_std: std of Gaussian noise (default 0.003) |
|
voiced_thoreshold: F0 threshold for U/V classification (default 0) |
|
flag_for_pulse: this SinGen is used inside PulseGen (default False) |
|
Note: when flag_for_pulse is True, the first time step of a voiced |
|
segment is always sin(np.pi) or cos(0) |
|
""" |
|
|
|
def __init__(self, samp_rate, upsample_scale, harmonic_num=0, |
|
sine_amp=0.1, noise_std=0.003, |
|
voiced_threshold=0, |
|
flag_for_pulse=False): |
|
super(SineGen, self).__init__() |
|
self.sine_amp = sine_amp |
|
self.noise_std = noise_std |
|
self.harmonic_num = harmonic_num |
|
self.dim = self.harmonic_num + 1 |
|
self.sampling_rate = samp_rate |
|
self.voiced_threshold = voiced_threshold |
|
self.flag_for_pulse = flag_for_pulse |
|
self.upsample_scale = upsample_scale |
|
|
|
def _f02uv(self, f0): |
|
|
|
uv = (f0 > self.voiced_threshold).type(torch.float32) |
|
return uv |
|
|
|
def _f02sine(self, f0_values): |
|
""" f0_values: (batchsize, length, dim) |
|
where dim indicates fundamental tone and overtones |
|
""" |
|
|
|
|
|
rad_values = (f0_values / self.sampling_rate) % 1 |
|
|
|
|
|
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \ |
|
device=f0_values.device) |
|
rand_ini[:, 0] = 0 |
|
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini |
|
|
|
|
|
if not self.flag_for_pulse: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2), |
|
scale_factor=1/self.upsample_scale, |
|
mode="linear").transpose(1, 2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi |
|
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale, |
|
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2) |
|
sines = torch.sin(phase) |
|
|
|
else: |
|
|
|
|
|
|
|
|
|
|
|
uv = self._f02uv(f0_values) |
|
uv_1 = torch.roll(uv, shifts=-1, dims=1) |
|
uv_1[:, -1, :] = 1 |
|
u_loc = (uv < 1) * (uv_1 > 0) |
|
|
|
|
|
tmp_cumsum = torch.cumsum(rad_values, dim=1) |
|
|
|
for idx in range(f0_values.shape[0]): |
|
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :] |
|
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :] |
|
|
|
|
|
tmp_cumsum[idx, :, :] = 0 |
|
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum |
|
|
|
|
|
|
|
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1) |
|
|
|
|
|
sines = torch.cos(i_phase * 2 * np.pi) |
|
return sines |
|
|
|
def forward(self, f0): |
|
""" sine_tensor, uv = forward(f0) |
|
input F0: tensor(batchsize=1, length, dim=1) |
|
f0 for unvoiced steps should be 0 |
|
output sine_tensor: tensor(batchsize=1, length, dim) |
|
output uv: tensor(batchsize=1, length, 1) |
|
""" |
|
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, |
|
device=f0.device) |
|
|
|
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device)) |
|
|
|
|
|
sine_waves = self._f02sine(fn) * self.sine_amp |
|
|
|
|
|
|
|
|
|
uv = self._f02uv(f0) |
|
|
|
|
|
|
|
|
|
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 |
|
noise = noise_amp * torch.randn_like(sine_waves) |
|
|
|
|
|
|
|
sine_waves = sine_waves * uv + noise |
|
return sine_waves, uv, noise |
|
|
|
|
|
class SourceModuleHnNSF(torch.nn.Module): |
|
""" SourceModule for hn-nsf |
|
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, |
|
add_noise_std=0.003, voiced_threshod=0) |
|
sampling_rate: sampling_rate in Hz |
|
harmonic_num: number of harmonic above F0 (default: 0) |
|
sine_amp: amplitude of sine source signal (default: 0.1) |
|
add_noise_std: std of additive Gaussian noise (default: 0.003) |
|
note that amplitude of noise in unvoiced is decided |
|
by sine_amp |
|
voiced_threshold: threhold to set U/V given F0 (default: 0) |
|
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) |
|
F0_sampled (batchsize, length, 1) |
|
Sine_source (batchsize, length, 1) |
|
noise_source (batchsize, length 1) |
|
uv (batchsize, length, 1) |
|
""" |
|
|
|
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1, |
|
add_noise_std=0.003, voiced_threshod=0): |
|
super(SourceModuleHnNSF, self).__init__() |
|
|
|
self.sine_amp = sine_amp |
|
self.noise_std = add_noise_std |
|
|
|
|
|
self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num, |
|
sine_amp, add_noise_std, voiced_threshod) |
|
|
|
|
|
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) |
|
self.l_tanh = torch.nn.Tanh() |
|
|
|
def forward(self, x): |
|
""" |
|
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) |
|
F0_sampled (batchsize, length, 1) |
|
Sine_source (batchsize, length, 1) |
|
noise_source (batchsize, length 1) |
|
""" |
|
|
|
with torch.no_grad(): |
|
sine_wavs, uv, _ = self.l_sin_gen(x) |
|
sine_merge = self.l_tanh(self.l_linear(sine_wavs)) |
|
|
|
|
|
noise = torch.randn_like(uv) * self.sine_amp / 3 |
|
return sine_merge, noise, uv |
|
def padDiff(x): |
|
return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0) |
|
|
|
|
|
|
|
class Generator(torch.nn.Module): |
|
def __init__(self, h, F0_model): |
|
super(Generator, self).__init__() |
|
self.h = h |
|
self.num_kernels = len(h.resblock_kernel_sizes) |
|
self.num_upsamples = len(h.upsample_rates) |
|
self.conv_pre = weight_norm(Conv1d(128, h.upsample_initial_channel, 7, 1, padding=3)) |
|
|
|
|
|
|
|
resblock = ResBlock1 if h.resblock == '1' else ResBlock2 |
|
|
|
self.m_source = SourceModuleHnNSF( |
|
sampling_rate=h.sampling_rate, |
|
upsample_scale=np.prod(h.upsample_rates) * h.gen_istft_hop_size, |
|
harmonic_num=8, voiced_threshod=10) |
|
|
|
self.f0_upsamp = torch.nn.Upsample( |
|
scale_factor=np.prod(h.upsample_rates) * h.gen_istft_hop_size) |
|
self.noise_convs = nn.ModuleList() |
|
self.noise_res = nn.ModuleList() |
|
|
|
self.F0_model = F0_model |
|
|
|
self.ups = nn.ModuleList() |
|
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): |
|
self.ups.append(weight_norm( |
|
ConvTranspose1d(h.upsample_initial_channel//(2**i), |
|
h.upsample_initial_channel//(2**(i+1)), |
|
k, |
|
u, |
|
padding=(k-u)//2))) |
|
|
|
c_cur = h.upsample_initial_channel // (2 ** (i + 1)) |
|
|
|
if i + 1 < len(h.upsample_rates): |
|
stride_f0 = np.prod(h.upsample_rates[i + 1:]) |
|
self.noise_convs.append(Conv1d( |
|
h.gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2)) |
|
self.noise_res.append(resblock(h, c_cur, 7, [1,3,5])) |
|
else: |
|
self.noise_convs.append(Conv1d(h.gen_istft_n_fft + 2, c_cur, kernel_size=1)) |
|
self.noise_res.append(resblock(h, c_cur, 11, [1,3,5])) |
|
|
|
self.alphas = nn.ParameterList() |
|
self.alphas.append(nn.Parameter(torch.ones(1, h.upsample_initial_channel, 1))) |
|
self.resblocks = nn.ModuleList() |
|
for i in range(len(self.ups)): |
|
ch = h.upsample_initial_channel//(2**(i+1)) |
|
self.alphas.append(nn.Parameter(torch.ones(1, ch, 1))) |
|
for j, (k, d) in enumerate( |
|
zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): |
|
self.resblocks.append(resblock(h, ch, k, d)) |
|
|
|
|
|
self.conformers = nn.ModuleList() |
|
self.post_n_fft = h.gen_istft_n_fft |
|
self.conv_post = weight_norm(Conv1d(128, self.post_n_fft + 2, 7, 1, padding=3)) |
|
|
|
for i in range(len(self.ups)): |
|
ch = h.upsample_initial_channel // (2**i) |
|
self.conformers.append( |
|
Conformer( |
|
dim=ch, |
|
depth=2, |
|
dim_head=64, |
|
heads=8, |
|
ff_mult=4, |
|
conv_expansion_factor=2, |
|
conv_kernel_size=31, |
|
attn_dropout=0.1, |
|
ff_dropout=0.1, |
|
conv_dropout=0.1, |
|
|
|
) |
|
) |
|
|
|
self.ups.apply(init_weights) |
|
self.conv_post.apply(init_weights) |
|
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0)) |
|
self.stft = TorchSTFT(filter_length=h.gen_istft_n_fft, |
|
hop_length=h.gen_istft_hop_size, |
|
win_length=h.gen_istft_n_fft) |
|
|
|
|
|
|
|
def forward(self, x): |
|
|
|
|
|
|
|
f0, _, _ = self.F0_model(x.unsqueeze(1)) |
|
if len(f0.shape) == 1: |
|
f0 = f0.unsqueeze(0) |
|
|
|
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) |
|
|
|
har_source, _, _ = self.m_source(f0) |
|
har_source = har_source.transpose(1, 2).squeeze(1) |
|
har_spec, har_phase = self.stft.transform(har_source) |
|
har = torch.cat([har_spec, har_phase], dim=1) |
|
|
|
|
|
x = self.conv_pre(x) |
|
|
|
for i in range(self.num_upsamples): |
|
|
|
x = x + (1 / self.alphas[i]) * (torch.sin(self.alphas[i] * x) ** 2) |
|
x = rearrange(x, "b f t -> b t f") |
|
|
|
x = self.conformers[i](x) |
|
|
|
x = rearrange(x, "b t f -> b f t") |
|
|
|
|
|
x_source = self.noise_convs[i](har) |
|
x_source = self.noise_res[i](x_source) |
|
|
|
x = self.ups[i](x) |
|
if i == self.num_upsamples - 1: |
|
x = self.reflection_pad(x) |
|
|
|
x = x + x_source |
|
|
|
|
|
xs = None |
|
for j in range(self.num_kernels): |
|
if xs is None: |
|
xs = self.resblocks[i*self.num_kernels+j](x) |
|
else: |
|
xs += self.resblocks[i*self.num_kernels+j](x) |
|
x = xs / self.num_kernels |
|
|
|
|
|
|
|
x = x + (1 / self.alphas[i + 1]) * (torch.sin(self.alphas[i + 1] * x) ** 2) |
|
|
|
x = self.conv_post(x) |
|
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :]).to(x.device) |
|
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :]).to(x.device) |
|
|
|
return spec, phase |
|
|
|
def remove_weight_norm(self): |
|
print("Removing weight norm...") |
|
for l in self.ups: |
|
remove_weight_norm(l) |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
remove_weight_norm(self.conv_pre) |
|
remove_weight_norm(self.conv_post) |
|
|
|
|
|
|
|
def stft(x, fft_size, hop_size, win_length, window): |
|
"""Perform STFT and convert to magnitude spectrogram. |
|
Args: |
|
x (Tensor): Input signal tensor (B, T). |
|
fft_size (int): FFT size. |
|
hop_size (int): Hop size. |
|
win_length (int): Window length. |
|
window (str): Window function type. |
|
Returns: |
|
Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1). |
|
""" |
|
x_stft = torch.stft(x, fft_size, hop_size, win_length, window, |
|
return_complex=True) |
|
real = x_stft[..., 0] |
|
imag = x_stft[..., 1] |
|
|
|
|
|
return torch.abs(x_stft).transpose(2, 1) |
|
|
|
class SpecDiscriminator(nn.Module): |
|
"""docstring for Discriminator.""" |
|
|
|
def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window", use_spectral_norm=False): |
|
super(SpecDiscriminator, self).__init__() |
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm |
|
self.fft_size = fft_size |
|
self.shift_size = shift_size |
|
self.win_length = win_length |
|
self.window = getattr(torch, window)(win_length) |
|
self.discriminators = nn.ModuleList([ |
|
norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))), |
|
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))), |
|
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))), |
|
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))), |
|
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1,1), padding=(1, 1))), |
|
]) |
|
|
|
self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1)) |
|
|
|
def forward(self, y): |
|
|
|
fmap = [] |
|
y = y.squeeze(1) |
|
y = stft(y, self.fft_size, self.shift_size, self.win_length, self.window.to(y.get_device())) |
|
y = y.unsqueeze(1) |
|
for i, d in enumerate(self.discriminators): |
|
y = d(y) |
|
y = F.leaky_relu(y, LRELU_SLOPE) |
|
fmap.append(y) |
|
|
|
y = self.out(y) |
|
fmap.append(y) |
|
|
|
return torch.flatten(y, 1, -1), fmap |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DiscriminatorP(torch.nn.Module): |
|
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): |
|
super(DiscriminatorP, self).__init__() |
|
self.period = period |
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm |
|
self.convs = nn.ModuleList([ |
|
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), |
|
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), |
|
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), |
|
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), |
|
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), |
|
]) |
|
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
|
|
|
|
b, c, t = x.shape |
|
if t % self.period != 0: |
|
n_pad = self.period - (t % self.period) |
|
x = F.pad(x, (0, n_pad), "reflect") |
|
t = t + n_pad |
|
x = x.view(b, c, t // self.period, self.period) |
|
|
|
for l in self.convs: |
|
x = l(x) |
|
x = F.leaky_relu(x, LRELU_SLOPE) |
|
fmap.append(x) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|
|
|
|
class MultiPeriodDiscriminator(torch.nn.Module): |
|
def __init__(self): |
|
super(MultiPeriodDiscriminator, self).__init__() |
|
self.discriminators = nn.ModuleList([ |
|
DiscriminatorP(2), |
|
DiscriminatorP(3), |
|
DiscriminatorP(5), |
|
DiscriminatorP(7), |
|
DiscriminatorP(11), |
|
]) |
|
|
|
def forward(self, y, y_hat): |
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
for i, d in enumerate(self.discriminators): |
|
y_d_r, fmap_r = d(y) |
|
y_d_g, fmap_g = d(y_hat) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
class DiscriminatorS(torch.nn.Module): |
|
def __init__(self, use_spectral_norm=False): |
|
super(DiscriminatorS, self).__init__() |
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm |
|
self.convs = nn.ModuleList([ |
|
norm_f(Conv1d(1, 128, 15, 1, padding=7)), |
|
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), |
|
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)), |
|
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)), |
|
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)), |
|
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), |
|
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), |
|
]) |
|
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
for l in self.convs: |
|
x = l(x) |
|
x = F.leaky_relu(x, LRELU_SLOPE) |
|
fmap.append(x) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|
|
|
|
class MultiScaleDiscriminator(torch.nn.Module): |
|
def __init__(self): |
|
super(MultiScaleDiscriminator, self).__init__() |
|
self.discriminators = nn.ModuleList([ |
|
DiscriminatorS(use_spectral_norm=True), |
|
DiscriminatorS(), |
|
DiscriminatorS(), |
|
]) |
|
self.meanpools = nn.ModuleList([ |
|
AvgPool1d(4, 2, padding=2), |
|
AvgPool1d(4, 2, padding=2) |
|
]) |
|
|
|
def forward(self, y, y_hat): |
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
for i, d in enumerate(self.discriminators): |
|
if i != 0: |
|
y = self.meanpools[i-1](y) |
|
y_hat = self.meanpools[i-1](y_hat) |
|
y_d_r, fmap_r = d(y) |
|
y_d_g, fmap_g = d(y_hat) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
multiscale_subband_cfg = { |
|
"hop_lengths": [1024, 512, 512], |
|
"sampling_rate": 44100, |
|
"filters": 32, |
|
"max_filters": 1024, |
|
"filters_scale": 1, |
|
"dilations": [1, 2, 4], |
|
"in_channels": 1, |
|
"out_channels": 1, |
|
"n_octaves": [10, 10, 10], |
|
"bins_per_octaves": [24, 36, 48], |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DiscriminatorCQT(nn.Module): |
|
def __init__(self, cfg, hop_length, n_octaves, bins_per_octave): |
|
super(DiscriminatorCQT, self).__init__() |
|
self.cfg = cfg |
|
|
|
self.filters = cfg.filters |
|
self.max_filters = cfg.max_filters |
|
self.filters_scale = cfg.filters_scale |
|
self.kernel_size = (3, 9) |
|
self.dilations = cfg.dilations |
|
self.stride = (1, 2) |
|
|
|
self.in_channels = cfg.in_channels |
|
self.out_channels = cfg.out_channels |
|
self.fs = cfg.sampling_rate |
|
self.hop_length = hop_length |
|
self.n_octaves = n_octaves |
|
self.bins_per_octave = bins_per_octave |
|
|
|
self.cqt_transform = features.cqt.CQT2010v2( |
|
sr=self.fs * 2, |
|
hop_length=self.hop_length, |
|
n_bins=self.bins_per_octave * self.n_octaves, |
|
bins_per_octave=self.bins_per_octave, |
|
output_format="Complex", |
|
pad_mode="constant", |
|
) |
|
|
|
self.conv_pres = nn.ModuleList() |
|
for i in range(self.n_octaves): |
|
self.conv_pres.append( |
|
NormConv2d( |
|
self.in_channels * 2, |
|
self.in_channels * 2, |
|
kernel_size=self.kernel_size, |
|
padding=get_2d_padding(self.kernel_size), |
|
) |
|
) |
|
|
|
self.convs = nn.ModuleList() |
|
|
|
self.convs.append( |
|
NormConv2d( |
|
self.in_channels * 2, |
|
self.filters, |
|
kernel_size=self.kernel_size, |
|
padding=get_2d_padding(self.kernel_size), |
|
) |
|
) |
|
|
|
in_chs = min(self.filters_scale * self.filters, self.max_filters) |
|
for i, dilation in enumerate(self.dilations): |
|
out_chs = min( |
|
(self.filters_scale ** (i + 1)) * self.filters, self.max_filters |
|
) |
|
self.convs.append( |
|
NormConv2d( |
|
in_chs, |
|
out_chs, |
|
kernel_size=self.kernel_size, |
|
stride=self.stride, |
|
dilation=(dilation, 1), |
|
padding=get_2d_padding(self.kernel_size, (dilation, 1)), |
|
norm="weight_norm", |
|
) |
|
) |
|
in_chs = out_chs |
|
out_chs = min( |
|
(self.filters_scale ** (len(self.dilations) + 1)) * self.filters, |
|
self.max_filters, |
|
) |
|
self.convs.append( |
|
NormConv2d( |
|
in_chs, |
|
out_chs, |
|
kernel_size=(self.kernel_size[0], self.kernel_size[0]), |
|
padding=get_2d_padding((self.kernel_size[0], self.kernel_size[0])), |
|
norm="weight_norm", |
|
) |
|
) |
|
|
|
self.conv_post = NormConv2d( |
|
out_chs, |
|
self.out_channels, |
|
kernel_size=(self.kernel_size[0], self.kernel_size[0]), |
|
padding=get_2d_padding((self.kernel_size[0], self.kernel_size[0])), |
|
norm="weight_norm", |
|
) |
|
|
|
self.activation = torch.nn.LeakyReLU(negative_slope=LRELU_SLOPE) |
|
self.resample = torchaudio.transforms.Resample( |
|
orig_freq=self.fs, new_freq=self.fs * 2 |
|
) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
|
|
x = self.resample(x) |
|
|
|
z = self.cqt_transform(x) |
|
|
|
z_amplitude = z[:, :, :, 0].unsqueeze(1) |
|
z_phase = z[:, :, :, 1].unsqueeze(1) |
|
|
|
z = torch.cat([z_amplitude, z_phase], dim=1) |
|
z = rearrange(z, "b c w t -> b c t w") |
|
|
|
latent_z = [] |
|
for i in range(self.n_octaves): |
|
latent_z.append( |
|
self.conv_pres[i]( |
|
z[ |
|
:, |
|
:, |
|
:, |
|
i * self.bins_per_octave : (i + 1) * self.bins_per_octave, |
|
] |
|
) |
|
) |
|
latent_z = torch.cat(latent_z, dim=-1) |
|
|
|
for i, l in enumerate(self.convs): |
|
latent_z = l(latent_z) |
|
|
|
latent_z = self.activation(latent_z) |
|
fmap.append(latent_z) |
|
|
|
latent_z = self.conv_post(latent_z) |
|
|
|
return latent_z, fmap |
|
|
|
|
|
|
|
class MultiScaleSubbandCQTDiscriminator(nn.Module): |
|
def __init__(self): |
|
super(MultiScaleSubbandCQTDiscriminator, self).__init__() |
|
cfg = Munch(multiscale_subband_cfg) |
|
self.cfg = cfg |
|
self.discriminators = nn.ModuleList( |
|
[ |
|
DiscriminatorCQT( |
|
cfg, |
|
hop_length=cfg.hop_lengths[i], |
|
n_octaves=cfg.n_octaves[i], |
|
bins_per_octave=cfg.bins_per_octaves[i], |
|
) |
|
for i in range(len(cfg.hop_lengths)) |
|
] |
|
) |
|
|
|
def forward(self, y, y_hat): |
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
|
|
for disc in self.discriminators: |
|
y_d_r, fmap_r = disc(y) |
|
y_d_g, fmap_g = disc(y_hat) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def feature_loss(fmap_r, fmap_g): |
|
loss = 0 |
|
for dr, dg in zip(fmap_r, fmap_g): |
|
for rl, gl in zip(dr, dg): |
|
loss += torch.mean(torch.abs(rl - gl)) |
|
|
|
return loss*2 |
|
|
|
|
|
def discriminator_loss(disc_real_outputs, disc_generated_outputs): |
|
loss = 0 |
|
r_losses = [] |
|
g_losses = [] |
|
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): |
|
r_loss = torch.mean((1-dr)**2) |
|
g_loss = torch.mean(dg**2) |
|
loss += (r_loss + g_loss) |
|
r_losses.append(r_loss.item()) |
|
g_losses.append(g_loss.item()) |
|
|
|
return loss, r_losses, g_losses |
|
|
|
|
|
def generator_loss(disc_outputs): |
|
loss = 0 |
|
gen_losses = [] |
|
for dg in disc_outputs: |
|
l = torch.mean((1-dg)**2) |
|
gen_losses.append(l) |
|
loss += l |
|
|
|
return loss, gen_losses |
|
|
|
def discriminator_TPRLS_loss(disc_real_outputs, disc_generated_outputs): |
|
loss = 0 |
|
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): |
|
tau = 0.04 |
|
m_DG = torch.median((dr-dg)) |
|
L_rel = torch.mean((((dr - dg) - m_DG)**2)[dr < dg + m_DG]) |
|
loss += tau - F.relu(tau - L_rel) |
|
return loss |
|
|
|
def generator_TPRLS_loss(disc_real_outputs, disc_generated_outputs): |
|
loss = 0 |
|
for dg, dr in zip(disc_real_outputs, disc_generated_outputs): |
|
tau = 0.04 |
|
m_DG = torch.median((dr-dg)) |
|
L_rel = torch.mean((((dr - dg) - m_DG)**2)[dr < dg + m_DG]) |
|
loss += tau - F.relu(tau - L_rel) |
|
return loss |