Respair's picture
Upload folder using huggingface_hub
eb29d0a verified
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
from utils import init_weights, get_padding
import numpy as np
from stft import TorchSTFT
import torchaudio
from nnAudio import features
from einops import rearrange
from norm2d import NormConv2d
from utils import get_padding
from munch import Munch
from conformer import Conformer
LRELU_SLOPE = 0.1
def get_2d_padding(kernel_size, dilation=(1, 1)):
return (
((kernel_size[0] - 1) * dilation[0]) // 2,
((kernel_size[1] - 1) * dilation[1]) // 2,
)
class ResBlock1(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
super(ResBlock1, self).__init__()
self.h = h
self.convs1 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1)))
])
self.convs2.apply(init_weights)
self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
def forward(self, x):
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, self.alpha1, self.alpha2):
xt = x + (1 / a1) * (torch.sin(a1 * x) ** 2) # Snake1D
xt = c1(xt)
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class ResBlock1_old(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
super(ResBlock1, self).__init__()
self.h = h
self.convs1 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1)))
])
self.convs2.apply(init_weights)
def forward(self, x):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c1(xt)
xt = F.leaky_relu(xt, LRELU_SLOPE)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class ResBlock2(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
super(ResBlock2, self).__init__()
self.h = h
self.convs = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1])))
])
self.convs.apply(init_weights)
def forward(self, x):
for c in self.convs:
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class SineGen(torch.nn.Module):
""" Definition of sine generator
SineGen(samp_rate, harmonic_num = 0,
sine_amp = 0.1, noise_std = 0.003,
voiced_threshold = 0,
flag_for_pulse=False)
samp_rate: sampling rate in Hz
harmonic_num: number of harmonic overtones (default 0)
sine_amp: amplitude of sine-wavefrom (default 0.1)
noise_std: std of Gaussian noise (default 0.003)
voiced_thoreshold: F0 threshold for U/V classification (default 0)
flag_for_pulse: this SinGen is used inside PulseGen (default False)
Note: when flag_for_pulse is True, the first time step of a voiced
segment is always sin(np.pi) or cos(0)
"""
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
sine_amp=0.1, noise_std=0.003,
voiced_threshold=0,
flag_for_pulse=False):
super(SineGen, self).__init__()
self.sine_amp = sine_amp
self.noise_std = noise_std
self.harmonic_num = harmonic_num
self.dim = self.harmonic_num + 1
self.sampling_rate = samp_rate
self.voiced_threshold = voiced_threshold
self.flag_for_pulse = flag_for_pulse
self.upsample_scale = upsample_scale
def _f02uv(self, f0):
# generate uv signal
uv = (f0 > self.voiced_threshold).type(torch.float32)
return uv
def _f02sine(self, f0_values):
""" f0_values: (batchsize, length, dim)
where dim indicates fundamental tone and overtones
"""
# convert to F0 in rad. The interger part n can be ignored
# because 2 * np.pi * n doesn't affect phase
rad_values = (f0_values / self.sampling_rate) % 1
# initial phase noise (no noise for fundamental component)
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
device=f0_values.device)
rand_ini[:, 0] = 0
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
if not self.flag_for_pulse:
# # for normal case
# # To prevent torch.cumsum numerical overflow,
# # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
# # Buffer tmp_over_one_idx indicates the time step to add -1.
# # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
# cumsum_shift = torch.zeros_like(rad_values)
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
# phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
scale_factor=1/self.upsample_scale,
mode="linear").transpose(1, 2)
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
# cumsum_shift = torch.zeros_like(rad_values)
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
sines = torch.sin(phase)
else:
# If necessary, make sure that the first time step of every
# voiced segments is sin(pi) or cos(0)
# This is used for pulse-train generation
# identify the last time step in unvoiced segments
uv = self._f02uv(f0_values)
uv_1 = torch.roll(uv, shifts=-1, dims=1)
uv_1[:, -1, :] = 1
u_loc = (uv < 1) * (uv_1 > 0)
# get the instantanouse phase
tmp_cumsum = torch.cumsum(rad_values, dim=1)
# different batch needs to be processed differently
for idx in range(f0_values.shape[0]):
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
# stores the accumulation of i.phase within
# each voiced segments
tmp_cumsum[idx, :, :] = 0
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
# rad_values - tmp_cumsum: remove the accumulation of i.phase
# within the previous voiced segment.
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
# get the sines
sines = torch.cos(i_phase * 2 * np.pi)
return sines
def forward(self, f0):
""" sine_tensor, uv = forward(f0)
input F0: tensor(batchsize=1, length, dim=1)
f0 for unvoiced steps should be 0
output sine_tensor: tensor(batchsize=1, length, dim)
output uv: tensor(batchsize=1, length, 1)
"""
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
device=f0.device)
# fundamental component
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
# generate sine waveforms
sine_waves = self._f02sine(fn) * self.sine_amp
# generate uv signal
# uv = torch.ones(f0.shape)
# uv = uv * (f0 > self.voiced_threshold)
uv = self._f02uv(f0)
# noise: for unvoiced should be similar to sine_amp
# std = self.sine_amp/3 -> max value ~ self.sine_amp
# . for voiced regions is self.noise_std
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
noise = noise_amp * torch.randn_like(sine_waves)
# first: set the unvoiced part to 0 by uv
# then: additive noise
sine_waves = sine_waves * uv + noise
return sine_waves, uv, noise
class SourceModuleHnNSF(torch.nn.Module):
""" SourceModule for hn-nsf
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshod=0)
sampling_rate: sampling_rate in Hz
harmonic_num: number of harmonic above F0 (default: 0)
sine_amp: amplitude of sine source signal (default: 0.1)
add_noise_std: std of additive Gaussian noise (default: 0.003)
note that amplitude of noise in unvoiced is decided
by sine_amp
voiced_threshold: threhold to set U/V given F0 (default: 0)
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
uv (batchsize, length, 1)
"""
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshod=0):
super(SourceModuleHnNSF, self).__init__()
self.sine_amp = sine_amp
self.noise_std = add_noise_std
# to produce sine waveforms
self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
sine_amp, add_noise_std, voiced_threshod)
# to merge source harmonics into a single excitation
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
self.l_tanh = torch.nn.Tanh()
def forward(self, x):
"""
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
"""
# source for harmonic branch
with torch.no_grad():
sine_wavs, uv, _ = self.l_sin_gen(x)
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
# source for noise branch, in the same shape as uv
noise = torch.randn_like(uv) * self.sine_amp / 3
return sine_merge, noise, uv
def padDiff(x):
return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
class Generator(torch.nn.Module):
def __init__(self, h, F0_model):
super(Generator, self).__init__()
self.h = h
self.num_kernels = len(h.resblock_kernel_sizes)
self.num_upsamples = len(h.upsample_rates)
self.conv_pre = weight_norm(Conv1d(128, h.upsample_initial_channel, 7, 1, padding=3))
resblock = ResBlock1 if h.resblock == '1' else ResBlock2
self.m_source = SourceModuleHnNSF(
sampling_rate=h.sampling_rate,
upsample_scale=np.prod(h.upsample_rates) * h.gen_istft_hop_size,
harmonic_num=8, voiced_threshod=10)
self.f0_upsamp = torch.nn.Upsample(
scale_factor=np.prod(h.upsample_rates) * h.gen_istft_hop_size)
self.noise_convs = nn.ModuleList()
self.noise_res = nn.ModuleList()
self.F0_model = F0_model
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
self.ups.append(weight_norm(
ConvTranspose1d(h.upsample_initial_channel//(2**i),
h.upsample_initial_channel//(2**(i+1)),
k,
u,
padding=(k-u)//2)))
c_cur = h.upsample_initial_channel // (2 ** (i + 1))
if i + 1 < len(h.upsample_rates): #
stride_f0 = np.prod(h.upsample_rates[i + 1:])
self.noise_convs.append(Conv1d(
h.gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
self.noise_res.append(resblock(h, c_cur, 7, [1,3,5]))
else:
self.noise_convs.append(Conv1d(h.gen_istft_n_fft + 2, c_cur, kernel_size=1))
self.noise_res.append(resblock(h, c_cur, 11, [1,3,5]))
self.alphas = nn.ParameterList()
self.alphas.append(nn.Parameter(torch.ones(1, h.upsample_initial_channel, 1)))
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = h.upsample_initial_channel//(2**(i+1))
self.alphas.append(nn.Parameter(torch.ones(1, ch, 1)))
for j, (k, d) in enumerate(
zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
self.resblocks.append(resblock(h, ch, k, d))
self.conformers = nn.ModuleList()
self.post_n_fft = h.gen_istft_n_fft
self.conv_post = weight_norm(Conv1d(128, self.post_n_fft + 2, 7, 1, padding=3))
for i in range(len(self.ups)):
ch = h.upsample_initial_channel // (2**i)
self.conformers.append(
Conformer(
dim=ch,
depth=2,
dim_head=64,
heads=8,
ff_mult=4,
conv_expansion_factor=2,
conv_kernel_size=31,
attn_dropout=0.1,
ff_dropout=0.1,
conv_dropout=0.1,
# device=self.device
)
)
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
self.stft = TorchSTFT(filter_length=h.gen_istft_n_fft,
hop_length=h.gen_istft_hop_size,
win_length=h.gen_istft_n_fft)
def forward(self, x):
f0, _, _ = self.F0_model(x.unsqueeze(1))
if len(f0.shape) == 1:
f0 = f0.unsqueeze(0)
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
har_source, _, _ = self.m_source(f0)
har_source = har_source.transpose(1, 2).squeeze(1)
har_spec, har_phase = self.stft.transform(har_source)
har = torch.cat([har_spec, har_phase], dim=1)
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = x + (1 / self.alphas[i]) * (torch.sin(self.alphas[i] * x) ** 2)
x = rearrange(x, "b f t -> b t f")
x = self.conformers[i](x)
x = rearrange(x, "b t f -> b f t")
# x = F.leaky_relu(x, LRELU_SLOPE)
x_source = self.noise_convs[i](har)
x_source = self.noise_res[i](x_source)
x = self.ups[i](x)
if i == self.num_upsamples - 1:
x = self.reflection_pad(x)
x = x + x_source
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i*self.num_kernels+j](x)
else:
xs += self.resblocks[i*self.num_kernels+j](x)
x = xs / self.num_kernels
# x = F.leaky_relu(x)
x = x + (1 / self.alphas[i + 1]) * (torch.sin(self.alphas[i + 1] * x) ** 2)
x = self.conv_post(x)
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :]).to(x.device)
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :]).to(x.device)
return spec, phase
def remove_weight_norm(self):
print("Removing weight norm...")
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
def stft(x, fft_size, hop_size, win_length, window):
"""Perform STFT and convert to magnitude spectrogram.
Args:
x (Tensor): Input signal tensor (B, T).
fft_size (int): FFT size.
hop_size (int): Hop size.
win_length (int): Window length.
window (str): Window function type.
Returns:
Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
"""
x_stft = torch.stft(x, fft_size, hop_size, win_length, window,
return_complex=True)
real = x_stft[..., 0]
imag = x_stft[..., 1]
# NOTE(kan-bayashi): clamp is needed to avoid nan or inf
return torch.abs(x_stft).transpose(2, 1)
class SpecDiscriminator(nn.Module):
"""docstring for Discriminator."""
def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window", use_spectral_norm=False):
super(SpecDiscriminator, self).__init__()
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.fft_size = fft_size
self.shift_size = shift_size
self.win_length = win_length
self.window = getattr(torch, window)(win_length)
self.discriminators = nn.ModuleList([
norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))),
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1,1), padding=(1, 1))),
])
self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1))
def forward(self, y):
fmap = []
y = y.squeeze(1)
y = stft(y, self.fft_size, self.shift_size, self.win_length, self.window.to(y.get_device()))
y = y.unsqueeze(1)
for i, d in enumerate(self.discriminators):
y = d(y)
y = F.leaky_relu(y, LRELU_SLOPE)
fmap.append(y)
y = self.out(y)
fmap.append(y)
return torch.flatten(y, 1, -1), fmap
# class MultiResSpecDiscriminator(torch.nn.Module):
# def __init__(self,
# fft_sizes=[1024, 2048, 512],
# hop_sizes=[120, 240, 50],
# win_lengths=[600, 1200, 240],
# window="hann_window"):
# super(MultiResSpecDiscriminator, self).__init__()
# self.discriminators = nn.ModuleList([
# SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window),
# SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window),
# SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window)
# ])
# def forward(self, y, y_hat):
# y_d_rs = []
# y_d_gs = []
# fmap_rs = []
# fmap_gs = []
# for i, d in enumerate(self.discriminators):
# y_d_r, fmap_r = d(y)
# y_d_g, fmap_g = d(y_hat)
# y_d_rs.append(y_d_r)
# fmap_rs.append(fmap_r)
# y_d_gs.append(y_d_g)
# fmap_gs.append(fmap_g)
# return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class DiscriminatorP(torch.nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
])
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiPeriodDiscriminator(torch.nn.Module):
def __init__(self):
super(MultiPeriodDiscriminator, self).__init__()
self.discriminators = nn.ModuleList([
DiscriminatorP(2),
DiscriminatorP(3),
DiscriminatorP(5),
DiscriminatorP(7),
DiscriminatorP(11),
])
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(DiscriminatorS, self).__init__()
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv1d(1, 128, 15, 1, padding=7)),
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
])
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
def forward(self, x):
fmap = []
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiScaleDiscriminator(torch.nn.Module):
def __init__(self):
super(MultiScaleDiscriminator, self).__init__()
self.discriminators = nn.ModuleList([
DiscriminatorS(use_spectral_norm=True),
DiscriminatorS(),
DiscriminatorS(),
])
self.meanpools = nn.ModuleList([
AvgPool1d(4, 2, padding=2),
AvgPool1d(4, 2, padding=2)
])
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
if i != 0:
y = self.meanpools[i-1](y)
y_hat = self.meanpools[i-1](y_hat)
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
########################### from ringformer
multiscale_subband_cfg = {
"hop_lengths": [1024, 512, 512], # Doubled to maintain similar time resolution
"sampling_rate": 44100, # New sampling rate
"filters": 32, # Kept same as it controls initial feature dimension
"max_filters": 1024, # Kept same as it's a maximum limit
"filters_scale": 1, # Kept same as it's a scaling factor
"dilations": [1, 2, 4], # Kept same as they control receptive field growth
"in_channels": 1, # Kept same (mono audio)
"out_channels": 1, # Kept same (mono audio)
"n_octaves": [10, 10, 10], # Increased by 1 to handle higher frequency range
"bins_per_octaves": [24, 36, 48], # Kept same as they control frequency resolution
}
# multiscale_subband_cfg = {
# "hop_lengths": [512, 256, 256],
# "sampling_rate": 24000,
# "filters": 32,
# "max_filters": 1024,
# "filters_scale": 1,
# "dilations": [1, 2, 4],
# "in_channels": 1,
# "out_channels": 1,
# "n_octaves": [9, 9, 9],
# "bins_per_octaves": [24, 36, 48],
# }
class DiscriminatorCQT(nn.Module):
def __init__(self, cfg, hop_length, n_octaves, bins_per_octave):
super(DiscriminatorCQT, self).__init__()
self.cfg = cfg
self.filters = cfg.filters
self.max_filters = cfg.max_filters
self.filters_scale = cfg.filters_scale
self.kernel_size = (3, 9)
self.dilations = cfg.dilations
self.stride = (1, 2)
self.in_channels = cfg.in_channels
self.out_channels = cfg.out_channels
self.fs = cfg.sampling_rate
self.hop_length = hop_length
self.n_octaves = n_octaves
self.bins_per_octave = bins_per_octave
self.cqt_transform = features.cqt.CQT2010v2(
sr=self.fs * 2,
hop_length=self.hop_length,
n_bins=self.bins_per_octave * self.n_octaves,
bins_per_octave=self.bins_per_octave,
output_format="Complex",
pad_mode="constant",
)
self.conv_pres = nn.ModuleList()
for i in range(self.n_octaves):
self.conv_pres.append(
NormConv2d(
self.in_channels * 2,
self.in_channels * 2,
kernel_size=self.kernel_size,
padding=get_2d_padding(self.kernel_size),
)
)
self.convs = nn.ModuleList()
self.convs.append(
NormConv2d(
self.in_channels * 2,
self.filters,
kernel_size=self.kernel_size,
padding=get_2d_padding(self.kernel_size),
)
)
in_chs = min(self.filters_scale * self.filters, self.max_filters)
for i, dilation in enumerate(self.dilations):
out_chs = min(
(self.filters_scale ** (i + 1)) * self.filters, self.max_filters
)
self.convs.append(
NormConv2d(
in_chs,
out_chs,
kernel_size=self.kernel_size,
stride=self.stride,
dilation=(dilation, 1),
padding=get_2d_padding(self.kernel_size, (dilation, 1)),
norm="weight_norm",
)
)
in_chs = out_chs
out_chs = min(
(self.filters_scale ** (len(self.dilations) + 1)) * self.filters,
self.max_filters,
)
self.convs.append(
NormConv2d(
in_chs,
out_chs,
kernel_size=(self.kernel_size[0], self.kernel_size[0]),
padding=get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
norm="weight_norm",
)
)
self.conv_post = NormConv2d(
out_chs,
self.out_channels,
kernel_size=(self.kernel_size[0], self.kernel_size[0]),
padding=get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
norm="weight_norm",
)
self.activation = torch.nn.LeakyReLU(negative_slope=LRELU_SLOPE)
self.resample = torchaudio.transforms.Resample(
orig_freq=self.fs, new_freq=self.fs * 2
)
def forward(self, x):
fmap = []
x = self.resample(x)
z = self.cqt_transform(x)
z_amplitude = z[:, :, :, 0].unsqueeze(1)
z_phase = z[:, :, :, 1].unsqueeze(1)
z = torch.cat([z_amplitude, z_phase], dim=1)
z = rearrange(z, "b c w t -> b c t w")
latent_z = []
for i in range(self.n_octaves):
latent_z.append(
self.conv_pres[i](
z[
:,
:,
:,
i * self.bins_per_octave : (i + 1) * self.bins_per_octave,
]
)
)
latent_z = torch.cat(latent_z, dim=-1)
for i, l in enumerate(self.convs):
latent_z = l(latent_z)
latent_z = self.activation(latent_z)
fmap.append(latent_z)
latent_z = self.conv_post(latent_z)
return latent_z, fmap
class MultiScaleSubbandCQTDiscriminator(nn.Module): # replacing "MultiResSpecDiscriminator"
def __init__(self):
super(MultiScaleSubbandCQTDiscriminator, self).__init__()
cfg = Munch(multiscale_subband_cfg)
self.cfg = cfg
self.discriminators = nn.ModuleList(
[
DiscriminatorCQT(
cfg,
hop_length=cfg.hop_lengths[i],
n_octaves=cfg.n_octaves[i],
bins_per_octave=cfg.bins_per_octaves[i],
)
for i in range(len(cfg.hop_lengths))
]
)
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for disc in self.discriminators:
y_d_r, fmap_r = disc(y)
y_d_g, fmap_g = disc(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
#############################
def feature_loss(fmap_r, fmap_g):
loss = 0
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
loss += torch.mean(torch.abs(rl - gl))
return loss*2
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
r_losses = []
g_losses = []
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
r_loss = torch.mean((1-dr)**2)
g_loss = torch.mean(dg**2)
loss += (r_loss + g_loss)
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
return loss, r_losses, g_losses
def generator_loss(disc_outputs):
loss = 0
gen_losses = []
for dg in disc_outputs:
l = torch.mean((1-dg)**2)
gen_losses.append(l)
loss += l
return loss, gen_losses
def discriminator_TPRLS_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
tau = 0.04
m_DG = torch.median((dr-dg))
L_rel = torch.mean((((dr - dg) - m_DG)**2)[dr < dg + m_DG])
loss += tau - F.relu(tau - L_rel)
return loss
def generator_TPRLS_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
for dg, dr in zip(disc_real_outputs, disc_generated_outputs):
tau = 0.04
m_DG = torch.median((dr-dg))
L_rel = torch.mean((((dr - dg) - m_DG)**2)[dr < dg + m_DG])
loss += tau - F.relu(tau - L_rel)
return loss