Respair's picture
Upload folder using huggingface_hub
eb29d0a verified
raw
history blame
30.5 kB
# import warnings
# warnings.simplefilter(action='ignore', category=FutureWarning)
# import itertools
# import os
# import time
# import argparse
# import json
# import torch
# import torch.nn.functional as F
# from torch.utils.tensorboard import SummaryWriter
# from torch.utils.data import DistributedSampler, DataLoader
# import torch.multiprocessing as mp
# from torch.distributed import init_process_group
# from torch.nn.parallel import DistributedDataParallel
# from env import AttrDict, build_env
# from meldataset import MelDataset, mel_spectrogram, get_dataset_filelist
# from models import Generator, MultiPeriodDiscriminator, feature_loss, generator_loss,\
# discriminator_loss, discriminator_TPRLS_loss, generator_TPRLS_loss, MultiScaleSubbandCQTDiscriminator
# from utils import plot_spectrogram, scan_checkpoint, load_checkpoint, save_checkpoint
# from stft import TorchSTFT
# from Utils.JDC.model import JDCNet
# torch.backends.cudnn.benchmark = True
# def train(rank, a, h):
# if h.num_gpus > 1:
# init_process_group(backend=h.dist_config['dist_backend'], init_method=h.dist_config['dist_url'],
# world_size=h.dist_config['world_size'] * h.num_gpus, rank=rank)
# torch.cuda.manual_seed(h.seed)
# device = torch.device('cuda:{:d}'.format(rank))
# F0_model = JDCNet(num_class=1, seq_len=192)
# params = torch.load(h.F0_path)['net']
# F0_model.load_state_dict(params)
# generator = Generator(h, F0_model, device=device).to(device)
# mpd = MultiPeriodDiscriminator().to(device)
# msd = MultiScaleSubbandCQTDiscriminator().to(device)
# stft = TorchSTFT(filter_length=h.gen_istft_n_fft, hop_length=h.gen_istft_hop_size, win_length=h.gen_istft_n_fft).to(device)
# if rank == 0:
# print(generator)
# os.makedirs(a.checkpoint_path, exist_ok=True)
# print("checkpoints directory : ", a.checkpoint_path)
# if os.path.isdir(a.checkpoint_path):
# cp_g = scan_checkpoint(a.checkpoint_path, 'g_')
# cp_do = scan_checkpoint(a.checkpoint_path, 'do_')
# steps = 0
# if cp_g is None or cp_do is None:
# state_dict_do = None
# last_epoch = -1
# else:
# state_dict_g = load_checkpoint(cp_g, device)
# state_dict_do = load_checkpoint(cp_do, device)
# generator.load_state_dict(state_dict_g['generator'])
# mpd.load_state_dict(state_dict_do['mpd'])
# msd.load_state_dict(state_dict_do['msd'])
# steps = state_dict_do['steps'] + 1
# last_epoch = state_dict_do['epoch']
# if h.num_gpus > 1:
# generator = DistributedDataParallel(generator, device_ids=[rank], find_unused_parameters=True).to(device)
# mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device)
# msd = DistributedDataParallel(msd, device_ids=[rank]).to(device)
# optim_g = torch.optim.AdamW(generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2])
# optim_d = torch.optim.AdamW(itertools.chain(msd.parameters(), mpd.parameters()),
# h.learning_rate, betas=[h.adam_b1, h.adam_b2])
# if state_dict_do is not None:
# optim_g.load_state_dict(state_dict_do['optim_g'])
# optim_d.load_state_dict(state_dict_do['optim_d'])
# scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=h.lr_decay, last_epoch=last_epoch)
# scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=h.lr_decay, last_epoch=last_epoch)
# training_filelist, validation_filelist = get_dataset_filelist(a)
# trainset = MelDataset(training_filelist, h.segment_size, h.n_fft, h.num_mels,
# h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, n_cache_reuse=0,
# shuffle=False if h.num_gpus > 1 else True, fmax_loss=h.fmax_for_loss, device=device,
# fine_tuning=a.fine_tuning, base_mels_path=a.input_mels_dir)
# train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None
# train_loader = DataLoader(trainset, num_workers=h.num_workers, shuffle=False,
# sampler=train_sampler,
# batch_size=h.batch_size,
# pin_memory=True,
# drop_last=True)
# if rank == 0:
# validset = MelDataset(validation_filelist, h.segment_size, h.n_fft, h.num_mels,
# h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, False, False, n_cache_reuse=0,
# fmax_loss=h.fmax_for_loss, device=device, fine_tuning=a.fine_tuning,
# base_mels_path=a.input_mels_dir)
# validation_loader = DataLoader(validset, num_workers=1, shuffle=False,
# sampler=None,
# batch_size=1,
# pin_memory=True,
# drop_last=True)
# sw = SummaryWriter(os.path.join(a.checkpoint_path, 'logs'))
# generator.train()
# mpd.train()
# msd.train()
# for epoch in range(max(0, last_epoch), a.training_epochs):
# if rank == 0:
# start = time.time()
# print("Epoch: {}".format(epoch+1))
# if h.num_gpus > 1:
# train_sampler.set_epoch(epoch)
# for i, batch in enumerate(train_loader):
# if rank == 0:
# start_b = time.time()
# x, y, _, y_mel = batch
# x = torch.autograd.Variable(x.to(device, non_blocking=True))
# y = torch.autograd.Variable(y.to(device, non_blocking=True))
# y_mel = torch.autograd.Variable(y_mel.to(device, non_blocking=True))
# y = y.unsqueeze(1)
# # y_g_hat = generator(x)
# spec, phase = generator(x)
# y_g_hat = stft.inverse(spec, phase)
# y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size,
# h.fmin, h.fmax_for_loss)
# optim_d.zero_grad()
# # MPD
# y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach())
# loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(y_df_hat_r, y_df_hat_g)
# loss_disc_f += discriminator_TPRLS_loss(y_df_hat_r, y_df_hat_g)
# # MSD
# y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach())
# loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(y_ds_hat_r, y_ds_hat_g)
# loss_disc_s += discriminator_TPRLS_loss(y_ds_hat_r, y_ds_hat_g)
# loss_disc_all = loss_disc_s + loss_disc_f
# loss_disc_all.backward()
# optim_d.step()
# # Generator
# optim_g.zero_grad()
# # L1 Mel-Spectrogram Loss
# loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45
# y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat)
# y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat)
# loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
# loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
# loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
# loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
# loss_gen_f += generator_TPRLS_loss(y_df_hat_r, y_df_hat_g)
# loss_gen_s += generator_TPRLS_loss(y_ds_hat_r, y_ds_hat_g)
# loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel
# loss_gen_all.backward()
# optim_g.step()
# if rank == 0:
# # STDOUT logging
# if steps % a.stdout_interval == 0:
# with torch.no_grad():
# mel_error = F.l1_loss(y_mel, y_g_hat_mel).item()
# print('Steps : {:d}, Gen Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}, s/b : {:4.3f}'.
# format(steps, loss_gen_all, mel_error, time.time() - start_b))
# # checkpointing
# if steps % a.checkpoint_interval == 0 and steps != 0:
# checkpoint_path = "{}/g_{:08d}".format(a.checkpoint_path, steps)
# save_checkpoint(checkpoint_path,
# {'generator': (generator.module if h.num_gpus > 1 else generator).state_dict()})
# checkpoint_path = "{}/do_{:08d}".format(a.checkpoint_path, steps)
# save_checkpoint(checkpoint_path,
# {'mpd': (mpd.module if h.num_gpus > 1
# else mpd).state_dict(),
# 'msd': (msd.module if h.num_gpus > 1
# else msd).state_dict(),
# 'optim_g': optim_g.state_dict(), 'optim_d': optim_d.state_dict(), 'steps': steps,
# 'epoch': epoch})
# # Tensorboard summary logging
# if steps % a.summary_interval == 0:
# sw.add_scalar("training/gen_loss_total", loss_gen_all, steps)
# sw.add_scalar("training/mel_spec_error", mel_error, steps)
# # Validation
# if steps % a.validation_interval == 0: # and steps != 0:
# generator.eval()
# torch.cuda.empty_cache()
# val_err_tot = 0
# with torch.no_grad():
# for j, batch in enumerate(validation_loader):
# x, y, _, y_mel = batch
# # y_g_hat = generator(x.to(device))
# spec, phase = generator(x.to(device))
# y_g_hat = stft.inverse(spec, phase)
# y_mel = torch.autograd.Variable(y_mel.to(device, non_blocking=True))
# y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate,
# h.hop_size, h.win_size,
# h.fmin, h.fmax_for_loss)
# val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item()
# if j <= 4:
# if steps == 0:
# sw.add_audio('gt/y_{}'.format(j), y[0], steps, h.sampling_rate)
# sw.add_figure('gt/y_spec_{}'.format(j), plot_spectrogram(x[0]), steps)
# sw.add_audio('generated/y_hat_{}'.format(j), y_g_hat[0], steps, h.sampling_rate)
# y_hat_spec = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels,
# h.sampling_rate, h.hop_size, h.win_size,
# h.fmin, h.fmax)
# sw.add_figure('generated/y_hat_spec_{}'.format(j),
# plot_spectrogram(y_hat_spec.squeeze(0).cpu().numpy()), steps)
# val_err = val_err_tot / (j+1)
# sw.add_scalar("validation/mel_spec_error", val_err, steps)
# generator.train()
# steps += 1
# scheduler_g.step()
# scheduler_d.step()
# if rank == 0:
# print('Time taken for epoch {} is {} sec\n'.format(epoch + 1, int(time.time() - start)))
# def main():
# print('Initializing Training Process..')
# parser = argparse.ArgumentParser()
# parser.add_argument('--group_name', default=None)
# parser.add_argument('--input_wavs_dir', default='')
# parser.add_argument('--input_mels_dir', default='ft_dataset')
# # parser.add_argument('--input_training_file', default='/home/ubuntu/RINGFORMER/LJSpeech-1.1/training.txt')
# parser.add_argument('--input_training_file', default='/home/ubuntu/RINGFORMER/LJSpeech-1.1/validation.txt')
# parser.add_argument('--input_validation_file', default='/home/ubuntu/RINGFORMER/LJSpeech-1.1/validation.txt')
# parser.add_argument('--checkpoint_path', default='cp_ringformer_24')
# parser.add_argument('--config', default='config_v1.json')
# parser.add_argument('--training_epochs', default=3100, type=int)
# parser.add_argument('--stdout_interval', default=5, type=int)
# parser.add_argument('--checkpoint_interval', default=5000, type=int)
# parser.add_argument('--summary_interval', default=100, type=int)
# parser.add_argument('--validation_interval', default=1000, type=int)
# parser.add_argument('--fine_tuning', default=False, type=bool)
# a = parser.parse_args()
# with open(a.config) as f:
# data = f.read()
# json_config = json.loads(data)
# h = AttrDict(json_config)
# build_env(a.config, 'config.json', a.checkpoint_path)
# torch.manual_seed(h.seed)
# if torch.cuda.is_available():
# torch.cuda.manual_seed(h.seed)
# h.num_gpus = torch.cuda.device_count()
# h.batch_size = int(h.batch_size / h.num_gpus)
# print('Batch size per GPU :', h.batch_size)
# else:
# pass
# if h.num_gpus > 1:
# mp.spawn(train, nprocs=h.num_gpus, args=(a, h,))
# else:
# train(0, a, h)
# if __name__ == '__main__':
# main()
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import itertools
import os
import time
import argparse
import json
import torch
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DistributedSampler, DataLoader
import torch.multiprocessing as mp
from torch.distributed import init_process_group
from torch.nn.parallel import DistributedDataParallel
from env import AttrDict, build_env
from meldataset import MelDataset, mel_spectrogram, get_dataset_filelist
from models import Generator, MultiPeriodDiscriminator, feature_loss, generator_loss,\
discriminator_loss, discriminator_TPRLS_loss, generator_TPRLS_loss, MultiScaleSubbandCQTDiscriminator
from utils import plot_spectrogram, scan_checkpoint, load_checkpoint, save_checkpoint
from stft import TorchSTFT
from Utils.JDC.model import JDCNet
from accelerate import Accelerator
from accelerate.utils import LoggerType
from accelerate import DistributedDataParallelKwargs
torch.backends.cudnn.benchmark = True
def train(accelerator, a, h):
# if h.num_gpus > 1:
# init_process_group(backend=h.dist_config['dist_backend'], init_method=h.dist_config['dist_url'],
# world_size=h.dist_config['world_size'] * h.num_gpus, rank=rank)
torch.cuda.manual_seed(h.seed)
device = accelerator.device
F0_model = JDCNet(num_class=1, seq_len=192)
params = torch.load(h.F0_path)['model']
F0_model.load_state_dict(params)
generator = Generator(h, F0_model).to(device)
mpd = MultiPeriodDiscriminator().to(device)
msd = MultiScaleSubbandCQTDiscriminator().to(device)
stft = TorchSTFT(filter_length=h.gen_istft_n_fft, hop_length=h.gen_istft_hop_size, win_length=h.gen_istft_n_fft).to(device)
with accelerator.main_process_first():
accelerator.print(generator)
os.makedirs(a.checkpoint_path, exist_ok=True)
accelerator.print("checkpoints directory : ", a.checkpoint_path)
if os.path.isdir(a.checkpoint_path):
cp_g = scan_checkpoint(a.checkpoint_path, 'g_')
cp_do = scan_checkpoint(a.checkpoint_path, 'do_')
steps = 0
if cp_g is None or cp_do is None:
state_dict_do = None
last_epoch = -1
else:
state_dict_g = load_checkpoint(cp_g, device)
state_dict_do = load_checkpoint(cp_do, device)
generator.load_state_dict(state_dict_g['generator'])
mpd.load_state_dict(state_dict_do['mpd'])
msd.load_state_dict(state_dict_do['msd'])
steps = state_dict_do['steps'] + 1
last_epoch = state_dict_do['epoch']
# if h.num_gpus > 1:
generator = accelerator.prepare(generator).to(device)
mpd = accelerator.prepare(mpd).to(device)
msd = accelerator.prepare(msd).to(device)
optim_g = accelerator.prepare(torch.optim.AdamW(generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2]))
optim_d = accelerator.prepare(torch.optim.AdamW(itertools.chain(msd.parameters(), mpd.parameters()),
h.learning_rate, betas=[h.adam_b1, h.adam_b2]))
if state_dict_do is not None:
optim_g.load_state_dict(state_dict_do['optim_g'])
optim_d.load_state_dict(state_dict_do['optim_d'])
scheduler_g = accelerator.prepare(torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=h.lr_decay, last_epoch=last_epoch))
scheduler_d = accelerator.prepare(torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=h.lr_decay, last_epoch=last_epoch))
training_filelist, validation_filelist = get_dataset_filelist(a)
trainset = MelDataset(training_filelist, h.segment_size, h.n_fft, h.num_mels,
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, n_cache_reuse=0,
shuffle=False if h.num_gpus > 1 else True, fmax_loss=h.fmax_for_loss, device=device,
fine_tuning=a.fine_tuning, base_mels_path=a.input_mels_dir)
# train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None
accelerator.print("bs", h.batch_size)
train_loader = DataLoader(trainset, num_workers=h.num_workers, shuffle=False,
# sampler=train_sampler,
batch_size=h.batch_size,
pin_memory=True,
drop_last=True)
train_loader = accelerator.prepare(train_loader)
validset = MelDataset(validation_filelist, h.segment_size, h.n_fft, h.num_mels,
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, False, False, n_cache_reuse=0,
fmax_loss=h.fmax_for_loss, device=device, fine_tuning=a.fine_tuning,
base_mels_path=a.input_mels_dir)
validation_loader = DataLoader(validset, num_workers=1, shuffle=False,
sampler=None,
batch_size=1,
pin_memory=True,
drop_last=True)
sw = SummaryWriter(os.path.join(a.checkpoint_path, 'logs'))
# validation_loader = accelerator.prepare(validation_loader)
generator.train()
mpd.train()
msd.train()
for epoch in range(max(0, last_epoch), a.training_epochs):
with accelerator.main_process_first():
start = time.time()
accelerator.print("Epoch: {}".format(epoch+1))
# if h.num_gpus > 1:
# train_sampler.set_epoch(epoch)
for i, batch in enumerate(train_loader):
# with accelerator.main_process_first():
start_b = time.time()
x, y, _, y_mel = batch
x = torch.autograd.Variable(x.to(device, non_blocking=True))
y = torch.autograd.Variable(y.to(device, non_blocking=True))
y_mel = torch.autograd.Variable(y_mel.to(device, non_blocking=True))
y = y.unsqueeze(1)
# y_g_hat = generator(x)
spec, phase = generator(x)
y_g_hat = stft.inverse(spec, phase)
y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size,
h.fmin, h.fmax_for_loss)
optim_d.zero_grad()
# MPD
y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach())
loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(y_df_hat_r, y_df_hat_g)
loss_disc_f += discriminator_TPRLS_loss(y_df_hat_r, y_df_hat_g)
# MSD
y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach())
loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(y_ds_hat_r, y_ds_hat_g)
loss_disc_s += discriminator_TPRLS_loss(y_ds_hat_r, y_ds_hat_g)
loss_disc_all = loss_disc_s + loss_disc_f
accelerator.backward(loss_disc_all)
# accelerator.clip_grad_norm_(mpd.parameters(), max_norm=10.0)
# accelerator.clip_grad_norm_(msd.parameters(), max_norm=10.0)
# loss_disc_all.backward()
optim_d.step()
# Generator
optim_g.zero_grad()
# L1 Mel-Spectrogram Loss
loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat)
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat)
loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
loss_gen_f += generator_TPRLS_loss(y_df_hat_r, y_df_hat_g)
loss_gen_s += generator_TPRLS_loss(y_ds_hat_r, y_ds_hat_g)
loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel
accelerator.backward(loss_gen_all)
# accelerator.clip_grad_norm_(generator.parameters(), max_norm=10.0)
# loss_gen_all.backward()
optim_g.step()
# accelerator.print('done +',i)
# STDOUT logging
if steps % a.stdout_interval == 0:
with accelerator.main_process_first():
with torch.no_grad():
mel_error = F.l1_loss(y_mel, y_g_hat_mel).item()
accelerator.print('Steps : {:d}, Gen Loss Total : {:4.3f}, Disc Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}, s/b : {:4.3f}'.
format(steps, loss_gen_all, loss_disc_all, mel_error, time.time() - start_b))
# checkpointing
# In the main code:
# if steps % a.checkpoint_interval == 0 and steps != 0:
# # with accelerator.main_process_first():
# # Unwrap the generator
# unwrapped_generator = accelerator.unwrap_model(generator)
# checkpoint_path = "{}/g_{:08d}".format(a.checkpoint_path, steps)
# save_checkpoint(checkpoint_path,
# {'generator': unwrapped_generator.state_dict()})
# # Unwrap discriminators
# unwrapped_mpd = accelerator.unwrap_model(mpd)
# unwrapped_msd = accelerator.unwrap_model(msd)
# checkpoint_path = "{}/do_{:08d}".format(a.checkpoint_path, steps)
# save_checkpoint(checkpoint_path,
# {'mpd': unwrapped_mpd.state_dict(),
# 'msd': unwrapped_msd.state_dict(),
# 'optim_g': optim_g.state_dict(),
# 'optim_d': optim_d.state_dict(),
# 'steps': steps,
# 'epoch': epoch})
if steps % a.checkpoint_interval == 0 and steps != 0:
with accelerator.main_process_first():
checkpoint_path = "{}/g_{:08d}".format(a.checkpoint_path, steps)
save_checkpoint(checkpoint_path,
{'generator': (generator.module if h.num_gpus > 1 else generator).state_dict()})
checkpoint_path = "{}/do_{:08d}".format(a.checkpoint_path, steps)
save_checkpoint(checkpoint_path,
{'mpd': (mpd.module if h.num_gpus > 1
else mpd).state_dict(),
'msd': (msd.module if h.num_gpus > 1
else msd).state_dict(),
'optim_g': optim_g.state_dict(), 'optim_d': optim_d.state_dict(), 'steps': steps,
'epoch': epoch})
# Tensorboard summary logging
if steps % a.summary_interval == 0:
sw.add_scalar("training/gen_loss_total", loss_gen_all, steps)
sw.add_scalar("training/mel_spec_error", mel_error, steps)
# Validation
if steps % a.validation_interval == 0: # and steps != 0:
# with accelerator.main_process_first():
accelerator.print('evalution...')
generator.eval()
torch.cuda.empty_cache()
val_err_tot = 0
with torch.no_grad():
for j, batch in enumerate(validation_loader):
x, y, _, y_mel = batch
# y_g_hat = generator(x.to(device))
spec, phase = generator(x.to('cuda'))
y_g_hat = stft.inverse(spec, phase)
y_mel = torch.autograd.Variable(y_mel.to('cuda', non_blocking=True))
y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate,
h.hop_size, h.win_size,
h.fmin, h.fmax_for_loss)
accelerator.print('done: ',j)
val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item()
if j <= 4:
if steps == 0:
sw.add_audio('gt/y_{}'.format(j), y[0], steps, h.sampling_rate)
sw.add_figure('gt/y_spec_{}'.format(j), plot_spectrogram(x[0]), steps)
sw.add_audio('generated/y_hat_{}'.format(j), y_g_hat[0], steps, h.sampling_rate)
y_hat_spec = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels,
h.sampling_rate, h.hop_size, h.win_size,
h.fmin, h.fmax)
sw.add_figure('generated/y_hat_spec_{}'.format(j),
plot_spectrogram(y_hat_spec.squeeze(0).cpu().numpy()), steps)
val_err = val_err_tot / (j+1)
sw.add_scalar("validation/mel_spec_error", val_err, steps)
generator.train()
steps += 1
scheduler_g.step()
scheduler_d.step()
# with accelerator.main_process_first():
accelerator.print('Time taken for epoch {} is {} sec\n'.format(epoch + 1, int(time.time() - start)))
def main():
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
parser = argparse.ArgumentParser()
parser.add_argument('--group_name', default=None)
parser.add_argument('--input_wavs_dir', default='')
parser.add_argument('--input_mels_dir', default='ft_dataset')
# parser.add_argument('--input_training_file', default='/home/ubuntu/RINGFORMER/LJSpeech-1.1/training.txt')
parser.add_argument('--input_training_file', default='/home/ubuntu/respair/audio_files_over_2sec_SUB.txt')
parser.add_argument('--input_validation_file', default='/home/ubuntu/RINGFORMER/LJSpeech-1.1/validation.txt')
parser.add_argument('--checkpoint_path', default='cp_ringformer_44.1khz_NUM2')
parser.add_argument('--config', default='config_v1.json')
parser.add_argument('--training_epochs', default=3100, type=int)
parser.add_argument('--stdout_interval', default=10, type=int)
parser.add_argument('--checkpoint_interval', default=1000, type=int)
parser.add_argument('--summary_interval', default=100, type=int)
parser.add_argument('--validation_interval', default=1000, type=int)
parser.add_argument('--fine_tuning', default=False, type=bool)
a = parser.parse_args()
accelerator = Accelerator(project_dir=a.checkpoint_path, split_batches=False,
kwargs_handlers=[ddp_kwargs])
accelerator.print('Initializing Training Process..')
with open(a.config) as f:
data = f.read()
json_config = json.loads(data)
h = AttrDict(json_config)
build_env(a.config, 'config.json', a.checkpoint_path)
torch.manual_seed(h.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(h.seed)
h.num_gpus = torch.cuda.device_count()
# h.batch_size = int(h.batch_size / h.num_gpus)
# print('Batch size per GPU :', h.batch_size)
else:
pass
# Pass accelerator to train function instead of rank
train(accelerator, a, h)
if __name__ == '__main__':
main()