|
from basicsr.utils.registry import ARCH_REGISTRY
|
|
from torch import nn as nn
|
|
from torch.nn import functional as F
|
|
|
|
|
|
@ARCH_REGISTRY.register()
|
|
class SRVGGNetCompact(nn.Module):
|
|
"""A compact VGG-style network structure for super-resolution.
|
|
|
|
It is a compact network structure, which performs upsampling in the last layer and no convolution is
|
|
conducted on the HR feature space.
|
|
|
|
Args:
|
|
num_in_ch (int): Channel number of inputs. Default: 3.
|
|
num_out_ch (int): Channel number of outputs. Default: 3.
|
|
num_feat (int): Channel number of intermediate features. Default: 64.
|
|
num_conv (int): Number of convolution layers in the body network. Default: 16.
|
|
upscale (int): Upsampling factor. Default: 4.
|
|
act_type (str): Activation type, options: 'relu', 'prelu', 'leakyrelu'. Default: prelu.
|
|
"""
|
|
|
|
def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu'):
|
|
super(SRVGGNetCompact, self).__init__()
|
|
self.num_in_ch = num_in_ch
|
|
self.num_out_ch = num_out_ch
|
|
self.num_feat = num_feat
|
|
self.num_conv = num_conv
|
|
self.upscale = upscale
|
|
self.act_type = act_type
|
|
|
|
self.body = nn.ModuleList()
|
|
|
|
self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1))
|
|
|
|
if act_type == 'relu':
|
|
activation = nn.ReLU(inplace=True)
|
|
elif act_type == 'prelu':
|
|
activation = nn.PReLU(num_parameters=num_feat)
|
|
elif act_type == 'leakyrelu':
|
|
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
|
self.body.append(activation)
|
|
|
|
|
|
for _ in range(num_conv):
|
|
self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1))
|
|
|
|
if act_type == 'relu':
|
|
activation = nn.ReLU(inplace=True)
|
|
elif act_type == 'prelu':
|
|
activation = nn.PReLU(num_parameters=num_feat)
|
|
elif act_type == 'leakyrelu':
|
|
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
|
self.body.append(activation)
|
|
|
|
|
|
self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1))
|
|
|
|
self.upsampler = nn.PixelShuffle(upscale)
|
|
|
|
def forward(self, x):
|
|
out = x
|
|
for i in range(0, len(self.body)):
|
|
out = self.body[i](out)
|
|
|
|
out = self.upsampler(out)
|
|
|
|
base = F.interpolate(x, scale_factor=self.upscale, mode='nearest')
|
|
out += base
|
|
return out
|
|
|