from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
class EndpointHandler(): | |
def __init__(self): | |
# default: Load the model on the available device(s) | |
self.model = Qwen2VLForConditionalGeneration.from_pretrained( | |
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto", | |
) | |
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios. | |
# model = Qwen2VLForConditionalGeneration.from_pretrained( | |
# "Qwen/Qwen2-VL-7B-Instruct", | |
# torch_dtype=torch.bfloat16, | |
# attn_implementation="flash_attention_2", | |
# device_map="auto", | |
# ) | |
# default processer | |
self.processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") | |
# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage. | |
# min_pixels = 256*28*28 | |
# max_pixels = 1280*28*28 | |
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels) | |
def __call__(self, data): | |
text = self.processor.apply_chat_template( | |
data["messages"], tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(data["messages"]) | |
inputs = self.processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to(self.model.device) | |
# Inference: Generation of the output | |
generated_ids = self.model.generate(**inputs, max_new_tokens=data.get("max_new_tokens", 128)) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = self.processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
return { | |
"output": output_text, | |
} | |