File size: 1,908 Bytes
9e29dc3 3806a6e 9e29dc3 808f2d3 eb02356 d8e48de ec5edd9 d8e48de 9e29dc3 3e42320 9e29dc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
tags:
- merge
- mergekit
- lazymergekit
license: apache-2.0
---
# LuminRP-7B-128k-v0.3
[LuminRP-7B-128k-v0.3](https://huggingface.co/Ppoyaa/LuminRP-7B-128k-v0.3) is a merge of [Ppoyaa/LuminRP-7B-128k-v0.2](https://huggingface.co/Ppoyaa/LuminRP-7B-128k-v0.2) with an instruct model and another RP model to hopefully further strenghten its instruction following and roleplaying.
Performs better than [LuminRP-7B-128k-v0.2](https://huggingface.co/Ppoyaa/LuminRP-7B-128k-v0.2) in general task. Haven't tested it for RP yet.
# Response Examples
```
Input: 25 - 4 * 2 + 3 = ?
------------------------------------
Output: To solve this mathematical expression, follow the order of operations (PEMDAS):
Parentheses: There are no parentheses in the given expression.
Exponents: There are no exponents in the expression.
Multiplication and Division: Perform the multiplication and division from left to right. First, calculate the result of 4 * 2 which is 8. Then subtract that value from 25: 25 - 8 = 17.
Addition and Subtraction: Finally, add 3 to the previous result: 17 + 3 = 20.
So, 25 - 4 * 2 + 3 equals 20.
```
# Quantized Version
**GGUF**: [Ppoyaa/LuminRP-7B-128k-v0.3-GGUF](https://huggingface.co/Ppoyaa/LuminRP-7B-128k-v0.3-GGUF)
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Ppoyaa/LuminRP-7B-128k-v0.3"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |