File size: 1,908 Bytes
9e29dc3
 
 
 
 
3806a6e
9e29dc3
 
 
808f2d3
eb02356
d8e48de
 
 
 
ec5edd9
d8e48de
 
 
 
 
 
 
 
9e29dc3
3e42320
 
 
9e29dc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
tags:
- merge
- mergekit
- lazymergekit
license: apache-2.0
---

# LuminRP-7B-128k-v0.3
[LuminRP-7B-128k-v0.3](https://huggingface.co/Ppoyaa/LuminRP-7B-128k-v0.3) is a merge of [Ppoyaa/LuminRP-7B-128k-v0.2](https://huggingface.co/Ppoyaa/LuminRP-7B-128k-v0.2) with an instruct model and another RP model to hopefully further strenghten its instruction following and roleplaying.
Performs better than [LuminRP-7B-128k-v0.2](https://huggingface.co/Ppoyaa/LuminRP-7B-128k-v0.2) in general task. Haven't tested it for RP yet.

# Response Examples
```
Input: 25 - 4 * 2 + 3 = ?
------------------------------------
Output: To solve this mathematical expression, follow the order of operations (PEMDAS):

Parentheses: There are no parentheses in the given expression.
Exponents: There are no exponents in the expression.
Multiplication and Division: Perform the multiplication and division from left to right. First, calculate the result of 4 * 2 which is 8. Then subtract that value from 25: 25 - 8 = 17.
Addition and Subtraction: Finally, add 3 to the previous result: 17 + 3 = 20.
So, 25 - 4 * 2 + 3 equals 20.
```

# Quantized Version
**GGUF**: [Ppoyaa/LuminRP-7B-128k-v0.3-GGUF](https://huggingface.co/Ppoyaa/LuminRP-7B-128k-v0.3-GGUF)

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Ppoyaa/LuminRP-7B-128k-v0.3"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```