Text-to-3D
image-to-3d
Chao Xu
sparseneus and elev est
854f0d0
raw
history blame
11.2 kB
import torch
import torch.nn as nn
import cv2 as cv
import numpy as np
import re
import os
import logging
from glob import glob
from models.rays import gen_rays_from_single_image, gen_random_rays_from_single_image
from data.scene import get_boundingbox
def load_K_Rt_from_P(filename, P=None):
if P is None:
lines = open(filename).read().splitlines()
if len(lines) == 4:
lines = lines[1:]
lines = [[x[0], x[1], x[2], x[3]] for x in (x.split(" ") for x in lines)]
P = np.asarray(lines).astype(np.float32).squeeze()
out = cv.decomposeProjectionMatrix(P)
K = out[0]
R = out[1]
t = out[2]
K = K / K[2, 2]
intrinsics = np.eye(4)
intrinsics[:3, :3] = K
pose = np.eye(4, dtype=np.float32)
pose[:3, :3] = R.transpose() # ? why need transpose here
pose[:3, 3] = (t[:3] / t[3])[:, 0]
return intrinsics, pose # ! return cam2world matrix here
class DtuFit:
def __init__(self, root_dir, split, scan_id, n_views, train_img_idx=[], test_img_idx=[],
img_wh=[800, 600], clip_wh=[0, 0], original_img_wh=[1600, 1200],
N_rays=512, h_patch_size=5, near=425, far=900):
super(DtuFit, self).__init__()
logging.info('Load data: Begin')
self.root_dir = root_dir
self.split = split
self.scan_id = scan_id
self.n_views = n_views
self.near = near
self.far = far
if self.scan_id is not None:
self.data_dir = os.path.join(self.root_dir, self.scan_id)
else:
self.data_dir = self.root_dir
self.img_wh = img_wh
self.clip_wh = clip_wh
if len(self.clip_wh) == 2:
self.clip_wh = self.clip_wh + self.clip_wh
self.original_img_wh = original_img_wh
self.N_rays = N_rays
self.h_patch_size = h_patch_size # used to extract patch for supervision
self.train_img_idx = train_img_idx
self.test_img_idx = test_img_idx
camera_dict = np.load(os.path.join(self.data_dir, 'cameras.npz'), allow_pickle=True)
self.images_list = sorted(glob(os.path.join(self.data_dir, "image/*.png")))
# world_mat: projection matrix: world to image
self.world_mats_np = [camera_dict['world_mat_%d' % idx].astype(np.float32) for idx in
range(len(self.images_list))]
self.raw_near_fars = np.stack([np.array([self.near, self.far]) for i in range(len(self.images_list))])
# - reference image; transform the world system to the ref-camera system
self.ref_img_idx = self.train_img_idx[0]
ref_world_mat = self.world_mats_np[self.ref_img_idx]
self.ref_w2c = np.linalg.inv(load_K_Rt_from_P(None, ref_world_mat[:3, :4])[1])
self.all_images = []
self.all_intrinsics = []
self.all_w2cs = []
self.load_scene() # load the scene
# ! estimate scale_mat
self.scale_mat, self.scale_factor = self.cal_scale_mat(
img_hw=[self.img_wh[1], self.img_wh[0]],
intrinsics=self.all_intrinsics[self.train_img_idx],
extrinsics=self.all_w2cs[self.train_img_idx],
near_fars=self.raw_near_fars[self.train_img_idx],
factor=1.1)
# * after scaling and translation, unit bounding box
self.scaled_intrinsics, self.scaled_w2cs, self.scaled_c2ws, \
self.scaled_affine_mats, self.scaled_near_fars = self.scale_cam_info()
# import ipdb; ipdb.set_trace()
self.bbox_min = np.array([-1.0, -1.0, -1.0])
self.bbox_max = np.array([1.0, 1.0, 1.0])
self.partial_vol_origin = torch.Tensor([-1., -1., -1.])
logging.info('Load data: End')
def load_scene(self):
scale_x = self.img_wh[0] / self.original_img_wh[0]
scale_y = self.img_wh[1] / self.original_img_wh[1]
for idx in range(len(self.images_list)):
image = cv.imread(self.images_list[idx])
image = cv.resize(image, (self.img_wh[0], self.img_wh[1])) / 255.
image = image[self.clip_wh[1]:self.img_wh[1] - self.clip_wh[3],
self.clip_wh[0]:self.img_wh[0] - self.clip_wh[2]]
self.all_images.append(np.transpose(image[:, :, ::-1], (2, 0, 1))) # append [3,]
P = self.world_mats_np[idx]
P = P[:3, :4]
intrinsics, c2w = load_K_Rt_from_P(None, P)
w2c = np.linalg.inv(c2w)
intrinsics[:1] *= scale_x
intrinsics[1:2] *= scale_y
intrinsics[0, 2] -= self.clip_wh[0]
intrinsics[1, 2] -= self.clip_wh[1]
self.all_intrinsics.append(intrinsics)
# - transform from world system to ref-camera system
self.all_w2cs.append(w2c @ np.linalg.inv(self.ref_w2c))
self.all_images = torch.from_numpy(np.stack(self.all_images)).to(torch.float32)
self.all_intrinsics = torch.from_numpy(np.stack(self.all_intrinsics)).to(torch.float32)
self.all_w2cs = torch.from_numpy(np.stack(self.all_w2cs)).to(torch.float32)
self.img_wh = [self.img_wh[0] - self.clip_wh[0] - self.clip_wh[2],
self.img_wh[1] - self.clip_wh[1] - self.clip_wh[3]]
def cal_scale_mat(self, img_hw, intrinsics, extrinsics, near_fars, factor=1.):
center, radius, _ = get_boundingbox(img_hw, intrinsics, extrinsics, near_fars)
radius = radius * factor
scale_mat = np.diag([radius, radius, radius, 1.0])
scale_mat[:3, 3] = center.cpu().numpy()
scale_mat = scale_mat.astype(np.float32)
return scale_mat, 1. / radius.cpu().numpy()
def scale_cam_info(self):
new_intrinsics = []
new_near_fars = []
new_w2cs = []
new_c2ws = []
new_affine_mats = []
for idx in range(len(self.all_images)):
intrinsics = self.all_intrinsics[idx]
P = intrinsics @ self.all_w2cs[idx] @ self.scale_mat
P = P.cpu().numpy()[:3, :4]
# - should use load_K_Rt_from_P() to obtain c2w
c2w = load_K_Rt_from_P(None, P)[1]
w2c = np.linalg.inv(c2w)
new_w2cs.append(w2c)
new_c2ws.append(c2w)
new_intrinsics.append(intrinsics)
affine_mat = np.eye(4)
affine_mat[:3, :4] = intrinsics[:3, :3] @ w2c[:3, :4]
new_affine_mats.append(affine_mat)
camera_o = c2w[:3, 3]
dist = np.sqrt(np.sum(camera_o ** 2))
near = dist - 1
far = dist + 1
new_near_fars.append([0.95 * near, 1.05 * far])
new_intrinsics, new_w2cs, new_c2ws, new_affine_mats, new_near_fars = \
np.stack(new_intrinsics), np.stack(new_w2cs), np.stack(new_c2ws), \
np.stack(new_affine_mats), np.stack(new_near_fars)
new_intrinsics = torch.from_numpy(np.float32(new_intrinsics))
new_w2cs = torch.from_numpy(np.float32(new_w2cs))
new_c2ws = torch.from_numpy(np.float32(new_c2ws))
new_affine_mats = torch.from_numpy(np.float32(new_affine_mats))
new_near_fars = torch.from_numpy(np.float32(new_near_fars))
return new_intrinsics, new_w2cs, new_c2ws, new_affine_mats, new_near_fars
def get_conditional_sample(self):
sample = {}
support_idxs = self.train_img_idx
sample['images'] = self.all_images[support_idxs] # (V, 3, H, W)
sample['w2cs'] = self.scaled_w2cs[self.train_img_idx] # (V, 4, 4)
sample['c2ws'] = self.scaled_c2ws[self.train_img_idx] # (V, 4, 4)
sample['near_fars'] = self.scaled_near_fars[self.train_img_idx] # (V, 2)
sample['intrinsics'] = self.scaled_intrinsics[self.train_img_idx][:, :3, :3] # (V, 3, 3)
sample['affine_mats'] = self.scaled_affine_mats[self.train_img_idx] # ! in world space
sample['scan'] = self.scan_id
sample['scale_factor'] = torch.tensor(self.scale_factor)
sample['scale_mat'] = torch.from_numpy(self.scale_mat)
sample['trans_mat'] = torch.from_numpy(np.linalg.inv(self.ref_w2c))
sample['img_wh'] = torch.from_numpy(np.array(self.img_wh))
sample['partial_vol_origin'] = torch.tensor(self.partial_vol_origin, dtype=torch.float32)
return sample
def __len__(self):
if self.split == 'train':
return self.n_views * 1000
else:
return len(self.test_img_idx) * 1000
def __getitem__(self, idx):
sample = {}
if self.split == 'train':
render_idx = self.train_img_idx[idx % self.n_views]
support_idxs = [idx for idx in self.train_img_idx if idx != render_idx]
else:
# render_idx = idx % self.n_test_images + self.n_train_images
render_idx = self.test_img_idx[idx % len(self.test_img_idx)]
support_idxs = [render_idx]
sample['images'] = self.all_images[support_idxs] # (V, 3, H, W)
sample['w2cs'] = self.scaled_w2cs[support_idxs] # (V, 4, 4)
sample['c2ws'] = self.scaled_c2ws[support_idxs] # (V, 4, 4)
sample['intrinsics'] = self.scaled_intrinsics[support_idxs][:, :3, :3] # (V, 3, 3)
sample['affine_mats'] = self.scaled_affine_mats[support_idxs] # ! in world space
sample['scan'] = self.scan_id
sample['scale_factor'] = torch.tensor(self.scale_factor)
sample['img_wh'] = torch.from_numpy(np.array(self.img_wh))
sample['partial_vol_origin'] = torch.tensor(self.partial_vol_origin, dtype=torch.float32)
sample['img_index'] = torch.tensor(render_idx)
# - query image
sample['query_image'] = self.all_images[render_idx]
sample['query_c2w'] = self.scaled_c2ws[render_idx]
sample['query_w2c'] = self.scaled_w2cs[render_idx]
sample['query_intrinsic'] = self.scaled_intrinsics[render_idx]
sample['query_near_far'] = self.scaled_near_fars[render_idx]
sample['meta'] = str(self.scan_id) + "_" + os.path.basename(self.images_list[render_idx])
sample['scale_mat'] = torch.from_numpy(self.scale_mat)
sample['trans_mat'] = torch.from_numpy(np.linalg.inv(self.ref_w2c))
sample['rendering_c2ws'] = self.scaled_c2ws[self.test_img_idx]
sample['rendering_imgs_idx'] = torch.Tensor(np.array(self.test_img_idx).astype(np.int32))
# - generate rays
if self.split == 'val' or self.split == 'test':
sample_rays = gen_rays_from_single_image(
self.img_wh[1], self.img_wh[0],
sample['query_image'],
sample['query_intrinsic'],
sample['query_c2w'],
depth=None,
mask=None)
else:
sample_rays = gen_random_rays_from_single_image(
self.img_wh[1], self.img_wh[0],
self.N_rays,
sample['query_image'],
sample['query_intrinsic'],
sample['query_c2w'],
depth=None,
mask=None,
dilated_mask=None,
importance_sample=False,
h_patch_size=self.h_patch_size
)
sample['rays'] = sample_rays
return sample